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We investigate and solve the weak noise theory for the semidiscrete O’Connell-Yor directed polymer. In the
large deviation regime, the most probable evolution of the partition function obeys a classical nonlinear system
which is a nonstandard discretization of the nonlinear Schrödinger equation with mixed initial-final conditions.
We show that this system is integrable and find its general solution through an inverse scattering method and a
non-standard Fredholm determinant framework that we develop. This allows us to obtain the large deviation rate
function of the free energy of the polymer model from its conserved quantities and to study its convergence to
the large deviations of the Kardar-Parisi-Zhang equation. Our model also degenerates to the classical Toda chain,
which further substantiates the applicability of our Fredholm framework.
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I. INTRODUCTION

A. Overview

There has been much recent progress in obtaining exact
solutions for the weak noise theory (WNT) of stochastic con-
tinuous systems in 1 + 1 dimensions. This was achieved in
the context of the Kardar-Parisi-Zhang (KPZ) equation [1–3],
introduced to describes interface growth [4], and of the macro-
scopic fluctuation theory (MFT) [5–10], which describes
diffusive particle systems [11–14]. The WNT describes the
optimal configuration of height or density fields which real-
izes atypically large fluctuations in the presence of a weak
noise [15–17]: this is an example of a large deviation problem
[18]. The progress was achieved by noticing that the nonlinear
systems of equations which arise in WNT are integrable. For
the KPZ equation, where the WNT describes the short-time
regime, these equations are a close cousin of the nonlinear
Schrödinger equation (NLS), while for the MFT the connec-
tion is to the derivative nonlinear Schrödinger equation. Both
equations are integrable using the inverse scattering method
based on the existence of a Lax pair [19–21], but solving
the WNT requires handling mixed initial-final time condi-
tions. These connections to stochastic problems have renewed
the interest in these classical integrable systems due to the
new challenge of nonstandard mixed boundary conditions, to-
gether with the possibility to solve exactly the equations using
Fredholm determinants. In fact, some of the large devia-
tion rate functions obtained by these classical integrability
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methods have also been derived [6,22–24] from the Fredholm
determinant formula stemming from quantum integrability.
While complementary, the two approaches are quite distinct,
and the connections between them are not elucidated.

B. Polymer model and weak noise limit

These studies have so far remained in the scope of continu-
ous systems and the question whether this can be extended to
discrete systems is still open. In this paper, we provide a pos-
itive answer to this question in the context of the semidiscrete
O’Connell-Yor (OY) polymer [25–27], a discretization of the
KPZ equation [28]. In its point-to-point version, it is defined
by the partition sum ZN (t ) defined as

ZN (t ) =
∫

s0=0<s1<···<sN =t
ds1 · · · dsN−1 e

√
ε
∑N

j=1[Bj (s j )−Bj (s j−1 )]. (1)

The directed polymer path lives on the horizontal lines
j = 1, . . . , N and jump upward from line j to j + 1 at time
s j ; see Fig. 1. The Bj (s) are independent standard Brownian
motions and represent the noise. The endpoints are fixed at
( j, s) = (1, 0) and (N, t ). For N = 1 this is just the geometric
Brownian motion Z1(t ) = e

√
εB(t ) frequently studied in the

Black-Scholes model in finance [29].
The weak noise limit amounts to take the (inverse tem-

perature) parameter ε � 1. Consider first the simplest case
of the geometric Brownian motion in the weak noise, i.e.,
small volatility, limit. Although its typical fluctuations are
simple (they are Brownian by expanding the exponential),
the large deviations are more interesting. Indeed, consider the
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FIG. 1. Example of a configuration of the O’Connell-Yor poly-
mer, here for N = 5, where independent Brownians live on each
horizontal line.

observable

e− �̂
ε

Z1(t=1) =
∫
R

du√
2πε

e− u2

2ε
− �̂

ε
eu ∼

ε→0
e− 1

ε
�1(�̂), (2)

where the overbar denotes expectation values with respect to
the noise, and the the rate function is

�(�̂) = min
u∈R

(
u2

2
+ �̂eu

)
= W (�̂)2

2
+ W (�̂), (3)

where W is the Lambert function [30] (see also [23], Supp.
Material, Sec. 1). Hence it is already nontrivial for N = 1
and describes how the rare large fluctuations B(t = 1) =
O(1/

√
ε) affect the geometric Brownian motion.

C. Aim of the paper

In this paper, we consider such large deviation observables
for the full OY problem defined in Eq. (1) with arbitrary num-
ber of lines N . This now involves a nontrivial path-dependent
optimization. We show that these large deviations are con-
trolled by a system of deterministic nonlinear equations with
mixed initial-final boundary conditions which arise from the
saddle point of the dynamical action associated to the stochas-
tic evolution of ZN (t ). These equations are a discretization of
the {P, Q} system studied by us using inverse scattering in the
context of the KPZ equation in Refs. [1,2,6], a close cousin of
the NLS equation [19], and a member of the AKNS hierarchy
[20] which also recently appeared in the context of the peri-
odic TASEP and the KPZ fixed point [31,32]. Interestingly it
is a nonstandard discretization, whose nonlinearity is local on
the lattice, and which is closely related to other physical mod-
els such as the discrete self-trapping dimer model [33,34], the
Toda lattice [35], and the periodic TASEP at large time [36].
These equations are integrable in the sense of the existence
of a Lax pair. Our contribution is the derivation of an in-
verse scattering theory adapted to boundary conditions which
are nonlocal in time, together with the explicit solution of
these equations in terms of direct and inverse scattering. This
allows us to obtain the analytical expression of the large devi-
ation rate function for the OY model for arbitrary N as well as
the optimal history of the partition function conditioned on the
large deviations. We complement our study by performing an
asymptotic analysis of a determinantal formula obtained for

the OY model [28,37], which agrees with our results. We also
show in detail how, in the limit of large N , these equations and
their solutions recover the previous results for the Weak Noise
Theory/short-time limit of the KPZ equation [1]. As an amus-
ing byproduct, we obtain a contour integral representation of
the Lambert function.

D. Outline

We start in Sec. II by studying the weak noise limit of the
OY polymer from a field theoretical point of view. In Sec. II A
we define the observables of interest in that limit, the details
are given in Appendix A.

In Sec. II B we perform a saddle point calculation, which
brings us to a semidiscrete nonlinear system of equations. The
details are given in Appendix B. In some special cases N = 1
and g = 0 it is immediately solvable; see Appendix C. In the
general case, this system is integrable as we discuss, and we
obtain its Lax pair, which is further detailed in Appendix D.

In Sec. III we develop the scattering method to solve this
system with mixed time boundary conditions. In Sec. III A we
introduce the scattering basis and amplitudes. The details are
given in Appendix E.

In Sec. III B we perform the inverse scattering analysis to
obtain the general explicit solution of the system for general
data with a Fredholm framework we develop. This is achieved
through the triangular representation of the scattering solu-
tions and the GLM equations that we derive explicitly in
Appendixes K and L.

In Sec. IV we apply this method to the boundary condi-
tions corresponding to the point-to-point OY polymer. We first
obtain the scattering amplitudes for this case. The derivation
is first detailed in Appendix G, and followed by a detailed
Riemann-Hilbert analysis in Appendix H. The rate functions
can then be computed using conserved quantities of the non-
linear systems, which are detailed in Appendix I. We find
that there are two branches of solutions. The main branch
is analyzed in Sec. IV A. The second branch is analyzed in
Sec. IV B. This provides the full solution for the large devia-
tion rate functions for the point-to-point OY polymer.

Next we show in Sec. IV C that the OY rate function con-
verges smoothly at large N to the one of the weak noise theory
of the KPZ equation. The details are given in Appendix J
where we also show how that the nonlinear system, as well
as its Lax pair, converges to the nonlinear Schrödinger equa-
tion in this limit.

In addition we check in Appendix N that the result for the
rate functions can also be obtained by a weak noise asymp-
totic analysis of a Fredholm determinant formula for the OY
derived in [28,37].

Finally we show in Sec. IV D that in yet another limit, the
OY system converges to the classical Toda lattice, the details
being given in Appendix M.

II. WEAK NOISE LIMIT

A. Observables

We start by recalling the coupled stochastic equa-
tions which are obeyed by the set of all the partition functions
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{Zn(t )}n∈N . It reads

∂t zn(t ) = zn−1(t ) − zn(t ) + √
εzn(t )ηn(t ) (4)

in Itô discretization, where the ηn(t ) are independent white
noises, and where zn(t ) = e−(1+ ε

2 )t Zn(t ) with the convention
z0(t ) = 0. Here we are interested in the large deviation form
of the cumulant-generating function (CGF)

e− �
ε

zN (t=1) ∼ e− 1
ε
�N (�). (5)

One of our aim is to compute the rate function �N (�) explic-
itly for any N . From it one can extract the large deviation form
of the PDF of PN (H ) of H = log zN (t = 1)

PN (H ) ∼ e− 1
ε
�N (H ) (6)

through Legendre inversion of the saddle point

�N (�) = min
H∈R

[�eH + �N (H )]. (7)

The calculation of the CGF is done using the path-integral
representation

e
1
ε

∫
dt
∑

n jn(t )zn (t ) =
∫∫

Dz̃Dze− 1
ε

S[z,z̃, j] (8)

in terms of the dynamical action

S[z, z̃, j] =
∫ ∞

0
dt

N∑
n=1

[
z̃n(∂t zn − zn−1 + zn)

− 1

2
z2

nz̃2
n − jnzn

]
, (9)

where the source field is here jn(t ) = −�δn,Nδ(t − 1). More
details about these observables and the dynamical action are
provided in Appendixes A and B.

B. Saddle point equations: An integrable nonlinear system

In the limit ε � 1 we evaluate the right-hand side of (8)
using a saddle point method which leads to the following
nonlinear differential equations:

∂t zn = zn−1 − zn + z2
nz̃n,

−∂t z̃n = z̃n+1 − z̃n + znz̃2
n. (10)

The derivation is standard and detailed in Appendix B. To
study the point-to-point polymer one must impose the follow-
ing initial and final conditions:

zn(0) = δn,1, z̃n(1) = −�δN,n. (11)

Note that one also has zn(t ) = 0 for all n � 0, and z̃n(t ) = 0
for all n � N + 1. Also, for these boundary conditions, we
expect the symmetry z̃n(t ) = −�zN−n+1(1 − t ) to hold.

It turns out that the equations (10) are integrable, as was
noted in other contexts [33,36,38–40]. They enjoy a Lax pair
representation, which reads

∂tvn = Unvn, vn+1 = Lnvn, (12)

where the Lax matrices are given explicitly by

Un =
(

λ2−1
2 −zn−1

z̃n
1−λ2

2

)
, Ln =

(
1
λ

zn
λ

− 1
λ

z̃n λ − 1
λ

znz̃n

)
. (13)

Here n is the lattice index and λ is the spectral parameter and
vn is a two-component vector. One can check that the origi-
nal system (10) is recovered from the compatibility equation
∂t Ln = Un+1Ln − LnUn. More details about these Lax pairs are
given in Appendix D.

III. SCATTERING THEORY SOLUTION

A. Direct scattering

The general strategy that we use is to first solve the direct
scattering problem (12). In a second stage we give the general
solution of the inverse scattering problem and reconstruct the
field {zn(t ), z̃n(t )} solution of the system (10). We first de-
scribe mathematically the general method to solve the system
(10), before applying it to the specific boundary conditions
(11) of interest for the polymer problem. To this aim, let us

denote vn = e
λ2−1

2 tφn with φn = (φ1, φ2)ᵀ and vn = e− λ2−1
2 t φ̄n

two independent solutions of the linear Lax pair problem.
Assuming that the fields {zn, z̃n} vanish as n → ±∞, which
is the case for the boundary conditions (11), we can choose
the solutions to behave asymptotically as φn � λ−n(1, 0)ᵀ and
φ̄n � λn(0,−1)ᵀ at n → −∞. At n → +∞, each solution
should be a particular linear combination of these elementary
solutions. This allows us to define the scattering amplitudes
{a, ã, b, b̃} as

φn �
n→+∞

(
a(λ, t )λ−n

b(λ, t )λn

)
, φ̄n �

n→+∞

(
b̃(λ, t )λ−n

−ã(λ, t )λn

)
. (14)

Inserting Eqs. (14) in the Lax equation with Un for n →
+∞ yields the time dependence of the scattering ampli-
tudes a(λ, t ) = a(λ), ã(λ, t ) = ã(λ), b̃(λ, t ) = b̃(λ)e(λ2−1)t

and b(λ, t ) = b(λ)e(1−λ2 )t . Note that the representation of
the Lax matrices (13) chosen here is particularly conve-
nient as Tr(Un) = 0 and Det(Ln) = 1. As a consequence, the
Wronskian of {φn, φ̄n} is constant in space and time; see
Appendix E where more details are given about the scattering
problem. This allows us to obtain the following normaliza-
tion relation of the scattering amplitudes [41] a(λ)ã(λ) +
b(λ)b̃(λ) = 1. We expect a(λ) to be analytic inside a contour
enclosing the origin which we choose as a circle of radius
R, i.e., for |λ| < R, and and ã(λ) to be analytic outside, i.e.,
for |λ| > R. Although we will use that circle notation for
simplicity, it is understood in this work that for � > �∗

N (a
large positive value defined later) the circle must actually be
deformed into an ellipse C; see Appendix H.

B. Inverse scattering and general
solution of the nonlinear system

From the knowledge of the scattering amplitudes, it is pos-
sible to reconstruct explicitly the field zn(t ) using a Fredholm
operator formula that we now present. Here we give only the
result; the derivation is lengthy and presented in Appendixes
L and K. We first define the Fourier transforms of the ratio of
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scattering amplitudes called reflection coefficients as

Ft (n) =
∮

|λ|=R

dλ

2iπ
b(λ, t )

a(λ)
λn−1, (15)

F̃t (n) =
∮

|λ|=R

dλ

2iπ
b̃(λ, t )

ã(λ)
λ−1−n, (16)

where the contour integrals are taken over the R circle. We
then define two (space-time-dependent) Hankel operators Fn,t

and F̃n,t with the following kernels:

Fn,t (i, j) = Ft (2n + i + j), F̃n,t (i, j) = F̃t (2n + i + j),

(17)

where the indices are positive i, j � 0. The product of two
such operators A, B is defined as

(AB)(i, j) =
∑
k>0

A(i, k)B(k, j), (18)

and we define the vector 〈δ| with component δi,0 so that
〈δ| A |δ〉 = A(0, 0) for any operator A. Then the general so-
lution of Eq. (10) reads

zn(t ) = −〈δ| F̃n,t (I + Fn,t F̃n,t )
−1 |δ〉 . (19)

The additive structure present in Eq. (17) arises from the
integrability of the problem and is akin to the structure for the
continuous space problem [1,42,43]. An analogous formula
also exists for z̃n(t ); see Appendix L. Note that this formula
(19) can be easily evaluated numerically using a discretized
version of the Bornemann algorithm [1].

IV. RIEMANN-HILBERT ANALYSIS
FOR THE POINT-TO-POINT POLYMER
AND LARGE DEVIATION FUNCTIONS

Quite remarkably for the boundary conditions of interest
here (11), the calculation of the scattering amplitudes can
be performed explicitly. Indeed, by solving the spatial Lax
equation φn+1 = Lnφn and φ̄n+1 = Lnφ̄n at t = 0 and t = 1
(see Appendix G) one obtains

b̃(λ) = −λ2, b(λ) = �λ−2N−2eλ2−1. (20)

The normalization relation then implies that

a(λ)ã(λ) = 1 + �λ−2N eλ2−1. (21)

To obtain the expression of a, ã, we solve Eq. (21) as a scalar
Riemann-Hilbert (RH) problem. We will summarize the re-
sults below, and the details are given in Appendix H. There are
two families, or branches, of solutions of Eq. (21) which are
relevant for our large deviation problem, i.e., needed to invert
(7) to obtain �N (H ). One of the branch involves a solitonic
component, which is typical for classical integrable models.
Solitons have been shown to be important for weak noise large
deviation problems, for instance they were discussed for the
KPZ equation in [1–3,16,24] (they have also been called trav-
eling front solutions). These solitons influence both the rate
function and the saddle point solution, i.e., the optimal con-
figuration of the polymer. Finally, the simpler cases N = 1,
mentioned in the Introduction, is treated in Appendix C.

A. Main branch, no solitons

The first family of solution does not involve solitons
and determines the main branch of �N (�). It assumes that
a(λ) has no zero for |λ| < R and that ã(λ) has no zero for
|λ| > R. Solving the RH problem Eq. (21) (see Appendix H)
one obtains

log ã(λ) = −ϕ(λ), |λ| > R

log a(λ) = ϕ(λ), |λ| < R (22)

with

ϕ(λ) =
∮
C

dw

2iπ
w

w2 − λ2
log(1 + �w−2N ew2−1), (23)

where C is a closed contour around the origin which must
avoid the branch cuts of the logarithm. For most values of
interest, � < �∗

N , C can be chosen as the circle R = √
N .

The threshold �∗
N is defined in Appendix H, it grows very

fast with N (with �∗
1 = e2) and plays little role below, so we

stick to the circle notation. From the knowledge of the scat-
tering amplitudes, one additionally obtains the values taken
by the conserved quantities of the problem; for details see
Appendix F. This is achieved by Laurent or Taylor expanding
the scattering amplitudes as

log ã(λ) =
∞∑

n=1

C̃n

λ2n
, log a(λ) =

∞∑
n=0

λ2nCn. (24)

In particular, expanding equivalently Eq. (23), we have that
the value taken by the nth conserved quantity is

C̃n =
∮

|w|=R

dw

2iπ
w2n−1 log(1 + �w−2N ew2−1). (25)

Since the first conserved quantity is related to the fields {zn, z̃n}
as C̃1 = −∑N

n=1 zn(t )z̃n(t ) and is by definition time indepen-
dent, it can be evaluated at t = 1 where one has

C̃1 = −
N∑

n=1

zn(t = 1)z̃n(t = 1) = �zN (t = 1) (26)

due to the boundary conditions (11). From the derivative of
(7) w.r.t. � one sees that � ′

N (�) = eH = zN (t = 1). Hence
the large deviation rate function is determined by the first
conserved quantity and one obtains

�� ′
N (�) =

∮
|w|=R

dw

2iπ
w log(1 + �w−2N ew2−1). (27)

Note that for N = 1, Eq. (27) provides a non-standard integral
representation of the Lambert function as �� ′

1(�) = W ( �
e )

from Eq. (3). A direct integration of (27) finally yields

�N (�) = −
∮

|v|=R2

dv

2iπ
Li2(−�v−N ev−1), (28)

where Li2 refers to the dilogarithm [44] which domain of
definition restricts the validity of this formula for

� � �c, �c = −e1−N NN � 0. (29)

It allows us to reconstruct the rate function �N (H ) with H =
log zN (t = 1) in the range

0 � zN (t = 1) � � ′
N (�c) = z(c)

N , (30)
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and one obtains the parametric representation

�N (H ) = �N (�) − �� ′
N (�)

H = log � ′
N (�) (31)

for H ∈ (−∞, Hc] as � ∈ [�c,+∞). This range con-
tains � = 0 which gives the typical value � ′

N (0) = eHtyp =
zN (t = 1) = e−1

(N−1)! , as well as the second cumulant of the

partition sum zN (t = 1)2
c = 22N−2

(2N−1)! e
−2 ε, and of its logarithm

H2
c = ε

�′′(Htyp)
= −ε� ′′(0)

� ′(0)2
= 22N−2(N − 1)!2

(2N − 1)!
ε. (32)

B. Second branch, with solitons

The second family of solution involves solitons and allows
us to obtain the rate function �N (H ) for the range zN (t =
1) � z(c)

N , i.e., H > Hc. To see how it arises consider the right-
hand side of Eq. (21). One can check that for � ∈ (�c, 0) it
has four zeros on the real axis {±λ0,±λ−1} with

λ2
0/−1 = −NW0/−1

(
−1

e

(
�

�c

) 1
N

)
(33)

and |λ−1| � R = √
N and |λ0| <

√
N . Here W0 and W−1 are

the two main branches of the Lambert function [30]. The
existence of these zeros allows for a modified solution to the
RH problem (21), where a(λ) has two zeros inside the R circle,
±λ0, and ã(λ) two zeros outside, ±λ−1. The solution then
reads

log ã(λ) = −ϕsoliton(λ), |λ| > R

log a(λ) = ϕsoliton(λ), |λ| < R (34)

with

ϕsoliton(λ) = ϕ(λ) − log

(
λ2 − λ2

−1

λ2 − λ2
0

)
, (35)

where ϕ(λ) is given by the same formula as in (23). By either
Taylor or Laurent expanding the new solitonic contribution
in (35), one also obtains an additional (solitonic) contribution
C̃n to the values of the conserved quantities. In particular
one obtains C̃1 = λ2

0 − λ2
−1 which leads to the following

correction (see Appendix H):

�� ′
N,soliton(�) = �� ′

N (�) + λ2
0 − λ2

−1. (36)

It can be explicitly integrated over � and we obtain the second
branch of the rate function �N → �N,soliton with

�N,soliton(�) = �N (�) + N (�), (37)

where the solitonic contribution N (�) is

N (�) = N2

2

(
W−1

[
−1

e

(
�

�c

) 1
N

]{
W−1

[
−1

e

(
�

�c

) 1
N

]
+ 2

}

−W0

[
−1

e

(
�

�c

) 1
N

]{
W0

[
−1

e

(
�

�c

) 1
N

]
+ 2

})
.

(38)

This second branch allows us to reconstruct �(H ) for
H > Hc, using the same parametric representation (31) where

FIG. 2. Derivative of the rate function, � ′
N (�). The main branch

is in blue, and the second (solitonic) branch is in orange. The ordinate
is also equal to zN (t = 1) = eH , hence one can read the relation
between H and � (which is not one-to-one).

now one replaces everywhere �N (�) → �N,soliton(�). As �

increases from �c to 0, the values of H increase from Hc to
+∞. The two branches of � ′

N (�) are shown in Fig. 2, where
one sees that the branches merge smoothly.

C. Limit to the WNT the KPZ equation

As we have obtained our solution for general N , it is natural
to study the limit when the polymer sees a large number of
lines, i.e., N  1. It is known that in the large N limit the
OY polymer point-to-point partition sum converges, under
the proper rescaling, to the solution of the stochastic heat
equation, i.e., to the exponential of the KPZ height, for the
so-called droplet initial conditions [28]. Here we can check
that Eq. (5) converges to the corresponding equality for the
KPZ equation at short time, which was obtained in [1,22]. To
this aim we first define the rescaled variables

z = − �

�c
, TKPZ = ε2

2N
, (39)

where TKPZ � 1 is the time in the KPZ equation. We then
expand the formula (28) for �N (�) at large N around the point
v = N on the contour, by setting v = Neq

√
2/N which yields

for large N ,

�N (�)

ε
→ �KPZ(z)√

TKPZ
, (40)

where

�KPZ(z) = −
∫
R

dk

2π
Li2(−ze−q2

) (41)

is the rate function for the KPZ equation with droplet initial
data. Equation (40) shows the convergence of the right-hand
side of (5) and the convergence of the left-hand side of (5)
is obtained using Ref. [28], Sec. 5.4.1, which allows us to
identify at large N

�

ε
zN (t = 1) → zeHKPZ

√
TKPZ

, (42)

where HKPZ is the properly shifted KPZ height field, denoted
H in [1]. To control the convergence of the solitonic branch,
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we expand the Lambert functions W0/−1(x) around x = −1/e
in (38) and obtain (see Appendix J)

N (�)

ε
� KPZ(z)√

TKPZ
, KPZ(z) = 4

3
[− log(−z)]

3
2 . (43)

This shows the convergence to the corresponding solitonic
branch of the KPZ equation, obtained in [1] (see also [3]).
For completeness, we have also derived the above results for
�N (�) from an asymptotic analysis of a determinantal rep-
resentation formula for e−uZN (t ) [28,37] using a first cumulant
approximation; see details in Appendix N.

D. Limit to the classical Toda lattice

The OY polymer is also related to the quantum Toda lattice
[27]. Here we show that its weak noise theory (10) converges
to the classical Toda lattice [45] in the small time limit. In-
deed, using the Cole-Hopf parametrization zn(t ) = αehn (t )+α2t ,
z̃n(t )zn(t ) = α[α + pn(t )], and taking α → ∞ we find the
Toda dynamics in scaled time τ = αt (see Appendix M):

∂τ hn = pn, ∂τ pn = ehn−1−hn − ehn−hn+1 . (44)

Hence our results on the scattering theory and on the Fred-
holm determinants apply, extending known solutions for
solitons [46]. Finally, there seems to exist a connection be-
tween the weak noise theory of the OY polymer and an
integrable spin chain which we discuss in [47], Sec. XVII in
the Supp. Material.

V. CONCLUSION

In conclusion we have shown that the weak noise theory of
the OY polymer is integrable for any N , obtained its general
solution in terms of Fredholm determinants, and computed
large deviation rate functions from conserved quantities. The
system (10) provides a discretization of the NLS equation with
local nonlinearity and converges at large N to the weak noise
of the KPZ equation. A distinct limit is the classical Toda
chain, which is related to the QR decompositions in linear al-
gebra [48,49], hence the extension to our system may provide
applications to linear algebra algorithms. The tools introduced
in this work could also find additional applications in the study
of tilted elastic lines in the presence of columnar disorder,
complementing earlier work [50]. Finally, this work opens
the path for a general study of weak noise limit in stochastic
integrable systems and their connection to classical integrabil-
ity. Since semidiscrete integrable systems have found renewed
interest given their connections to random matrix theory in
the context of generalized equilibrium measures [51–55], the
model studied in this work will find additional applications.
The central object to study these properties are the dual Lax
pairs which are derived for the OY model in [47], Sec. 16 of
the Supp. Material. A potential outcome of this general study
might lead to a broader classification of stochastic integrable
models. Finally, it would be interesting to connect the large
deviations in the short-time/weak noise limit to those in the
large time limit, which have been much studied recently using
Riemann-Hilbert methods and Coulomb gases; see [56–62].
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APPENDIX A: MODEL AND OBSERVABLE

Note that in the main text we use the notation zn(t ) for
the OY partition sums (i.e., a random variable) and zn(t ) for
the solution of the weak noise saddle point equations. In the
Appendixes we will simplify notations and use the same letter
for both, hoping that the context can help determine which is
which.

In this Appendix we will consider a slight generalization of
the partition sums (1) defined in the text, which corresponds to
adding drifts to the Brownian weights Bj (s) → Bj (s) + a js.
One thus defines for 1 � n � N the partition function

Zn(t ) =
∫

s0=0<s1<···<sn=t
ds1 · · · dsn−1

× e
√

ε
∑n

j=1[Bj (s j )−Bj (s j−1 )]+∑n
j=1 a j (s j−s j−1 ). (A1)

It is convenient to define zn(t ) = e−(1+ ε
2 )t Zn(t ), so that the first

two terms read explicitly

z1(τ ) = e−τ− 1
2 ετ e

√
εB1(τ )+a1τ ,

z2(τ ) = e−τ− 1
2 ετ

∫ τ

0
dse

√
εB1(s)+a1se

√
ε[B2(t )−B2(s)]+a2(τ−s).

(A2)

Using the rules of Itô calculus it is easy to see that these par-
tition sums satisfy the following coupled stochastic equations
in Itô discretization for 1 � n � N :

∂t zn(t ) = zn−1(t ) − zn(t ) + √
εzn(t )ηn(t ) + anzn(t ), (A3)

where the ηn(t ) are standard independent white noises, i.e.,
with correlators ηn(t )ηn′ (t ′) = δ(t − t ′)δnn′ . One uses the con-
vention z0(t ) = 0 and the initial condition is zn(0) = δn,1.

The observable of interest is the partition function at
one point zN (t = 1) and its probability distribution function
PN (z). It is useful to also introduce its logarithm HN =
log zN (t = 1) and its PDF PN (H ). These PDF’s exhibit in
the weak noise limit ε → 0 the following large deviation
principle:

PN (z) ∼
ε→0+

e− 1
ε
�̂N (z), PN (H ) ∼

ε→0+
e− 1

ε
�N (H ). (A4)

To compute these rate functions, which differ only by a change
of variable, �̂N (z) = �N (H = log z) we will first compute the
generating function of the cumulants of zN (t = 1)

e− �
ε

zN (t=1) ∼
ε→0+

e− 1
ε
�N (�) (A5)
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and the rate function �N (�). The two rate functions are re-
lated by the Legendre transform

�N (�) = max
z∈R+

[�z + �̂N (z)] = max
H∈R

[�eH + �N (H )]. (A6)

APPENDIX B: DYNAMICAL FIELD THEORY
AND SADDLE POINT EQUATIONS

We now use the standard path integral representation using
source fields j1(t ), . . . , jN (t ),

e
1
ε

∫ +∞
0 dt

∑N
n=1 jn(t )zn (t ) =

∫∫∫
DηDz̃Dze

∫ +∞
0 dt

∑N
n=1[− z̃n

ε
(∂t zn−zn−1+zn−√

εznηn−anzn )− 1
2 η2

n+ jnzn] (B1)

=
∫∫

Dz̃Dze− 1
ε

S[z,z̃, j], (B2)

where Dz =∏N
n=1 Dzn(t ) (and similarly for z̃ and η̃) is the

path integral measure, in terms of the dynamical action (time
dependence is implicit)

S[z, z̃, j] = S0[z, z̃] −
∫ +∞

0
dt

N∑
n=1

jn(t )zn(t ),

S0[z, z̃] =
∫ +∞

0
dt

N∑
n=1

[
z̃n(∂t zn − zn−1 + zn − anzn)

− 1

2
z2

nz̃2
n

]
, (B3)

where in the last line we have integrated over the noises ηn(t ).
We have introduced the response field z̃n

ε
to enforce the N

equations of motion. To obtain the observable in (A5) we need
to choose the source field jn(t ) = −�δn,Nδ(t − 1).

In the limit ε → 0 the path integral (B2) is dominated
by the saddle point of the action S[z, z̃, j]. The saddle point
equations take the form of the following system of equations:

∂t zn = zn−1 − zn + g

2
z2

nz̃n + anzn,

−∂t z̃n = z̃n+1 − z̃n + g

2
znz̃2

n + anz̃n. (B4)

We have added for convenience the parameter g for the non-
linearity, but for the application here one must set g = 2. Note
that a priori the above saddle point equations hold for 1 �
n � N . However, for technical reasons it is useful to extend
the system (B4) for all n ∈ Z, which we do from now on. We
then consider the initial and final conditions,

{z0(t ) = 0, zn(0) = δn,1, z̃N+1(t ) = 0, z̃n(1) = −�δN,n},
(B5)

where imposing the last condition is equivalent to omitting
the source term jn(t ) = −�δn,Nδ(t − 1) in the equation of
motion for z̃n. Note that one also has zn(t ) = 0 for all n � 0,
and z̃n(t ) = 0 for all n � N + 1. In practice we also take
an = 0 except if n = 1, . . . , N . Finally the response field z̃n(t )
vanishes for t > 1 for all n.

It is useful to note the following exact symmetry of the
solution of the system (B4) with the boundary conditions
(B5). If a� = aN−�+1 then

z̃�(t ) = −�zN−�+1(1 − t ). (B6)

We will obtain below the solution of this system of equa-
tions for any N . Once this is done one can insert the solution

into the dynamical action to obtain its value at the saddle
point. Hence one has

e− �
ε

zN (t=1) ∼
ε→0+

∫∫
Dz̃Dze− 1

ε
Ssp

0 [z,z̃]e− �
ε

zN (t=1). (B7)

Hence the PDF PN (z) of zN (t = 1) is given by the optimal
action Ssp

0 [z, z̃], which using the saddle point equations sim-
plifies to (for g = 2)

PN (z) ∼ exp

(
− 1

2ε

∫ 1

0
dt

N∑
n=1

z2
nz̃2

n

)
(B8)

evaluated using the solution of (B4) with zN (t = 1) = z, this
determines �̂N (z). In practice, however, we will obtain z =
zN (t = 1) as a function of � by solving (B4). From the
Legendre relation z = � ′(�) obtained by taking a derivative
of (A6) w.r.t. �, this will allow us to determine �N (�). The
last step will be to obtain �̂N (z) by an inverse Legendre
transform.

We note that the evolution equations (B4) differ in part by
the minus sign in front of the time derivative. This reflects that
the evolution of zn can be seen as forward in time and the evo-
lution of z̃n as backwards in time so that the whole problems is
closer to a shooting problem rather than a dynamical problem.

APPENDIX C: TWO SIMPLE CASES

1. g = 0

Let us consider the system (B4) in the simple case g = 0
with the boundary conditions (B5). In this case the two equa-
tions decouple and are simply linear. In the absence of drifts
the solution is readily obtained as

zn(t ) = e−t t n−1

(n − 1)!
, z̃n(t ) = −�et−1 (1 − t )N−n

(N − n)!
. (C1)

We plot this solution numerically in Fig. 3. In the presence
of drifts it is easier to solve these equations using a Fourier
representation which will be useful in the following. Let us
write

zn(t ) =
∫

C

dλ2

2iπλ2
ẑn(λ)et (λ2−1), (C2)

where C is a circle around 0 in the complex plane. Inserting
into

∂t zn = zn−1 − zn + anzn (C3)
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FIG. 3. Solution zn(t ) of the problem without interaction, g = 0,
as given in Eq. (C1).

for 1 � n � N , it gives

ẑn(λ) = λ−2

1 − an
λ2

ẑn−1(λ). (C4)

For z1(t ) we can solve directly

∂t z1 = −z1 + a1z1, z1(t ) = e−t+a1t . (C5)

Hence one has

ẑ1(λ) = λ2

λ2 − a1
, z1(t ) =

∫
C

dλ2

2iπλ2

λ2

λ2 − a1
et (λ2−1),

(C6)
and the contour must include a1. Then we obtain for
1 � n � N

ẑn(λ) = λ2(1−n)∏n
k=1

(
1 − ak

λ2

) , (C7)

which gives for any n ∈ Z (using that an = 0 for n � N + 1)

zn(t ) =
∫

C

dλ2

2iπλ2

λ2(1−n)∏min(n,N )
k=1

(
1 − ak

λ2

)e(λ2−1)t , (C8)

which automatically vanishes for n � 0. The contour C must
contain all the an. Similarly one has z̃N (t ) = −�e(aN −1)(1−t )

and one obtains

z̃n(t ) = −�

∫
C

dλ2

2iπλ2

λ2(n−N )∏min(N−n+1,N )
k=1

(
1 − aN−k+1

λ2

)e(λ2−1)(1−t ).

(C9)
If we set all an = 0 one can check that one recovers (C1).

2. N = 1

For N = 1 there are several ways to obtain the large devia-
tion rate functions.

First method. For N = 1 the system (B4) involves only the
variables z1(t ) and z̃1(t ) and becomes

∂t z1 = −z1 + z2
1 z̃1 + a1z1,

−∂t z̃1 = −z̃1 + z1z̃2
1 + a1z̃1

(C10)

with z1(t = 0) = 1 and z̃1(t = 1) = −�. The quantity
z1(t )z̃1(t ) is obviously conserved so that z1(t )z̃1(t ) = c1 where

c1 is a constant independent of time. Thus the system becomes

∂t z1 = (c1 − 1 + a1)z1,

−∂t z̃1 = (c1 − 1 + a1)z̃1,
(C11)

and we find that z1(t ) = e(c1−1+a1 )t and z̃1(t ) =
−�e(c1−1+a1 )(1−t ). The constant c1 is thus determined by

z1z̃1 = c1 = −�ec1−1+a1 , c1 = −W (�ea1−1), (C12)

where W (x) is the Lambert function, such that W (x)eW (x) = x.
From the optimal action (B8) we obtain, parametrically

�̂(Z ) = c2
1

2
, Z = z1(1) = ec1−1+a1 , (C13)

which leads to

�̂(Z ) = 1
2 (1 − a1 + log Z )2. (C14)

Second method. Alternatively going back to the original
stochastic model, where the partition sum for N = 1 is simply
z1(t ) = e−t e

√
εB1(t )+a1t [here beware z1(t ) is not the solution

of the SP equation] one can compute directly its cumulant-
generating function, as sketched in the text. Indeed, denoting
u = √

εB(1) one has for small ε,

e− �
ε

z1(1) = e− �
ε

e−1+√
εB(1)+a1 ∼

∫
R

du e− u2

2ε
− �

ε
eu−1+a1 ∼ e− 1

ε
�(�),

(C15)

arising from events where the Brownian is anomalously large,
i.e., u = √

εB(1) = O(1). Here we have for � > 0

�(�) = min
u∈R

(
u2

2
+ �eu−1+a1

)
. (C16)

There is a single minimum which is reached at

u = −W (�ea1−1), (C17)

which is seen to equal the constant c1 of the first method. This
gives

�(�) = W (�ea1−1)2

2
+ W (�ea1−1) (C18)

as given in the text for a1 = 0. This gives also �� ′(�) =
�eu−1+a1 = −u = W (�ea1−1). Note that u = c1 = z̃1z1 =
−�� ′(�) in agreement with the general formula for con-
served quantities (see Appendix F).

Although the function �(�) was defined and computed for
� > 0 the formula (C18) can be continued to negative �, on
the principal branch W = W0, down to � = �c(1)ea1 = −1.
This is in agreement with the general formula for arbitrary N
obtained below which states that

�c(N )ea1 = −e1−N NN . (C19)

Let us now discuss the Legendre transform which relates
�̂(Z ) and �(�). One has

�(�) = min
Z

[�Z + �̂(Z )] (C20)

leading to

Z = � ′(�) = W (�ea1−1)

�
. (C21)
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The typical value of Z is given by Ztyp = ea1−1 using that
W ′

0 (0) = 1. Using that W0(−1/e) = −1 we see that the do-
main 0+ < Z � Zc = ea1 corresponds to � > �c. This is the
principal branch with W = W0.

To obtain the values of Z ∈ [Zc,∞) one needs to consider
a second branch. This is achieved using the second real branch
of the Lambert function, W = W1. Then one has

Z := z1(t = 1) = � ′(�) = W−1(�ea1−1)

�
, (C22)

where � increases again from � = �c back to � = 0−; see
Appendix I 3.

One obtains overall

�̂(Z ) = max
�∈[−1,+∞)

[−�Z + �0(�)], 0 < Z � Zc,

�̂(Z ) = min
�∈[−1,0)

[−�Z + �1(�)], Z � Zc (C23)

with

�0(�) = W0(�ea1−1)2

2
+ W0(�ea1−1), (C24)

�1(�) = W1(�ea1−1)2

2
+ W1(�ea1−1). (C25)

One can verify that this recovers (C14) which is indeed ana-
lytic for Z > 0.

APPENDIX D: LAX PAIR FOR THE PROBLEM

The aim of this Appendix is to present a semidiscrete Lax
pair for the system (B4). The zero curvature relation for a
differential-difference model is defined as follows:

∂t �vn = Un�vn,

�vn+1 = Ln�vn. (D1)

The original system (B4) should be found back from the
compatibility equation

∂t Ln = Un+1Ln − LnUn. (D2)

In our case, �vn will be a two-component vector

�vn = (v(1)
n , v(2)

n

)ᵀ
, (D3)

and the 2 × 2 matrices Un, Ln composing the Lax pair read

Un =
(

λ2−1
2 −zn−1

g
2 z̃n

1−λ2

2

)
, Ln =

(
1
λ

zn
λ

− g
2λ

z̃n λ − g
2λ

znz̃n − an
λ

)
,

(D4)

where λ is the spectral parameter. We emphasize again here
that in our problem the drifts {an} are zero outside the interval
[1, N]. Quite remarkably, we note that the matrix Lk admits
the factorization

Ln =
(

1 0
− g

2 z̃n 1

)( 1
λ

0

0 λ − an
λ

)(
1 zn

0 1

)
(D5)

so that the contribution of the optimal partition function zn and
the response field z̃n can be split.

APPENDIX E: DEFINITION OF THE
SCATTERING PROBLEM

Assuming the fields {zn, z̃n} as well as the drifts {an} to
decay to 0 for n → ±∞, the asymptotic Lax matrices (D4)
are diagonal so that we can define two sets of independent
solutions asymptotically:

φn ∼
n→−∞ λ−n

(
1
0

)
, φ̄n ∼

n→−∞ λn

(
0

−1

)
(E1)

and

ψn ∼
n→+∞ λn

(
0
1

)
, ψ̄n ∼

n→+∞ λ−n

(
1
0

)
. (E2)

Since there can be only two independent solutions, there exists
a linear combination relating the two sets which defines the
scattering amplitudes:

φn = a(λ, t )ψ̄n + b(λ, t )ψn,

φ̄n = −ã(λ, t )ψn + b̃(λ, t )ψ̄n (E3)

equivalent to implying the following asymptotic conditions at
+∞:

φn ∼
n→+∞

(
a(λ, t )λ−n

b(λ, t )λn

)
, φ̄n ∼

n→+∞

(
b̃(λ, t )λ−n

−ã(λ, t )λn

)
. (E4)

In practice, the two independent solutions {�vn} verifying the
time evolution equation will be chosen as

�vn = e
λ2−1

2 tφn and �vn = e− λ2−1
2 t φ̄n. (E5)

1. Time dependence of the scattering amplitudes

Inserting the solutions (E5) into the time equation of the
Lax pair (D1) and evaluating it at n = +∞, we obtain that

∂t a(λ, t ) = 0,

∂t ã(λ, t ) = 0,

∂t b(λ, t ) = (1 − λ2)b(λ, t ),

∂t b̃(λ, t ) = (λ2 − 1)b̃(λ, t ). (E6)

Hence the scattering amplitudes are either time-
independent [for a(λ) and ã(λ)] or have the following
simple time dependence:

b̃(λ, t ) = b̃(λ)e(λ2−1)t , b(λ, t ) = b(λ)e(1−λ2 )t . (E7)

The opposite sign in the time evolution of b(λ) and b̃(λ)
reflects the fact that the saddle point equations describe si-
multaneously forward and backward evolutions in time. This
result is universal as long as the fields vanish at ±∞.

2. Wronskian of the solution

On top of the time evolution of the scattering amplitudes,
we now determine a normalization relation using the Wron-
skian of the problem. For the two solutions of the Lax problem
{φn, φ̄n}n∈Z, we define the Wronskian as

Wn = W (φn, φ̄n) = φ(1)
n φ̄(2)

n − φ(2)
n φ̄(1)

n . (E8)
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From the evolutions (D1), we start with the time derivative
and the index increment

∂tWn = Tr(Un)Wn = 0,

Wn+1 = Det(Ln)Wn =
(

1 − an

λ2

)
Wn. (E9)

The Wronskian of {φn, φ̄n}n∈Z at both infinities read

Wn ∼
n→−∞ −1, Wn ∼

n→+∞ −(aã + bb̃), (E10)

and we have also have from Eq. (E9)

W+∞ =
N∏

n=1

(
1 − an

λ2

)
W−∞. (E11)

We then deduce that

a(λ)ã(λ) + b(λ)b̃(λ) =
N∏

n=1

(
1 − an

λ2

)
. (E12)

This normalization relation is universal. Contrary to the
Ablowitz-Ladik integrable system [41,63], the normalization
of the scattering amplitudes (E12) does not depend on the
fields {zn, z̃n}.

APPENDIX F: CONSERVED QUANTITIES

We derive in this Appendix the conserved quantities of the
integrable system (B4). As we shall see, there exist an infinite
amount of conserved quantities, which is standard for such
models. To obtain the conserved quantities, we require three
ingredients:

(1) The Ricatti equation of the Lax pair
(2) A continuity equation arising from the compatibility

of the Lax equations expressed with log derivatives and the
Ricatti variables and a relation between the continuity equa-
tion and the scattering amplitudes

(3) A suitable Taylor expansion of log a(λ) or Laurent
expansion of log ã(λ) as a function of the spectral parameter.

1. Ricatti equation

Let us first define the Ricatti variable � and its inverse �̃ as

�n = v(2)
n

v
(1)
n

, �̃n = 1

�n
. (F1)

Dividing the two equations of the space part of the Lax pair,
we obtain the following recursions for the Ricatti variable and
its inverse:

(�n+1 + z̃n)(1 + zn�n) = �n(λ2 − an) (F2)

and

(1 + z̃n�̃n+1)(�̃n + zn) = �̃n+1(λ2 − an). (F3)

As we shall see subsequently, we need to expand these equa-
tions to obtain the Taylor and Laurent series of the Ricatti
variables.

2. Continuity equations

The continuity equations will be obtained as the compati-
bility of the dynamics of log v(1)

n and log v(2)
n , respectively.

a. First continuity equation

From the Lax pair system, we obtain the pair of equa-
tions for log v(1)

n ,

∂t log v(1)
n = λ2 − 1

2
− zn−1�n

log

(
v

(1)
n+1

v
(1)
n

)
= + log v(1)

n = log

(
1

λ
+ zn

λ
�n

)
, (F4)

where we introduced the following notation for the finite
difference + fn = fn+1 − fn. We rewrite the above system
for convenience as

∂t log
(
v(1)

n λne− λ2−1
2 t
) = −zn−1�n

log

⎛
⎝v

(1)
n+1λ

n+1e− λ2−1
2 t

v
(1)
n λne− λ2−1

2 t

⎞
⎠ = + log

(
v(1)

n λne− λ2−1
2 t
)

= log(1 + zn�n). (F5)

The compatibility is obtained by the commutation relation

∂t
+ = +∂t , (F6)

which yields the first compatibility equation

∂t log(1 + zn�n) = −+(zn−1�n). (F7)

We therefore interpret J (1)
n = zn−1�n as a generalized current

and �(1)
n = log(1 + zn�n) as a generalized density. In partic-

ular, since the potentials {zn, z̃n} vanish at infinities, we have
the conservation law

∂t

( +∞∑
n=−∞

�(1)
n

)
= 0. (F8)

With the particular choice of �vn = e
λ2−1

2 tφn and summing
the second equation of (F5) over integers in Z we obtain the
expected relation between the scattering amplitude and this
set of conserved charges as

log a(λ) =
+∞∑

n=−∞
log(1 + zn�n)

←→ a(λ) =
+∞∏

n=−∞
(1 + zn�n). (F9)

b. Second continuity equation

We now repeat the same exercise for log v(2)
n and first

obtain

∂t log v(2)
n = 1 − λ2

2
+ z̃n�̃n

log

(
v

(2)
n+1

v
(2)
n

)
= + log v(2)

n

= log

(
− z̃n�̃n + λ − 1

λ
znz̃n − an

λ

)
, (F10)
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which is also rewritten for convenience as

∂t log
(− v(2)

n λ−ne
λ2−1

2 t
) = z̃n�̃n

log

⎛
⎝−v

(2)
n+1λ

−n−1e
λ2−1

2 t

−v
(2)
n λ−ne

λ2−1
2 t

⎞
⎠ = log

[
1 − 1

λ2
z̃n(�̃n + zn) − an

λ2

]
.

(F11)

The compatibility in this case reads

∂t log

[
1 − 1

λ2
z̃n(�̃n + zn) − an

λ2

]
= −+(−z̃n�̃n). (F12)

We also interpret J (2)
n = −z̃n�̃n as a generalized current and

�(2)
n = log[1 − 1

λ2 z̃n(�̃n + zn) − an
λ2 ] as a generalized density.

In particular, since the potentials {zn, z̃n} vanish at infinities,
we have the conservation law

∂t

( +∞∑
n=−∞

�(2)
n

)
= 0. (F13)

With the particular choice of �vn = e
1−λ2

2 t φ̄n and summing
the second equation of (F11) over integers in Z we obtain the
expected relation between the scattering amplitude and this
set of conserved charges as

log ã(λ) =
+∞∑

n=−∞
log

[
1 − 1

λ2
z̃n(�̃n + zn) − an

λ2

]

←→ ã(λ) =
+∞∏

n=−∞

[
1 − 1

λ2
z̃n(�̃n + zn) − an

λ2

]
. (F14)

3. Conserved charges

We now complete the determination of the conserved
charges in the system by proceeding to the suitable expansion
of the continuity equations. We now take all drifts equal to 0,
i.e., an = 0, to simplify the expressions.

a. Taylor expansion of a(λ)

Since log a(λ) is analytic close to the origin, we choose to
expand Eqs. (F2), (F3), and (F9) in a Taylor series

log a(λ) =
∞∑

�=0

λ2�C�, �n =
∞∑

�=0

λ2��(�,0)
n ,

�̃n =
∞∑

�=0

λ2��̃(�,0)
n (F15)

and

�(1)
n =

∞∑
�=0

λ2��
(1)
n,�, J (1)

n =
∞∑

�=0

λ2�J (1)
n,� , C� =

∑
n∈Z

�
(1)
n,�.

(F16)

Formally, there exists two solutions to the Taylor expansion of
Eqs. (F2) and (F3):

(1) The first one is physical as it is consistent with a Taylor
expansion of log a(λ), and it provides the expected conserved
quantities;

(2) The second one is unphysical as it would impose that
log a(λ) behaves as log λ2 for small spectral parameter and
therefore that the solution would include a zero mode, in-
compatible with the decay of zn, z̃n at infinities. Nonetheless
formally, this expansion yields additional conserved quanti-
ties, which conservation can also be checked by hand, and for
completeness we will provide them.

The first solution, the “physical” expansion, yields for its
first two terms

(1) For � = 0

�
(1)
n,0 = log(1 − znz̃n−1), J (1)

n,0 = −zn−1z̃n−1. (F17)

(2) For � = 1

�
(1)
n,1 = − znz̃n−2

(1 − zn−1z̃n−2)(1 − znz̃n−1)
,

J (1)
n,1 = 1 − 1

1 − zn−1z̃n−2
. (F18)

The conserved charges are then

C0 =
∞∑

n=−∞
log(1 − znz̃n−1),

C1 =
∞∑

n=−∞
− znz̃n−2

(1 − zn−1z̃n−2)(1 − znz̃n−1)
, (F19)

and one can verify using the dynamical equations for
{zn, z̃n}(10) that for any solution we obtain

∂t�
(1)
n,� = J (1)

n,� − J (1)
n+1,�. (F20)

The second solution, the “unphysical” expansion, yields
for its first two terms (we use again the same notation for
simplicity)

(1) For � = 0

�
(1)
n,0 = log

(
zn+1

zn(1 − zn+1z̃n)

)
, J (1)

n,0 = − zn−1

zn
. (F21)

(2) For � = 1

�
(1)
n,1 =

zn+2

zn+2 z̃n+1−1 + z2
n+1

zn

zn+1(zn+1z̃n − 1)
, J (1)

n,1 = − zn−1zn+1

z2
n(zn+1z̃n − 1)

. (F22)

b. Laurent expansion of ã(λ)

Since log ã(λ) is analytic for large |λ|, we choose to expand
Eqs. (F2), (F3), and (F14) as Laurent series

log ã(λ) =
∞∑

�=1

C̃�

λ2�
, �n =

∞∑
�=1

�(�,∞)
n

λ2�
, �̃n =

∞∑
�=1

�̃(�,∞)
n

λ2�

(F23)

and

�(2)
n =

∞∑
�=1

�
(2)
n,�

λ2�
, J (2)

n =
∞∑

�=1

J (2)
n,�

λ2�
, C̃� =

∑
n∈Z

�
(2)
n,�. (F24)

Formally, there exists two solutions to the Laurent expansion
of Eqs. (F2) and (F3):

(1) The first one is physical as it is consistent with a
Laurent expansion of log ã(λ) and it provides the expected
conserved quantities;
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(2) The second one is unphysical as it would impose
that log ã(λ) behaves as log λ2 for large spectral parameter
whereas we seek a solution for which log ã(λ) → 0 for |λ| →
∞. Nonetheless, formally this expansion yields additional
conserved quantities, which conservation can also be checked
by hand, and for completeness we will provide them.

The first solution, the “physical” expansion, yields for its
first two terms

(1) For � = 1

�
(2)
n,1 = −znz̃n, J (2)

n,1 = −zn−1z̃n. (F25)

(2) For � = 2

�
(2)
n,2 = − 1

2 z̃n
(
z2

nz̃n + 2zn−1
)
, J (2)

n,2 = −z̃n
(
z2

n−1z̃n−1 + zn−2
)
.

(F26)

The conserved charges are then

C̃1 = −
∞∑

n=−∞
znz̃n,

C̃2 = −
∞∑

n=−∞

1

2
z̃n
(
z2

nz̃n + 2zn−1
)
, (F27)

and one can verify using the dynamical equations for
{zn, z̃n}(10) that for any solution we obtain

∂t�
(2)
n,� = J (2)

n,� − J (2)
n+1,�. (F28)

The second solution, the “unphysical” expansion, yields
for its first two terms (we use again the same notation for
simplicity)

(1) For � = 1

�
(2)
n,1 = log

(
z̃n+1

z̃n

)
, J (2)

n,1 = znz̃n + z̃n+1

z̃n
. (F29)

(2) For � = 2

�
(2)
n,2 = zn+1z̃n+1 − z̃n+1

z̃n
+ z̃n+2

z̃n+1
,

J (2)
n,2 = zn+1z̃2

n+1

z̃n
− z̃2

n+1

z̃2
n

+ z̃n+2

z̃n
. (F30)

4. Discussion on generalized Gibbs ensembles and other
flows generated by the conserved charges

We first comment on the fact that the quantity (znz̃n) is at
the same a local density and a local current as

−znz̃n = J (1)
n,0 = �

(2)
n,1. (F31)

Such equality also arises in other models and has surpris-
ing consequences (see Ref. [54], Sec. 2.1) in the context of the
Toda lattice. It would be interesting in the present context to
analyze the consequence of this identity.

What is more, from the knowledge of the conserved quan-
tities, it is possible to formally define a generalized Gibbs
measure on the fields zn, z̃n that is conserved by the dynamics
(10). Such construction was done for a variety of semidis-
crete integrable models in recent works; see Refs. [51–55].

To this aim, we select a subset of conserved quantities, e.g.,
C0, C̃1, C̃2, and a set of conjugated “temperature” (in this
example β0, β1, β2) and construct the measure

N∏
n=1

dzndz̃n exp(−β0C0 − β1C̃1 − β2C̃2). (F32)

If the initial conditions of the OY system are chosen ran-
domly according to the measure (F32), we then expect this
distribution of zn, z̃n to be stationary as the dynamics will
preserve C0, C̃1, C̃2. Such measure can a priori be extended
to arbitrary number of conserved quantities and for the usual
semidiscrete integrable models, this measure was related to
measures appearing in Random Matrix Theory [51–55], we
expect such a connexion to hold in this case as well.

Finally, we address a last comment about the conserved
charges which is the flow induced by these. We can recast the
original OY system (10) as

∂t zn = δ

δz̃n
(C̃1 − C̃2),

−∂t z̃n = δ

δzn
(C̃1 − C̃2). (F33)

Similarly to Ref. [38], one could define other dynamics by
replacing in (F33) the term C̃1 − C̃2 by any linear combina-
tion of conserved quantities. The differential system induced
would remain integrable with the same space Lax matrix Ln in
(D4) but the time Lax matrix Un would have to be modified.

The Hamiltonian system (F33) can also be rewritten in a
symplectic form by introducing the suitable Poisson bracket.
To this aim, we introduce the field gradient

∇n =

⎛
⎜⎜⎝

δ

δzn
δ

δz̃n
,

⎞
⎟⎟⎠ (F34)

and rewrite (F33) as

∂t

(
zn

z̃n

)
=
(

0 1
−1 0

)
∇n(C̃1 − C̃2). (F35)

Then by introducing the Poisson bracket

〈F, G〉 =
+∞∑

n=−∞
∇n(F )

(
0 1

−1 0

)
∇n(G), (F36)

we have that if I[z, z̃] is a functional of z, z̃, its dynamic is
given by

∂t I[z, z̃] = 〈I[z, z̃], C̃1 − C̃2〉. (F37)

In the present case, the canonical Poisson bracket (F36) is the
natural structure behind the dynamics but other Poisson brack-
ets could appear in different semidiscrete integrable models as
is the case for continuous systems where the Poisson bracket
is not the same for the nonlinear Schrödinger equation [63]
and the derivative nonlinear Schrödinger equation [21].
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APPENDIX G: SOLUTION OF THE SCATTERING
PROBLEM FOR ARBITRARY g

We now obtain the solution of the scattering problem asso-
ciated to the nonlinear system for arbitrary g, for the specific
initial and final conditions considered in this paper, that we
now recall,

zn(t = 0) = δn,1, z̃n(t = 1) = −�δN,n, (G1)

and we recall that zn�0(t ) = 0 and z̃n�N+1(t ) = 0. The scat-
tering problem is defined by the recursion, for n ∈ Z,

φn+1 =
(

φ
(1)
n+1

φ
(2)
n+1

)
=
(

1
λ

zn
λ

− g
2λ

z̃n λ − g
2λ

znz̃n − an
λ

)(
φ(1)

n

φ(2)
n

)

(G2)

together with the same equation for φ̄n, with the following
boundary conditions at n → ±∞:

φn ∼ λ−n

(
1
0

)
, φ̄n ∼ λn

(
0

−1

)
, n → −∞, (G3)

φn ∼
(

a(λ)λ−n

b(λ)e(1−λ2 )tλn

)
, φ̄n ∼

(
b̃(λ)e(λ2−1)tλ−n

−ã(λ)λn

)
,

n → +∞. (G4)

We will now consider the scattering problem successively
at the initial time t = 0 and at the final time t = 1. In each
case we consider it first for φ and then for φ̄.

1. Scattering problem at t = 0

a. A.1 For φ

One must solve, from (G2) and the initial condition (G1),

φ
(1)
n+1 = 1

λ
φ(1)

n + 1

λ
δn,1φ

(2)
n ,

φ
(2)
n+1 = − g

2λ
z̃nφ

(1)
n +

(
λ − g

2λ
z̃nδn,1 − an

λ

)
φ(2)

n . (G5)

Using (G3), the first equation implies that

φ(1)
n = λ−n, n � 1,

φ(1)
n = λ−n + λ1−nφ

(2)
1 , n � 2. (G6)

In particular we obtain from (G4) that

a(λ) = 1 + λφ
(2)
1 . (G7)

The second equation in (G5) then leads to (we recall that an =
0 for n < 1 and for n > N)

φ
(2)
n+1 = − g

2
z̃nλ

−n−1 + λφ(2)
n , n < 1,

φ
(2)
n+1 = − g

2
z̃nλ

−n−1(1 + λφ
(2)
1

)+ λ

(
1 − an

λ2

)
φ(2)

n , n > 1,

(G8)

which implies using (G3)

φ(2)
n =

n−1∑
k=−∞

− g

2
z̃kλ

n−2−2k, n � 1, (G9)

φ
(2)
2 = − g

2λ2
z̃1 +

[
λ − g

2λ
z̃1(t = 0)−a1

λ

]
φ

(2)
1 , n = 2,

(G10)

φ(2)
n =

n−1∑
k=2

(
− g

2
z̃kλ

n−2−2k
(
1 + λφ

(2)
1

) n−1∏
�=k+1

(
1 − a�

λ2

))

+ λn−2
n−1∏
�=2

(
1 − a�

λ2

)
φ

(2)
2 , n � 3. (G11)

We can simplify the n = 2 term as

φ
(2)
2 = − g

2λ2
z̃1(t = 0) +

[
λ − g

2λ
z̃1(t = 0)−a1

λ

]
a(λ) − 1

λ

= a(λ)

[
1 − g

2λ2
z̃1(t = 0)−a1

λ2

]
− 1 + a1

λ2
. (G12)

We finally obtain a(λ) from (G7) with φ
(2)
1 given in (G9), and

b(λ) from the asymptotic behavior at n → +∞ of (G11):

a(λ) = 1 − g

2

0∑
k=−∞

z̃k (t = 0)λ−2k, (G13)

b(λ) = a(λ)

λ2

∞∑
k=1

(
− g

2
z̃k (t = 0)λ−2k

N∏
�=k+1

(
1 − a�

λ2

))

+ a(λ) − 1

λ2

N∏
�=1

(
1 − a�

λ2

)
. (G14)

b. A.2 For φ̄

The vector φ̄ satisfies the same equation as φ but with
different boundary conditions at infinity [see (G3) and (G4)]:

φ̄
(1)
n+1 = 1

λ
φ̄(1)

n + 1

λ
δn,1φ̄

(2)
n ,

φ̄
(2)
n+1 = − g

2λ
z̃nφ̄

(1)
n +

(
λ − g

2λ
z̃nδn,1−an

λ

)
φ̄(2)

n . (G15)

Using (G3) the first equation gives

φ̄(1)
n = 0, n � 1,

φ̄(1)
n = φ̄

(2)
1

λn−1
, n � 2, (G16)

which from (G4) implies that

b̃(λ) = λφ̄
(2)
1 . (G17)

Using (G3) the second equation in (G15) can be solved as

φ̄(2)
n = −λn, n � 1,

φ̄
(2)
2 = −

(
λ − g

2λ
z̃1(t = 0)−a1

λ

)
λ, n = 2,

φ̄(2)
n =

n−1∑
k=2

(
g

2
z̃kλ

n−2k
n−1∏

�=k+1

(
1 − a�

λ2

))

+ λn−2
n−1∏
�=2

(
1 − a�

λ2

)
φ̄

(2)
2 , n � 3. (G18)
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From the n → +∞ asymptotics using (G4) we thus obtain

ã(λ) = −
∞∑

k=2

(
g

2
z̃kλ

−2k
N∏

�=k+1

(
1 − a�

λ2

))

− λ−2
N∏

�=2

(
1 − a�

λ2

)
φ̄

(2)
2 , (G19)

which, upon the replacement of the value of φ̄
(2)
1 = −λ and of

φ̄
(2)
2 leads to

ã(λ) =
N∏

�=1

(
1 − a�

λ2

)

−
∞∑

k=1

(
g

2
z̃k (t = 0)λ−2k

N∏
�=k+1

(
1 − a�

λ2

))
. (G20)

b̃(λ) = −λ2 (G21)

At this stage it is interesting to verify the normalization
relation, by inserting (G20) and (G14),

a(λ)ã(λ) + b(λ)b̃(λ)

= a(λ)
N∏

�=1

(
1 − a�

λ2

)

− a(λ)
∞∑

k=1

(
g

2
z̃k (t = 0)λ−2k

N∏
�=k+1

(
1 − a�

λ2

))
,

− a(λ)
∞∑

k=1

(
− g

2
z̃k (t = 0)λ−2k

N∏
�=k+1

(
1 − a�

λ2

))

+ [1 − a(λ)]
N∏

�=1

(
1 − a�

λ2

)

=
N∏

�=1

(
1 − a�

λ2

)
, (G22)

which provides a nontrivial check of our calculations.

2. Scattering problem at t = 1

a. B.1 For φ

Using that z̃n(t = 1) = −�δN,� one must solve

φ
(1)
n+1 = 1

λ
φ(1)

n + 1

λ
znφ

(2)
n ,

φ
(2)
n+1 = g�

2λ
δn,Nφ(1)

n +
(

λ + g�

2λ
znδn,N−an

λ

)
φ(2)

n . (G23)

Let us solve first the second equation, using the boundary
condition (G3). with t = 1 One finds (recalling that an = 0
for n � N + 1)

φ(2)
n = 0, n � N,

φ(2)
n = g�

2
λn−N−2φ

(1)
N , n � N + 1. (G24)

Hence from (G4) we obtain

b(λ)e1−λ2 = g�

2
λ−N−2φ

(1)
N . (G25)

We can now solve the first equation in (G23) and obtain

φ(1)
n = λ−n, n � N + 1,

φ(1)
n = λ−n +

n−1∑
k=N+1

zk (t = 1)
g�

2
λ2k−n−N−2φ

(1)
N ,

n � N + 2. (G26)

From the asymptotics for n → +∞ and (G4), inserting φ
(1)
N =

λ−1 one finds

a(λ) = 1 + g�

2

∞∑
k=N+1

zk (t = 1)λ2k−2N−2, (G27)

b(λ)e1−λ2 = g�

2
λ−2N−2. (G28)

b. B.2 For φ̄

One must solve for φ̄

φ̄
(1)
n+1 = 1

λ
φ̄(1)

n + 1

λ
znφ̄

(2)
n ,

φ̄
(2)
n+1 = g�

2λ
δn,N φ̄(1)

n +
(

λ + g�

2λ
znδn,N−an

λ

)
φ̄(2)

n . (G29)

Again we start with the second equation, using the asymp-
totics in (G3). We find

φ̄(2)
n = −λn

n−1∏
�=1

(
1 − a�

λ2

)
, n � N,

φ̄(2)
n = λn−N−1

[
g�

2λ
φ̄

(1)
N −

(
λ + g�

2λ
zN−aN

λ

)
λN

N−1∏
�=1

(
1 − a�

λ2

)]
,

n � N + 1. (G30)

From the n → +∞ asymptotics and (G4) one finds

ã(λ) = −λ−N−1

[
g�

2λ
φ̄

(1)
N −

(
λ + g�

2λ
zN−aN

λ

)
λN

N−1∏
�=1

×
(

1 − a�

λ2

)]
. (G31)

The solution for φ̄(2)
n can then be inserted in the first equa-

tion in (G29). It reads

φ̄
(1)
n+1 = 1

λ
φ̄(1)

n − λn−1zn

n−1∏
�=1

(
1 − a�

λ2

)
, n � N,

φ̄
(1)
n+1 = 1

λ
φ̄(1)

n + znλ
n−N−2

(
g�

2λ
φ̄

(1)
N −

[
λ + g�

2λ
zN−aN

λ

)

× λN
N−1∏
�=1

(
1 − a�

λ2

)]
, n � N + 1. (G32)
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Taking into account the boundary condition (G3), its solution
is found as

φ̄(1)
n = −

n−1∑
k=−∞

zkλ
2k−n

k−1∏
�=1

(
1 − a�

λ2

)
, n � N + 1,

φ̄(1)
n = λ−n+N+1φ̄

(1)
N+1 +

(
g�

2λ
φ̄

(1)
N −

[
λ + g�

2λ
zN−aN

λ

)

× λN
N−1∏
�=1

(
1 − a�

λ2

)] n−1∑
k=N+1

zkλ
2k−n−N−1, n � N + 2.

(G33)

From the asymptotics at n → +∞ and (G4) one finds

b̃(λ)eλ2−1 = λN+1φ̄
(1)
N+1 +

[
g�

2λ
φ̄

(1)
N −

(
λ + g�

2λ
zN−aN

λ

)

× λN
N−1∏
�=1

(
1 − a�

λ2

)] ∞∑
k=N+1

zkλ
2k−N−1. (G34)

Inserting the value of φ̄
(1)
N and of φ̄

(1)
N+1 in (G31) and in (G34)

we obtain

ã(λ) =
N∏

�=1

(
1 − a�

λ2

)
+ g�

2

N∑
k=−∞

×
(

zk (t = 1)λ2k−2N−2
k−1∏
�=1

(
1 − a�

λ2

))
, (G35)

b̃(λ)eλ2−1 = −
N∑

k=−∞
zk (t = 1)λ2k

k−1∏
�=1

(
1 − a�

λ2

)

− ã(λ)
∞∑

k=N+1

zk (t = 1)λ2k . (G36)

3. Summary: Result for the scattering amplitudes

In summary, the scattering amplitudes b(λ) and b̃(λ) have
been completely determined. They read

b̃(λ) = −λ2,

b(λ) = g�

2
λ−2N−2eλ2−1. (G37)

By contrast, for each of the amplitudes a(λ) and ã(λ) we
has obtained only two relations to the two unknown set of
variables zn(t = 1) and z̃n(t = 0). These relations read

a(λ) = 1 + g�

2

∞∑
n=N+1

zn(t = 1)λ2n−2N−2

= 1 − g

2

0∑
n=−∞

z̃n(t = 0)λ−2n. (G38)

A priori we have obtained each relation (each line) separately.
However, one can check that due to the symmetry

{z̃�(t ) = −�zN−�+1(1 − t ), a� = aN−�+1} (G39)

FIG. 4. Representation of arg(G), i.e., the phase (shown by a
color code) of the rescaled function w �→ 1 + �

|�c |w
−2N eN (w2−1) =

G(λ = w
√

N ) for N = 5 and �

|�c | = 0.5 in the complex plane. The
plot was made using the ComplexPlot function of Mathematica
with the GreenPinkTones color function. The red dots represent
the zeros of the function G, and we have represented the circle
of radius |w| = 1, which corresponds to contour C (equal to the
circle |λ| = R = √

N mentioned in the text). The black lines can be
interpreted as the positions of branch cuts in log G, and we see that
the contour C does not cross them.

these two expressions are identical. Similarly we have found

ã(λ) =
N∏

�=1

(
1 − a�

λ2

)
+ g�

2

N∑
k=−∞

×
(

zk (t = 1)λ2k−2N−2
k−1∏
�=1

(
1 − a�

λ2

))

=
N∏

�=1

(
1 − a�

λ2

)

−
∞∑

k=1

(
g

2
z̃k (t = 0)λ−2k

N∏
�=k+1

(
1 − a�

λ2

))
, (G40)

and one can check that the two lines are again identical due to
the symmetry (G39).

Although the expressions for a(λ) and ã(λ) seem compli-
cated the product a(λ)ã(λ) has a simple expression, due to the
normalization relation (which we have checked to hold)

a(λ)ã(λ) = 1 − b(λ)b̃(λ) =
N∏

�=1

(
1 − a�

λ2

)
+ g�

2
λ−2N eλ2−1.

(G41)

This equation is amenable to a solution using scalar
Riemann-Hilbert methods.

APPENDIX H: SOLUTION OF THE RIEMANN-HILBERT
PROBLEM FOR THE SCATTERING AMPLITUDES

Here we restrict to the case with zero drift a� = 0 and we
set the value of the coupling constant g = 2. We need to solve

a(λ)ã(λ) = G(λ) = 1 + �λ−2N eλ2−1. (H1)

Let us first study the function G(λ) (which is a function of
λ2). It has an infinity of zeros in the complex plane (they are
represented by red dots in Figs. 4–7). To obtain their analytical
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FIG. 5. The same as Fig. 4 with �

|�c | = −0.5. Note the four zeros
on the real axis, which correspond to (in the order of increasing
real parts) to {−λ−1, −λ0, λ0, λ−1}. This feature happens for any

�

|�c | ∈] − 1, 0[. These zeros are related to the soliton rapidities, for
the solution where solitons are present; see discussion in the text.
As �

|�c | → −1+ these zeros get closer and merge pairwise. For
�

|�c | < −1 the zeros go along a curve in the plane; see Fig. 6.

expressions one writes

λ−2N eλ2 = − e

�
. (H2)

Taking the power 1/N and multiplying by N we obtain

N

λ2
e

λ2

N = N
(
− e

�

)1/N
e−2iπ n

N (H3)

with n = 0, . . . , N − 1 and for any z = |z|eiθ , we denote
z1/N = |z|1/N eiθ/N .

Now, since the solution of ex/x = y is x = −Wk (−1/y),
where Wk is any of the branches of the Lambert function with
k ∈ Z [30], we obtain that the zeros of G(λ) can be written as
±λk,n, where

λ2
k,n = −NWk

(
− e−1

(
�

�c

)1/N

e2iπ n
N

)
, k ∈ Z,

n = 0, . . . , N − 1. (H4)

We have further defined

�c = −e1−N NN < 0. (H5)

FIG. 6. The same as Fig. 4 with �

|�c | = −5. The horizontal
branch cuts originating from the origin and from infinity have merged
at �

|�c | = −1 and expand in lower and upper half planes. We will not

study in details the case �

|�c | < −1 here since we do not need it for
our large deviation problem.

FIG. 7. The same as Fig. 4 with �

|�c | = 100 000. As discussed in
the text, in the special case of large positive �, one needs to deform
the circular contour (in an obvious way) to avoid the branch cuts in
log G.

Below we will always denote λk = λk,0. Finally, let us note
that G(λ) has a pole of order 2N at the origin λ = 0.

Now recall that we expect a(λ) to be analytic inside a
contour C (we will call D the interior of C) and ã(λ) to be
analytic outside the contour C in the complementary domain
Dc. In practice, in most cases one can take the contour C to be
a circle of radius R = √

N , in which case a(λ) is analytic for
for |λ| < R and ã(λ) is analytic for |λ| > R. In some special
case however (see below) we will need to deform the circle.

From the knowledge of the zeros of G(λ), one can then
determine the solution for a(λ) and ã(λ). There are two types
of solutions.

Solution without soliton. Let us first assume that a(λ) has
no zeros for |λ| < R and that ã(λ) has no zeros for |λ| > R,
or more generally for λ ∈ D and λ ∈ Dc, respectively. From
Cauchy’s theorem, and taking into account that both functions
are even functions of λ one has, for λ ∈ D,

log a(λ) =
∮
C

dw

2iπ
w

w2 − λ2
log a(w),

0 =
∮
C

dw

2iπ
w

w2 − λ2
log ã(w), λ ∈ D, (H6)

where in the second equality we have closed the contour at
infinity [assuming that ã(λ) goes to unity for |λ| → +∞].
Similarly one has, for λ ∈ Dc,

log ã(λ) = −
∮
C

dw

2iπ
w

w2 − λ2
log ã(w),

0 =
∮
C

dw

2iπ
w

w2 − λ2
log a(w), λ ∈ Dc. (H7)

Subtracting these equations, we find

log ã(λ) = −
∮
C

dw

2iπ
w

w2 − λ2
log a(w)ã(w)

= −ϕ(λ), λ ∈ Dc,

log a(λ) = ϕ(λ), λ ∈ D, (H8)

where everywhere we denote

ϕ(λ) =
∮
C

dw

2iπ
w

w2 − λ2
log(1 + �w−2N ew2−1), λ /∈ C.

(H9)
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FIG. 8. The same as Fig. 4 with �

|�c | = 1 and N = 100.

Note that since the number of zeros of G(λ) is infinite, ã(λ)
has zeros inside the contour C (i.e., in D), and a(λ) has an
infinite number of zeros outside the contour C (i.e., in Dc).
The positions of these zeros are shown as red dots in Figs. 4–7
for N = 5. These zeros lead to branch cuts in the function
log G(λ) as can be seen in these figures. We have checked that
for �

�c
∈ (−1,+∞[, which is the region that we need for our

large deviation problem, there is a choice of the contour C so
that no branch cut is crossed when integrating log G(λ) over
the contour C. There exists a threshold value �∗(N ) such that
for � < �∗(N ) the contour C can be chosen to be the circle of
radius R = √

N (represented as a circle of radius unity in the
rescaled variables in the figures). For � > �∗(N ) the contour
can be chosen as a deformed circle as can be seen from Fig. 7.
The value �∗(N ) increases very fast with N and corresponds
to the first time that a zero initially inside the circle hits the
circle as � increases [we did not attempt to find its analytical
value, except for N = 1 where one has �∗(1) = e2].

Finally, we also plotted the zeros for N = 100 in Figs. 8
and 9. One can see that they fall on some limit curves that we
did not attempt to describe or interpret.

Solution with a soliton. From the considerations discussed
in the text, we know that there should be another branch
of solutions with solitons. Indeed, for � ∈ [�c, 0) there are
two pairs of real zeros of G(λ), {±λ0,±λ−1} (we recall that
we denote λk = λk,0) as can be seen in Fig. 5. Furthermore
one has 0 < λ0 < R = √

N and R = √
N < λ−1. Thus in the

interval � ∈ [�c, 0[ one can consider a solution such that a(λ)
has two zeros at λ = ±λ0 inside the R circle, and ã(λ) has two
zeros at λ = ±λ1, outside the R circle. It is then natural to

FIG. 9. The same as Fig. 4 with �

|�c | = −10 000 and N = 100.

redefine

a(λ) = α(λ)
λ2 − λ2

0

λ2 − λ2
−1

, ã(λ) = α̃(λ)
λ2 − λ2

−1

λ2 − λ2
0

. (H10)

Since the product a(λ)ã(λ) = α(λ)α̃(λ) = G(λ) and α̃(λ)
also tend to one at infinity, we can apply the same manipu-
lations as above to α(λ) and α̃(λ). The solution thus reads

a(λ) = λ2 − λ2
0

λ2 − λ2
−1

×

⎧⎪⎨
⎪⎩

eϕ(λ) |λ| < R = √
N

G(λ)1/2eϕ̃(λ) |λ| = R

G(λ)eϕ(λ) |λ| > R

,

(H11)

ã(λ) = λ2 − λ2
−1

λ2 − λ2
0

×

⎧⎪⎨
⎪⎩

G(λ)e−ϕ(λ) |λ| < R = √
N

G(λ)1/2e−ϕ̃(λ) |λ| = R

e−ϕ(λ) |λ| > R

,

(H12)

where ϕ(λ) was defined in (H9) and

ϕ̃(λ) = −
∫

|w|=R

dw

2iπ
w

w2 − λ2
log(1 + �w−2N ew2−1) |λ| = R

(H13)

is given as a principal value. The discussion above about
the contour and branch cut applies identically. This is quite
analogous to the situation for the KPZ equation (which as we
show is reached for N → +∞) as found in [1] and confirmed
by the rigorous recent work of Ref. [3].

APPENDIX I: CALCULATION OF THE RATE FUNCTIONS

1. Values of the conserved quantities

From Appendix F we can now obtain the values taken by
the conserved quantities {C̃n,Cn} from the coefficients of the
Laurent or Taylor series of the scattering amplitudes. One
writes

log ã(λ) = −ϕ(λ) =
∞∑

n=1

C̃n

λ2n
, |λ| > R, (I1)

log a(λ) = ϕ(λ) =
∞∑

n=0

λ2nCn, |λ| < R. (I2)

Recalling the definition (H9) of ϕ(λ), this leads to

Cn =
∮

|w|=R

dw

2iπ
1

w2n+1
log(1+ �w−2N ew2−1), n ∈ [0,∞],

(I3)

C̃n =
∮

|w|=R

dw

2iπ
w2n−1 log(1 + �w−2N ew2−1), n ∈ [1,∞].

(I4)

This is the result in the absence of soliton. In the presence
of solitons there is an additional additive contribution so that
the values of the conserved quantities are now Cn + Cn and
C̃n + C̃n respectively, where Cn, C̃n are still given by the
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above expressions and, from (H12) for |λ| > R,

log

(
λ2 − λ2

−1

λ2 − λ2
0

)
=

∞∑
n=1

1

λ2n

λ2n
0 − λ2n

−1

n
=

∞∑
n=1

C̃n

λ2n
. (I5)

Similarly from (H11) for |λ| < R one obtains

log

(
λ2 − λ2

0

λ2 − λ2
−1

)
= log

(
λ2

0

λ2
−1

)
+

∞∑
n=1

λ2n λ−2n
−1 − λ−2n

0

n

= C0 +
∞∑

n=1

λ2nCn. (I6)

This leads to

C0 = log
(
λ2

0

)− log
(
λ2

−1

)
,

Cn = λ−2n
−1 − λ−2n

0

n
for n � 1,

C̃n = λ2n
0 − λ2n

−1

n
for n � 1. (I7)

2. Rate function �(�): Main branch, no soliton

Let us now recall the first conserved quantity from
Appendix F. With the value of the coupling constant set to
g = 2, it reads

C̃1 = − g

2

+∞∑
n=−∞

zn(t )z̃n(t ), (I8)

and it is independent of time t . Let us set and evaluate it at
time t = 1 using the boundary condition zn(1) = −�δn,N . We
obtain the relation

C̃1 = �zN (t = 1). (I9)

By definition zN (t = 1) = eHN is our observable and by taking
a derivative of Eq. (A6) w.r.t. the Legendre parameter � we
see that

� ′(�) = zN (t = 1). (I10)

Consider here the case without soliton. Hence, using (I4) for
n = 1 we obtain

�� ′(�) =
∮

|w|=R

dw

2iπ
w log(1 + �w−2N ew2−1)

=
∮

|v|=R2

dv

2iπ
log(1 + �v−N ev−1), (I11)

where in the second equality there is no additional factor of
2 since the circle is run twice. We recall that we can choose
R = √

N .
Remark I.1. For N = 1 we know from the direct solution

[see e.g., (C21)] that

�� ′(�) = W0

(
�

e

)
. (I12)

Hence this provides an integral representation of the Lambert
function (which to our knowledge is novel).

Since �(0) = 0, we can integrate (I11) and obtain

�(�) = −
∮

|w|=R

dw

2iπ
wLi2(−�w−2N ew2−1)

= −
∮

|v|=R2

dv

2iπ
Li2(−�v−N ev−1). (I13)

Series expansion of �N (�) and cumulants of zN (t = 1). Recall
the contour representation of the nth Hermite polynomial

Hn(x) = n!
∮

dz

2iπ
e2xz−z2

zn+1
, (I14)

where the contour encloses the origin. Expanding the loga-
rithm in Eq. (I11) as a series, this leads to

�� ′(�) =
∑
p�1

(−1)p+1

p

∮
|w|=R

dw

2iπw
�pe−pw−2N p+2epw2

,

(I15)

=
∑
p�1

(−1)p+1

p
(�e−1)p(−p)N p−1 H2N p−2(0)

(2N p − 2)!
,

(I16)

=
∑
p�1

(−1)p+1

p2
(�e−1 pN )p 1

(N p − 1)!
, (I17)

where we have used the value of the Hermite polynomial of
even indices at the origin:

H2N (0)

(2N )!
= cos(πN )

N!
. (I18)

Integrating once w.r.t. λ we obtain

�N (�) =
∑
p�1

bp(�e−1)p, bp = (−1)p+1 pN p−3

(N p − 1)!
.

(I19)

One finds that the radius of convergence of this series in
� is precisely |�c| defined above �c = −e1−N NN , which is
consistent with the behavior of the solutions.

Let us note that the typical value is given by the coefficient
for p = 1 i.e., one has

� ′
N (0) = eHtyp = zN (t = 1) = b1e−1 = 1

e(N − 1)!
, (I20)

which coincides with the prediction from the Poisson kernel.
More generally, since �N (�) is the generating function of the
cumulants of zN (t = 1), from its definition (A5), one has, to
leading order in ε � 1,

�N (�) =
∑
p�1

(−1)p+1 �p

p!
ε1−pzN (t = 1)pc

, (I21)

which implies that

zN (t = 1)pc = (−1)p+1 p!εp−1bpe−p = p!
pN p−3

(N p − 1)!
e−p εp−1.

(I22)
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In particular the variance reads

zN (t = 1)2
c = 22N−2

(2N − 1)!
e−2 ε. (I23)

One can easily check the first two cumulants for N = 1.
Let us recall that zN (t ) = e−(1+ ε

2 )t ZN (t ). For N = 1 one has
z1(t ) = e−(1+ ε

2 )t+√
εB(t ) and one finds z1 � e−1 and z2

1

c = e−2ε

in agreement with the above formula.
Finally, one can obtain the cumulants of H = log zN (1)

from the derivatives of the rate function �(H ) (see, e.g., in
[23], Sec. 4.2.5 of the Supp. Material). Here they scale as
Hqc ∼ ε1−q. The variance reads

H2
c = ε

�′′(Htyp)
= −ε

� ′′(0)

� ′(0)2
= 22N−2(N − 1)!2

(2N − 1)!
ε. (I24)

3. Rate function �(�): Second branch, with a soliton

In presence of a soliton, from (I7) we see that the value of
the conserved quantity C̃1 is changed by

C̃1 = λ2
0 − λ2

−1. (I25)

On the second (solitonic) branch, the rate function � thus
becomes �N (�) = �main

N (�) + N (�) with

�′
N (�) = C̃1 = NW−1

[
− e−1

(
�

�c

)1/N]

− NW0

[
− e−1

(
�

�c

)1/N]
, (I26)

where we have replaced λ0/−1 = λ0/−1,0 by their explicit val-
ues from (H4). Upon integration one finds that

N (�) = N2

2
W−1

[
− 1

e

(
�

�c

)1/N](
W−1

[
− 1

e

(
�

�c

)1/N]
+ 2

)
− N2

2
W0

[
− 1

e

(
�

�c

)1/N](
W0

[
− 1

e

(
�

�c

)1/N]
+ 2

)
,

(I27)

which vanishes as it should at � = �c which is the point
where solitons are spontaneously generated.

APPENDIX J: CONVERGENCE TO KPZ

1. Convergence of the large deviation rate function

We will now show that the large deviation result for the OY
polymer

exp

(
−�

ε
zN (τ = 1)

)
∼ exp

(
−1

ε
�N (�)

)
(J1)

converges to the similar result for the short-time KPZ equa-
tion as N → +∞ under a proper rescaling. We will consider
successively the right-hand side of (J1) (the large deviation
form) and its left-hand side (the observable) and show that
each side converges to the corresponding one for the KPZ
equation.

Consider the right-hand side of (J1). Let us consider first
the main branch. One recalls that

�(�) = −
∮

|v|=N

dv

2iπ
Li2(−�v−N ev−1) . (J2)

Note that since �∗
N grows very fast with N we need only to

consider the case � < �∗
N where the contour is a circle. We

parametrize the circle of radius N as v = Neik , and for large
N we expand around k = 0 as

v − N log v = N − N log N − N
k2

2
+ O(Nk3). (J3)

Inserting this expansion into (J2) we obtain

�(�) � −N
∫
R

dk

2π
eikLi2(−�eN−1−N log N e−Nk2/2)

(J4)

� −
√

2N
∫
R

dq

2π
Li2

(
�

�c
e−q2

)
, (J5)

where we recall that �c = −e1−N NN . We can then make the
connection on the right-hand side of Eq. (J1) with the known
result for the short-time KPZ equation with droplet initial
conditions [1,22] as

exp

(
−�N (�)

ε

)
→ exp

(
− 1√

TKPZ
�KPZ(z)

)
,

�KPZ(z) = −
∫
R

dk

2π
Li2(−ze−q2

) (J6)

with the identification

z = − �

�c
,

√
2N

ε
= 1√

TKPZ
. (J7)

Hence the “KPZ time” TKPZ must be identified with the weak
noise parameter ε2/(2N ).

In the case of the second (solitonic) branch we need to
study the large N limit of N (�) given by Eq. (I27). We recall
the expansions of the Lambert functions for 0 < x < 1 and
N → +∞:

W0(−e−1x1/N ) = −1 +
√

2

N

√
log(1/x) + 2

3N
log x

+ O

(
1

N3/2

)
, (J8)

W−1(−e−1x1/N ) = −1 −
√

2

N

√
log(1/x) + 2

3N
log x

+ O

(
1

N3/2

)
. (J9)

From theses expansions we obtain from (I26)

�′
N (�) = −2

√
2N
√

log(�c/�) + O(1/N1/2). (J10)

Integrating over � one finds, at large N

N (�) =
√

2N
4

3
[log(�c/�)]3/2 + O(1/N1/2), (J11)
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which has precisely the form

N (�)

ε
� 1√

TKPZ
KPZ(z), KPZ(z) = 4

3
[− log(−z)]3/2,

(J12)

which agrees with the result for the KPZ equation in
Refs. [1,22].

Now we need to consider the left-hand side of (J1), and
identify the observables in the two models. For this we will
use the result from Ref. [28], Sec. 5.4.1 Formula (5.9), which
we first state in the notations of that paper. There is it shown
that the OY partition sum denoted there eFN (T ) converges for
N → +∞ to the continuum directed polymer partition sum
Z (X, T ) (in the notations of [28]) as

eFN (
√

T N+X ) � eN+
√

NT +X
2 +X

√
N
T + N

2 log(T N )−N log N Z (X, T ).
(J13)

On the other hand the partition sums defined here are related
to those in that paper via

zN (t ) = e−t (1+ ε
2 )ZN (t ), ZN (t ) = ε1−N eFN (εt ). (J14)

We can choose X = 0, and we obtain the convergence

zN (t = 1) = e−(1+ ε
2 )ε1−N eFN (ε) � εeN−1−N log N Z (0, T )

= − ε

�c
Z (0, T ), (J15)

where we have identified ε = √
T N , i.e., we set T = ε2/N .

Let us now recall that in our previous work [1] we define the
continuum-directed polymer partition ZKPZ(X, TKPZ) as the
solution of the SHE

∂t ZKPZ = ∂2
x ZKPZ +

√
2η(x, t )ZKPZ, (J16)

where η(x, t ) is the standard (unit variance) space-time white
noise. Comparing with Ref. [28] we see that we need to write

Z (X, T ) = ZKPZ(X, TKPZ), 2TKPZ = T . (J17)

Thus we have the large N behavior

zN (t = 1) � − ε

�c
ZKPZ

(
0, TKPZ = ε2

2N

)
. (J18)

Hence the left-hand side of (J1) becomes

exp

(
−�

ε
zN (t = 1)

)
� exp [−zZKPZ(0, TKPZ)]

= exp

(
− zeH (TKPZ )

√
TKPZ

)
, (J19)

where we recall that z = −�/�c and that for the droplet
solution of the KPZ solution we have defined H (TKPZ) =
log ZKPZ(0, TKPZ) + 1

2 log TKPZ in Ref. [1].

2. Convergence of the dynamical system (10)
to the nonlinear Schrödinger equation

In this section we investigate how to take the limit of
the WNT of the O’Connell-Yor polymer (10) to the WNT
equations of the Kardar-Parisi-Zhang equation directly. To

this aim, we define a scaling variable x0, which can be inter-
preted as a lattice length, and introduce the rescaled space and
time as

X = x0(t − n), T = x2
0

2
t . (J20)

We then define the partition function Z as

zn(t ) = Z

(
x0t − x0n,

x2
0

2
t

)

←→ Z (X, T ) = z 2T
x2
0

− X
x0

(
2T

x2
0

)
(J21)

and similarly for z̃n which we relate to a response field Z̃ .
Definition (J21) implies the differential relations

∂t zn(t ) = x0∂X Z + x2
0

2
∂T Z,

zn+1 − zn = −x0∂X Z + x2
0

2
∂2

X Z + O
(
x3

0

)
,

zn−1 − zn = x0∂X Z + x2
0

2
∂2

X Z + O
(
x3

0

)
,

(J22)

where we have assumed a small x0 expansion in the last two
equations. In order to keep only one dominant term in the
expansion, we consider the following combination:

∂t zn + zn+1 − zn = x2
0

2

(
∂T Z + ∂2

X Z
)+ O

(
x3

0

)
. (J23)

Upon convergence, we find that the original dynamical
system (10) reads at leading order

x2
0∂T Z = x2

0∂
2
X Z + 2Z2Z̃,

−x2
0∂T Z̃ = x2

0∂
2
X Z̃ + 2ZZ̃2. (J24)

To obtain a final system independent on x0, we finally rescale
the fields Z and Z̃ as

QKPZ(X, T ) = 1

x0
Z (X, T ), PKPZ(X, T ) = 1

x0
Z̃ (X, T )

(J25)

to obtain the {P, Q} system studied in the context of the WNT
of the KPZ equation [1].

3. Convergence of the Lax pair (13) to the Lax pair
of the nonlinear Schrödinger equation

Recalling the driftless Lax pair for the O’Connell-Yor
system,

∂tvn = Unvn, vn+1 = Lnvn, Un =
(

λ2−1
2 −zn−1

z̃n
1−λ2

2

)
,

Ln =
(

1
λ

zn
λ

− 1
λ

z̃n λ − 1
λ

znz̃n.

)
. (J26)
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From (J23) and (J22) we observe that in order to study the
convergence of the Lax pair, we need to consider the combi-
nation

∂tvn + vn+1 − vn = (Un + Ln − I2)vn (J27)

as well as the first order in x0 of the equations ∂tvn = Unvn

and vn+1 − vn = (Ln − I2)vn where I2 is the identity matrix.
Indeed, in the continuum we want to transform the Lax pair

(J26) into a continuous version:

∂XV (X, T ) = U1V (X, T ), ∂T V (X, T ) = U2V (X, T ).
(J28)

Equation (J23) together with Eq. (J27) provides a convergence
to the operator (∂T + ∂2

X )V which in terms of the continuous
Lax matrices (J28) reads (U2 + U 2

1 + ∂XU1)V .
To study the convergence of the Lax pair, we choose the

following scaling at leading order [see also (J22)]:

λ(x0) = ei λ
2 x0 ,

z̃n(t ) = x0Z̃ (X, T ), z̃n−1(t ) = x0Z̃ (X, T ) + x2
0∂X Z̃ (X, T ) + x3

0

2
∂2

X Z̃ (X, T ),

zn(t ) = x0Z (X, T ), zn−1(t ) = x0Z (X, T ) + x2
0∂X Z (X, T ) + x3

0

2
∂2

X Z (X, T ). (J29)

Under this scaling, a straightforward replacement gives

Ln → I2 − x0U1 + x2
0

2

(
U 2

1 + ∂XU1
)+ x2

0 (U2 − W ) + O
(
x3

0

)
,

Un → x0U1 + x2
0W + O

(
x3

0

)
, (J30)

where

U1 =
(

iλ
2 −Z (X, T )

Z̃ (X, T ) − iλ
2

)
, (J31)

U2 =
(

1
2 Z (X, T )Z̃ (X, T ) − λ2

4 − 1
2∂X Z (X, T ) − iλ

2 Z (X, T )

− 1
2∂X Z̃ (X, T ) + iλ

2 Z̃ (X, T ) λ
4

2 − 1
2 Z (X, T )Z̃ (X, T )

)
, (J32)

W =
(

− λ2

4 −∂X Z (X, T )

0 λ2

4

)
. (J33)

We recognize in Eqs. (J31) and (J32) the matrices U1 and U2

of the continuous nonlinear Schrödinger equation obtained in
the weak noise theory of the KPZ equation [1]. In particular
we see the convergence

Un + Ln − I2 → x2
0

(
U2 + U 2

1 + ∂XU1
)

(J34)

as expected. This concludes the convergence of the Lax pairs
of the discrete problem towards the continuous problem.

APPENDIX K: TRIANGULAR REPRESENTATION
OF THE SOLUTION TO THE LAX PROBLEM

Here we set g = 2 and the drifts {a�} = 0, and we recall the
asymptotics

φn ∼ λ−n

(
1
0

)
, φ̄n ∼ λn

(
0

−1

)
, n → −∞, (K1)

ψn ∼ λn

(
0
1

)
, ψ̄n ∼ λ−n

(
1
0

)
, n → +∞, (K2)

and

φn ∼
(

a(λ, t )λ−n

b(λ, t )λn

)
, φ̄n ∼

(
b̃(λ, t )λ−n

−ã(λ, t )λn

)
, n → +∞.

(K3)

We have that λnφn and λ−nψn are analytic inside the circle
|λ| < R and that λ−nφ̄n and λnψ̄n are analytic outside of the
circle |λ| > R. (for simplicity we consider the case � < �∗

N
but the same manipulations extent to � > �∗

N , the contour
being a deformed circle).

One introduces the triangular representations

ψn = λn
∑
p�0

λp

(
K1(n, n + p)

K2(n, n + p)

)
=
∑
p�0

λn+pK (n, n + p),

φn = λ−n
∑
p�0

λp

(
M1(n, n + p)

M2(n, n + p)

)
, |λ| < R, (K4)

ψ̄n = λ−n
∑
p�0

λ−p

(
K̄1(n, n + p)

K̄2(n, n + p)

)
=
∑
p�0

λ−n−pK̄ (n, n + p),

φ̄n = λn
∑
p�0

λ−p

(
M̄1(n, n + p)

M̄2(n, n + p)

)
, |λ| > R. (K5)

The goal is to find the values of the first coefficients in the
triangular representation. Let us recall the Lax matrix where
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TABLE I. Summary of the results for K̄1 and K̄2.

Index K̄1 K̄2

(n, n) K̄1(n, n) = 1 K̄2(n, n) = 0

(n, n + 1) K̄1(n, n + 1) = 0 K̄2(n, n + 1) = 0

(n, n + 2) K̄1(n, n + 2) = −∑∞
�=n z�z̃� K̄2(n, n + 2) = z̃n

(n, n + 2k + 1) K̄1(n, n + 2k + 1) = 0 K̄2(n, n + 2k + 1) = 0

we took the drifts {a�} equal to 0:

Ln =
(

1
λ

zn
λ

− 1
λ

z̃n λ − 1
λ

znz̃n

)
. (K6)

1. Triangular decomposition of ψ̄n

Injecting into ψ̄n+1 = Lnψ̄n one finds the recursion rela-
tions for p � 0:

K̄2(n, n) = 0, K̄2(n, n + 1) = 0, (K7)

K̄1(n + 1, n + 1 + p) = K̄1(n, n + p) + znK̄2(n, n + p),

(K8)

K̄2(n + 1, n + 1 + p)

= −z̃nK̄1(n, n + p) + K̄2(n, n + 2 + p)

− z̃nznK̄2(n, n + p). (K9)

In particular, this implies using p = 0

K̄1(n, n) = c0 = 1, z̃n = K̄2(n, n + 2)

K̄1(n, n)
= K̄2(n, n + 2),

(K10)

where c0 = 1 comes from the asymptotics at large n. Using
p = 1 one has

K̄1(n, n + 1) = c1 = 0, K̄2(n, n + 3) = 0. (K11)

After further examination for all p one obtains

K̄1(n, n + 2k + 1) = c2k+1 = 0,

K̄2(n, n + 2k + 1) = 0, (K12)

where all constants c2k+1 are determined by the asymptotic
n → ∞ condition. We summarize our findings with the fol-
lowing expansion as well as Table I:

ψ̄n = λ−n

(
1
0

)
+ λ−n−2

(−∑∞
�=n z�z̃�

z̃n

)
+ O(λ−n−4).

(K13)

2. Triangular decomposition of ψn

Injecting into ψn+1 = Lnψn one finds the recursion relations for p � 0:

K1(n, n) + znK2(n, n) = 0,

K1(n, n + 1) + znK2(n, n + 1) = 0,

K1(n + 1, n + 1 + p) = K1(n, n + p + 2) + znK2(n, n + p + 2),

K2(n + 1, n + 1 + p) = −z̃n[K1(n, n + p + 2) + znK2(n, n + p + 2)] + K2(n, n + p). (K14)

In particular, this implies using p = 0

K1(n + 1, n + 1) = K1(n, n + 2) + znK2(n, n + 2),

K2(n + 1, n + 1) = −z̃n[K1(n, n + 2) + znK2(n, n + 2)] + K2(n, n),

= −z̃nK1(n + 1, n + 1) + K2(n, n),

= z̃nzn+1K2(n + 1, n + 1) + K2(n, n). (K15)

With p = 1 we further obtain the cancellation of all odd terms in the triangular decomposition. Hence we obtain the following
result:

ψn = λn
∞∏

�=n

(1 − z̃�z�+1)

(−zn

1

)
+ O(λn+2), (K16)

also summarized in Table II.
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TABLE II. Summary of the results for K1 and K2.

Index K1 K2

(n, n) K1(n, n) = −zn
∏∞

�=n(1 − z̃�z�+1) K2(n, n) =∏∞
�=n(1 − z̃�z�+1)

(n, n + 2p + 1) K1(n, n + 2p + 1) = 0 K2(n, n + 2p + 1) = 0

3. Triangular decomposition of φ̄n

We also give for completeness the results for φ̄n and φn although we will not use them below. Injecting into φ̄n+1 = Lnφ̄n one
finds the asymptotic expansion

φ̄n = λn

(
0

−1

)
+ λn−2

(
−zn−1∑n−1

�=−∞
g
2 z�z̃�

)
+ O(λn−4). (K17)

4. Triangular decomposition of φn

Injecting into φn+1 = Lnφn one finds the asymptotic expansion

φn = λ−n
n−1∏

�=−∞

(
1 − g

2
z̃�−1z�

)(
1

− g
2 z̃n−1

)
+ O(λ−n+2). (K18)

5. Additional series expansion for the Lax problem

As in Ref. [38] we provide an additional discrete integral representation of the solutions to the Lax problem. Grouping the
solution of the Lax problem into a 2 × 2 matrix �n = {φn, φ̄n}, we first define a rescaled matrix Wn so that

�n = λ−nσ3W̃n, σ3 =
(

1 0
0 −1

)
, λ−nσ3 =

(
λ−n 0
0 λn

)
, (K19)

whose evolution and asymptotic value are given by

W̃�+1 = λ(�+1)σ3 L�λ
−�σ3W̃�, W̃+∞ =

(
a b̃
b −ã

)
. (K20)

Rewriting the matrix W̃n using a telescopic form and using Eq. (K20), we first obtain that

W̃n = W̃+∞ −
∞∑

�=n

(W̃�+1 − W̃�)

=
(

a b̃
b −ã

)
−

∞∑
�=n

(λ(�+1)σ3 L�λ
−�σ3 − 12)W̃�. (K21)

Going back to the �n = {φn, φ̄n} space, we have

�n = λ−nσ3

(
a b̃
b −ã

)
−

∞∑
�=n

λ(�−n)σ3 (λσ3 L� − 12)��,

= λ−nσ3

(
a b̃
b −ã

)
−

∞∑
�=n

λ(�+1−n)σ3−1

(
0 z�

−z̃� −z�z̃�

)
��,

= λ−nσ3

(
a b̃
b −ã

)
−

∞∑
�=n

(
λ�−n 0

0 λ−�+n−2

)(
0 z�

−z̃� −z�z̃�

)
��. (K22)

Hence we can obtain the recursion for φn and φ̄n by inspection of the columns as

φn =
(

a(λ)λ−n

b(λ)λn

)
−

∞∑
�=n

(
λ�−n 0

0 λ−�+n−2

)(
0 z�

−z̃� −z�z̃�

)
φ� (K23)

and

φ̄n =
(

b̃(λ)λ−n

−ã(λ)λn

)
−

∞∑
�=n

(
λ�−n 0

0 λ−�+n−2

)(
0 z�

−z̃� −z�z̃�

)
φ̄�. (K24)
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Since ψn and ψ̄n are linear combinations of φn and φ̄n, we further obtain that

ψn = λn

(
0
1

)
−

∞∑
�=n

(
λ�−n 0

0 λ−�+n−2

)(
0 z�

−z̃� −z�z̃�

)
ψ� (K25)

and

ψ̄n = λ−n

(
1
0

)
−

∞∑
�=n

(
λ�−n 0

0 λ−�+n−2

)(
0 z�

−z̃� −z�z̃�

)
ψ̄�. (K26)

Note that to have only higher order terms in the right-hand side of Eq. (K25), i.e., ψ� with � > n, it is possible to rewrite the
series as

λ−nψn =
(

0
1

)
−

∞∑
�=n

(
λ2�−2n 0

0 λ−2

)(
0 z�

−z̃� −z�z̃�

)
λ−�ψ�

=
(

0
1

)
−

∞∑
�=n

λ

(
λ2�−2n 0

0 λ−2

)(
0 z�

−z̃� −z�z̃�

)
L−1

� λ−(�+1)ψ�+1

=
(

0
1

)
−

∞∑
�=n

(
λ2�−2n 0

0 1

)(
z�z̃� z�

−z̃� 0

)
λ−(�+1)ψ�+1. (K27)

These series representations have been used in Ref. [38] to obtain analyticity results on the solution to the Lax problem. Note
further that we also have the matrix factorization:(

0 z�

−z̃� −z�z̃�

)
=
(

1 0
−z̃� 1

)(
1 z�

0 1

)
− 12. (K28)

APPENDIX L: GELFAND-LEVITAN-MARCHENKO
EQUATIONS

1. Notations and intermediate objects

To obtain the explicit solutions {zn, z̃n} as a function of
the scattering data, one needs to obtain the Gelfand-Levitan-
Marchenko equations of the problem. To this aim, we start
by rewriting the linear relation between φ, φ̄ and ψ, ψ̄ , and
we further insert the triangular representation of ψn and ψ̄n

obtained in Eqs. (K4)–(K5):

1

a(λ)
φk = ψ̄k + b(λ, t )

a(λ)
ψk,

1

ã(λ)
φ̄k = −ψk + b̃(λ, t )

ã(λ)
ψ̄k . (L1)

The properties we will require are the following:
(1) λnφn, λ−nψn, and a(λ) are analytic inside the circle

|λ| < R.
(2) λ−nφ̄n, λnψ̄n, and ã(λ) are analytic outside of the circle

|λ| > R.
The analyticity properties of the various function will be

used to proceed to a contour integration of Eq. (L1) using the
following:

(1) For a function analytic inside the circle of radius R, we
have that

∮
|λ|=R

dλ

2iπ
1

λ − ξ1
f (λ) = f (ξ1)�( |ξ1| < R). (L2)

(2) For a function analytic outside the circle of radius R,
we have that

∮
|λ|=R

dλ

2iπ
1

λ − ξ1
f (λ) = lim

λ→+∞
f (λ) − f (ξ1)�( |ξ1| > R),

(L3)
where � denotes the Heaviside function. Furthermore, we
use a contour integral representation of the Kronecker delta
function

δm,n =
∮

|λ|=R

dλ

2iπ
λm−n−1. (L4)

We define the Fourier transform on the circle of the reflection
coefficients. If the scattering data {a, ã} do not have any zero,
it reads

F (n) :=
∮

|λ|=R

dλ

2iπ
λn−1 b(λ, t )

a(λ)
=
∮

|λ|=R

dλ

2iπ
λn−1 b(λ)

a(λ)
e(1−λ2 )t ,

F̃ (n) :=
∮

|λ|=R

dλ

2iπ
λ−n−1 b̃(λ, t )

ã(λ)
=
∮

|λ|=R

dλ

2iπ
λ−n−1 b̃(λ)

ã(λ)
e(λ2−1)t . (L5)
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In the case of the presence of solitons, i.e., the scattering data having zeros as in the current problem, we first proceed to the
replacement

a(λ) → a(λ)
λ2 − λ2

0

λ2 − λ2
−1

, ã(λ) → ã(λ)
λ2 − λ2

−1

λ2 − λ2
0

. (L6)

If the scattering data have simple zeros, e.g., a(±λ0) = 0 and ã(±λ−1) = 0, then the expressions of F (n) and F̃ (n) are
modified to take into account the respective poles as

F (n) :=
∮

|λ|=R

dλ

2iπ
λn−1 b(λ)

a(λ)

λ2 − λ2
−1

λ2 − λ2
0

e(1−λ2 )t + λ2
0 − λ2

−1

2λ0

[
λn−1 b(λ)

a(λ)
e(1−λ2 )t

]λ0

−λ0

,

F̃ (n) :=
∮

|λ|=R

dλ

2iπ
λ−n−1 b̃(λ)

ã(λ)

λ2 − λ2
0

λ2 − λ2
−1

e(λ2−1)t + λ2
−1 − λ2

0

2λ−1

[
λ−n−1 b̃(λ)

ã(λ)
e(λ2−1)t

]λ−1

−λ−1

, (L7)

where the notation [ f (λ)]b
a stands for f (b) − f (a).

Inserting the precise value of the scattering data,

b̃(λ) = −λ2, b(λ) = �λ−2N−2eλ2−1, a(λ) = eϕ(λ), ã(λ) = e−ϕ(λ), (L8)

we then obtain in the absence of solitons:

F (n) = �

∮
|λ|=R

dλ

2iπλ
λn−2−2N e(λ2−1)(1−t )−ϕ(λ),

F̃ (n) = −
∮

|λ|=R

dλ

2iπλ
λ−(n−2)e(λ2−1)t+ϕ(λ),

(L9)

and in the presence of solitons:

F (n) = �

∮
|λ|=R

dλ

2iπλ
λn−2−2N λ2 − λ2

−1

λ2 − λ2
0

e(λ2−1)(1−t )−ϕ(λ) + �
λ2

0 − λ2
−1

2λ0
[λn−3−2N e(λ2−1)(1−t )−ϕ(λ)]λ0

−λ0
,

F̃ (n) = −
∮

|λ|=R

dλ

2iπλ
λ−(n−2) λ2 − λ2

0

λ2 − λ2
−1

e(λ2−1)t+ϕ(λ) − λ2
−1 − λ2

0

2λ−1
[λ−n+1e(λ2−1)t+ϕ(λ)]λ−1

−λ−1
. (L10)

Remark L.1. Note that the two Fourier transforms verify the discrete linear evolution equations:

∂t F (2n) = F (2n) − F (2(n + 1)),

∂t F̃ (2n) = F̃ (2(n − 1)) − F̃ (2n). (L11)

2. Derivation of the Gelfand-Levitan-Marchenko equations

a. First equation

We start by considering the first equation of (L1), multiply it by λn/(λ − ξ1) for ξ1 ∈ C and integrate it over λ:∮
|λ|=R

dλ

2iπ
λn

λ − ξ1

φn

a(λ)
=
∮

|λ|=R

dλ

2iπ
λn

λ − ξ1
ψ̄n +

∮
|λ|=R

dλ

2iπ
λn

λ − ξ1

b(λ, t )

a(λ)
ψn. (L12)

We first assume that we are in the case without soliton, i.e., no zero of a(λ) and ã(λ) in their domain of analyticity. Using the
rules (L2) and (L3), we obtain

ξ n
1
φn(ξ1)

a(ξ1)
�( |ξ1| < 1) − lim

|λ|→∞
λnψ̄n = −ξ n

1 ψ̄n(ξ1)�( |ξ1| > 1) +
∮

|λ|=R

dλ

2iπ
λn

λ − ξ1

b(λ, t )

a(λ)
ψn. (L13)

We then denote the following limit:

I1 = lim
|λ|→∞

λnψ̄n. (L14)

Taking |ξ1| = R+, Eq. (L13) reads

−I1 = −ξ n
1 ψ̄n(ξ1) +

∮
|λ|=R

dλ

2iπ
λn

λ − ξ1

b(λ, t )

a(λ)
ψn. (L15)
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Multiplying the equation by ξm−n−1
1 with m � n and integrating ξ1 over the circle of radius R, we further obtain

−
∮

|ξ1|=R

dξ1

2iπ
ξm−n−1

1 I1 = −
∮

|ξ1|=R

dξ1

2iπ
ξm−1

1 ψ̄n(ξ1) +
∮

|ξ1|=R

dξ1

2iπ
ξm−n−1

1

∮
|λ|=R

dλ

2iπ
λn

λ − ξ1

b(λ, t )

a(λ)
ψn. (L16)

Making use of the contour integral representation of the Kronecker function (L4) and expanding the term 1/λ − ξ1 as a series,
we have

−δm,nI1 = −
∮

|ξ1|=R

dξ1

2iπ
ξm−1

1 ψ̄n(ξ1) −
∞∑

�=0

∮
|ξ1|=R

dξ1

2iπ

∮
|λ|=R

dλ

2iπ
ξm−n−1

1

λn+�

ξ �+1
1

b(λ, t )

a(λ)
ψn

= −
∮

|ξ1|=R

dξ1

2iπ
ξm−1

1 ψ̄n(ξ1) −
∞∑

�=0

δm,n+�+1

∮
|λ|=R

dλ

2iπ
λn+� b(λ, t )

a(λ)
ψn

= −
∮

|ξ1|=R

dξ1

2iπ
ξm−1

1 ψ̄n(ξ1) − (1 − δm,n)
∮

|λ|=R

dλ

2iπ
λm−1 b(λ, t )

a(λ)
ψn. (L17)

Inserting the triangular representation of ψn, ψ̄n from Eqs. (K4) and (K5) with the Fourier transform of the scattering data
(L5) we obtain for all m � n

δm,nI1 = K̄ (n, m) + (1 − δm,n)
∑
p�0

K (n, n + 2p)F (m + n + 2p). (L18)

Choosing m = n, this implies that

I1 = K̄ (n, n) =
(

1
0

)
. (L19)

The value of I1 can be read in Eq. (K13) and the one of K̄ (n, n) in Table I. Furthermore, choosing m > n and separating the
p = 0 term out of the sum, we obtain the first Gelfand-Levitan-Marchenko equation as

K̄ (n, m) + K (n, n)F (m + n) +
∑
p>0

K (n, n + 2p)F (m + n + 2p) = 0, m > n. (L20)

b. Second equation

We repeat the procedure to obtain the second GLM equation. To this aim, we consider the second equation of (L1), multiply
it by λ−n/(λ − ξ2) for ξ2 ∈ C and integrate it over λ,∮

|λ|=R

dλ

2iπ
λ−n

λ − ξ2

φ̄n

ã(λ)
= −

∮
|λ|=R

dλ

2iπ
λ−n

λ − ξ2
ψn +

∮
|λ|=R

dλ

2iπ
λ−n

λ − ξ2

b̃(λ, t )

ã(λ)
ψ̃n. (L21)

We first assume that we are in the case without soliton, i.e., no zero of a(λ) and ã(λ) in their domain of analyticity. Using the
rules (L2) and (L3), we obtain

−ξ−n
2

φ̄n(ξ2)

ã(ξ2)
�( |ξ2| > 1) + lim

|λ|→+∞
λ−n φ̄n

ã(λ)
= −ξ−n

2 ψn(ξ2)�( |ξ2| < 1) +
∮

|λ|=R

dλ

2iπ
λ−n

λ − ξ2

b̃(λ, t )

ã(λ)
ψ̄n. (L22)

We then denote the following limit:

I2 = lim
|λ|→+∞

λ−n φ̄n

ã(λ)
. (L23)

We now take |ξ2| = R− so that

I2 = −ξ−n
2 ψn(ξ2) +

∮
|λ|=R

dλ

2iπ
λ−n

λ − ξ2

b̃(λ, t )

ã(λ)
ψ̄n. (L24)

Multiplying the equation by ξ n−m−1
2 with m � n and integrating ξ2 over the circle of radius R, we further obtain∮

|ξ2|=R

dξ2

2iπ
ξ n−m−1

2 I2 = −
∮

|ξ2|=R

dξ2

2iπ
ξ−m−1

2 ψn(ξ2) +
∮

|ξ2|=R

dξ2

2iπ
ξ n−m−1

2

∮
|λ|=R

dλ

2iπ
λ−n

λ − ξ2

b̃(λ, t )

ã(λ)
ψ̄n (L25)
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equivalent to

δm,nI2 = −
∮

|ξ2|=R

dξ2

2iπ
ξ−m−1

2 ψn(ξ2) +
∮

|ξ2|=R

dξ2

2iπ
ξ n−m−1

2

∮
|λ|=R

dλ

2iπ
λ−n

λ − ξ2

b̃(λ, t )

ã(λ)
ψ̄n

= −
∮

|ξ2|=R

dξ2

2iπ
ξ−m−1

2 ψn(ξ2) +
∞∑

�=0

∮
|ξ2|=R

dξ2

2iπ
ξ�+n−m−1

2

∮
|λ|=R

dλ

2iπ
λ−n−�−1 b̃(λ, t )

ã(λ)
ψ̄n

= −
∮

|ξ2|=R

dξ2

2iπ
ξ−m−1

2 ψn(ξ2) +
∮

|λ|=R

dλ

2iπ
λ−m−1 b̃(λ, t )

ã(λ)
ψ̄n. (L26)

Inserting the triangular representation of ψn, ψ̄n from Eqs. (K4) and (K5) with the Fourier transform of the scattering data
(L5) we obtain for all m � n

δm,nI2 = −K (n, m) +
∑
p�0

K̄ (n, n + 2p)F̃ (m + n + 2p). (L27)

Choosing n = m, this implies that

I2 = −K (n, n) +
∑
p�0

K̄ (n, n + 2p)F̃ (2n + 2p) =
(

0
−1

)
. (L28)

The value of I2 can be read from Eq. (K17) alongside limλ→∞ ã(λ) = 1 obtained for instance from Eq. (H12). Furthermore,
choosing m > n and separating the p = 0 term out of the sum, we obtain the second Gelfand-Levitan-Marchenko equation as

K (n, m) − K̄ (n, n)F̃ (m + n) −
∑
p>0

K̄ (n, n + 2p)F̃ (m + n + 2p) = 0, m > n
. (L29)

3. Operator valued equations

The GLM equations obtained in Eqs. (L20)–(L29) involved
summations over explicit indices. We rewrite in this sec-
tion these equations using operators and invert these to obtain
explicitly the solution {zn, z̃n} of the original system (10).

Let us define four operators {Fn, F̃n, Kn, K̄n} indexed by n ∈
Z with the following kernels:

Fn(i, j) = F (2n + i + j),

F̃n(i, j) = F̃ (2n + i + j),

Kn(i, j) = K (i + n, n + j),

K̄n(i, j) = K̄ (i + n, n + j)

(L30)

for i, j ∈ N and we recall that the operators Kn and K̄n are
upper-triangular operators. Using the four kernels introduced
and choosing m = n + 2 j for j > 0, we rewrite the two GLM
equations (L20)–(L29) as

K̄n(0, 2 j) + Kn(0, 0)Fn(0, 2 j) +
∑
p>0

Kn(0, 2p)Fn(2p, 2 j) = 0,

Kn(0, 2 j) − K̄n(0, 0)F̃n(0, 2 j) −
∑
p>0

K̄n(0, 2p)F̃n(2p, 2 j) = 0.

(L31)

These two equations suggest to define an operator product as

(O1O2)(i, j) =
∑
p>0

O1(i, 2p)O2(2p + j) (L32)

and to define the left (resp. right) projectors to zero 〈δ| (resp.
|δ〉), so that for any operator O with kernel O(i, j), we have

(〈δ|O)( j) = O(0, j), (O |δ〉)(i) = O(i, 0),

〈δ|O |δ〉 = O(0, 0). (L33)

Equipped with the operator product and the projector, we
rewrite the diagonal contribution of the GLM equations,
Eqs. (L19) and (L28), as

I1 = 〈δ| K̄n |δ〉 =
(

1
0

)
,

I2 = −〈δ| Kn |δ〉 + 〈δ| K̄n |δ〉 〈δ| F̃n |δ〉 + 〈δ| K̄nF̃n |δ〉

=
(

0
−1

)
, (L34)

where the diagonal value of the kernel of Kn reads from
Table II

〈δ| Kn |δ〉 =
∞∏

�=n

(
1 − g

2
z̃�z�+1

)(−zn

1

)
. (L35)

The nondiagonal GLM equations (L31) now read

〈δ| K̄n + 〈δ| Kn |δ〉 〈δ| Fn + 〈δ| KnFn = 0, (L36)

and

〈δ| Kn − 〈δ| K̄n |δ〉 〈δ| F̃n − 〈δ| K̄nF̃n = 0. (L37)
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4. Inversion of the GLM equations and explicit expressions of zn, z̃n

We invert the GLM equations to obtain the kernels of Kn and K̄n solely in terms of the ones of Fn and F̃n. This in turn is used
to obtain the explicit expressions of zn, z̃n as a function of the operators Fn and F̃n.

a. Inversion of the GLM equation

In the first approach, we separate all the diagonal terms in (L36) and (L37) from the rest and respectively replace the values
of 〈δ| Kn or 〈δ| K̄n in each equation. From this, one obtains

〈δ| K̄n = −〈δ| Kn |δ〉 〈δ| Fn
1

1 + F̃nFn
− 〈δ| K̄n |δ〉 〈δ| F̃nFn

1 + F̃nFn
, (L38)

〈δ| Kn = 〈δ| K̄n |δ〉 〈δ| F̃n
1

1 + FnF̃n
− 〈δ| Kn |δ〉 〈δ| FnF̃n

1 + FnF̃n
, (L39)

where in both equations the right index of the kernels have to be strictly greater than n, meaning that, e.g., the operator
(〈δ| Kn)( j) = K (n, n + j) can be evaluated only for j > 0.

As a corollary, we can multiply Eq. (L38) to the right by F̃n to evaluate the following product, useful for the diagonal
contribution of the GLM equations:

〈δ| K̄nF̃n |δ〉 = − 〈δ| Kn |δ〉 〈δ| Fn
1

1 + F̃nFn
F̃n |δ〉 − 〈δ| K̄n |δ〉 〈δ| F̃nFn

1 + F̃nFn
F̃n|δ〉

= −〈δ|K̄n|δ〉〈δ|F̃n|δ〉 − 〈δ|Kn|δ〉〈δ| FnF̃n

1 + FnF̃n
|δ〉 + 〈δ|K̄n|δ〉〈δ| 1

1 + F̃nFn
F̃n|δ〉. (L40)

b. Exact solution for zn

We will now prove the following result:

zn = −〈δ|F̃n
1

1 + FnF̃n
|δ〉. (L41)

To prove this, we will use Eqs. (L34) and (L40); indeed,(
0

−1

)
= −〈δ|Kn|δ〉 + 〈δ|K̄n|δ〉〈δ|F̃n|δ〉 + 〈δ|K̄nF̃n|δ〉

= −〈δ|Kn|δ〉
(

1 + 〈δ| FnF̃n

1 + FnF̃n
|δ〉
)

+ 〈δ|K̄n|δ〉〈δ| 1

1 + F̃nFn
F̃n|δ〉

= −
∞∏

�=n

(1 − z̃�z�+1)

(−zn

1

)(
1 + 〈δ| FnF̃n

1 + FnF̃n
|δ〉
)

+
(

1
0

)
〈δ| 1

1 + F̃nFn
F̃n|δ〉. (L42)

Isolating the second component of the above vector we find that

∞∏
�=n

(1 − z̃�z�+1)

(
1 + 〈δ| FnF̃n

1 + FnF̃n
|δ〉
)

= 1. (L43)

Then isolating the first component of the above vector and using (L43) we find the desired result, which is

zn = −〈δ|F̃n
1

1 + FnF̃n
|δ〉. (L44)

We present two other representations of the exact expression of zn which will be useful later in Appendix L 5. Anticipating
the result of Eq. (L59) stating that Fn+1F̃n+1 = FnF̃n − Fn+1|δ〉〈δ|F̃n+1, we consider the finite difference of the resolvant and use
the Sherman-Morrison formula

1

1 + Fn+1F̃n+1
= 1

1 + FnF̃n
+ 1

1 − 〈δ|F̃n+1
1

1+FnF̃n
Fn+1|δ〉

1

1 + FnF̃n
Fn+1|δ〉〈δ|F̃n+1

1

1 + FnF̃n
. (L45)

We multiply (L45) by F̃n+1 to the left and by |δ〉 to the right and obtain

〈δ|F̃n+1
1

1 + FnF̃n
|δ〉 = (1 − 〈δ|F̃n+1

1

1 + FnF̃n
Fn+1|δ〉)〈δ|F̃n+1

1

1 + Fn+1F̃n+1
|δ〉. (L46)
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This leads to the second expression for zn,

zn = −
〈δ|F̃n

1
1+Fn−1F̃n−1

|δ〉
1 − 〈δ|F̃n

1
1+Fn−1F̃n−1

Fn|δ〉
. (L47)

A third expression can be obtained using that FnF̃n = Fn+1F̃n+1 + Fn+1|δ〉〈δ|F̃n+1 and the Sherman-Morrison formula:

1

1 + FnF̃n
= 1

1 + Fn+1F̃n+1
− 1

1 + 〈δ|F̃n+1
1

1+Fn+1F̃n+1
Fn+1|δ〉

1

1 + Fn+1F̃n+1
Fn+1|δ〉〈δ|F̃n+1

1

1 + Fn+1F̃n+1
. (L48)

We multiply (L48) by F̃n+1 to the left and by |δ〉 to the right and obtain

〈δ|F̃n+1
1

1 + FnF̃n
|δ〉 =

〈δ|F̃n+1
1

1+Fn+1F̃n+1
|δ〉

1 + 〈δ|F̃n+1
1

1+Fn+1F̃n+1
Fn+1|δ〉

. (L49)

This leads to the third expression for zn,

zn = −〈δ|F̃n
1

1 + Fn−1F̃n−1
|δ〉(1 + 〈δ|F̃n

1

1 + FnF̃n
Fn|δ〉). (L50)

c. Exact solution for z̃n

We continue by taking the right index of Eq. (L38) equal to m = n + 2:(−∑∞
�=n z�z̃�

z̃n

)
= −

∞∏
�=n

(1 − z̃�z�+1)

(−zn

1

)
〈δn| 1

1 + FnF̃n
Fn+1|δ〉 −

(
1
0

)
〈δ|F̃n

1

1 + FnF̃n
Fn+1|δ〉. (L51)

Isolating the second coefficient, we obtain

z̃n = −
〈δ| 1

1+FnF̃n
Fn+1|δ〉

1 + 〈δ| FnF̃n

1+FnF̃n
|δ〉 . (L52)

which we have not been able to further simplify. Isolating the first coefficient, we obtain

−
∞∑

�=n+1

z�z̃� = 〈δ|F̃n
1

1 + FnF̃n
Fn+1|δ〉, (L53)

which is nontrivial from the exact expressions of zn, z̃n obtained in Eqs. (L41)–(L52). As a consequence we have that

−znz̃n = 〈δ|F̃n
1

1 + FnF̃n
Fn+1|δ〉 − 〈δ|F̃n−1

1

1 + Fn−1F̃n−1
Fn|δ〉

= +〈δ|F̃n−1
1

1 + Fn−1F̃n−1
Fn|δ〉, (L54)

where + fn = fn+1 − fn is the finite difference operator.

d. Additional identities

If we combine Eqs. (L52) and (L50), we further obtain that

znz̃n = 〈δ| 1

1 + FnF̃n
Fn+1|δ〉〈δ|F̃n

1

1 + Fn−1F̃n−1
|δ〉, (L55)

which is highly nontrivial from Eq. (L54). Furthermore, Eqs. (L41) and (L52) bring the expressions for zn and z̃n on a more
symmetric setting, indeed

z̃n = −
〈δ| 1

1+FnF̃n
Fn+1|δ〉

1 + 〈δ| FnF̃n

1+FnF̃n
|δ〉

,

zn = −〈δ|F̃n
1

1 + Fn−1F̃n−1
|δ〉
(

1 + 〈δ| FnF̃n

1 + FnF̃n
|δ〉
)

. (L56)
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5. Check of the time derivative of zn

In this section we verify by an algebraic method that zn indeed verifies the system of Eqs. (10). To this aim, we require three
prelimiary results. From Eqs. (L11), we recall the time derivatives of the Fourier operators

∂t Fn = Fn − Fn+1,

∂t F̃n = F̃n−1 − F̃n. (L57)

In particular, the combination of the two for any n, m ∈ Z leads to

∂t (FnF̃m) = (Fn − Fn+1)F̃m + Fn(F̃m−1 − F̃m)

= FnF̃m−1 − Fn+1F̃m

= Fn+1|δ〉〈δ|F̃m, (L58)

which is a rank-one operator. Furthermore, from the definition of the product of the operators Fn and F̃n from Eq. (L32), we
obtain the following relation for the finite difference:

FnF̃n = Fn+1F̃n+1 + Fn+1|δ〉〈δ|F̃n+1 �⇒ +FnF̃n = −Fn+1|δ〉〈δ|F̃n+1, (L59)

where + fn = fn+1 − fn so that the finite difference is a rank-one operator. More generally this relation remains valid for
different indices

FnF̃m = Fn+1F̃m+1 + Fn+1|δ〉〈δ|F̃m+1 �⇒ +FnF̃m = −Fn+1|δ〉〈δ|F̃m+1. (L60)

The derivative of the resolvant appearing in the expression for zn is obtained as follows:

∂t
1

1 + FnF̃n
= − 1

1 + FnF̃n
∂t (FnF̃n)

1

1 + FnF̃n

= − 1

1 + FnF̃n
Fn+1|δ〉〈δ|F̃n

1

1 + FnF̃n
. (L61)

Equipped with these results, we calculate the time derivative of zn:

∂t zn = −∂t 〈δ|F̃n
1

1 + FnF̃n
|δ〉

= −〈δ|∂t F̃n
1

1 + FnF̃n
|δ〉 − 〈δ|F̃n∂t

1

1 + FnF̃n
|δ〉

= −zn − 〈δ|F̃n−1
1

1 + FnF̃n
|δ〉 + 〈δ|F̃n

1

1 + FnF̃n
Fn+1|δ〉〈δ|F̃n

1

1 + FnF̃n
|δ〉

= −zn − 〈δ|F̃n−1
1

1 + FnF̃n
|δ〉 − 〈δ|F̃n

1

1 + FnF̃n
Fn+1|δ〉zn. (L62)

Using that FnF̃n = Fn−1F̃n−1 − Fn|δ〉〈δ|F̃n alongside the Sherman-Morrison formula on the second term of the right-hand side,
we obtain

∂t zn = −zn − 〈δ|F̃n−1
1

1 + Fn−1F̃n−1 − Fn|δ〉〈δ|F̃n
|δ〉 − 〈δ|F̃n

1

1 + FnF̃n
Fn+1|δ〉zn

= −zn + zn−1 −
〈δ|F̃n−1

1
1+Fn−1F̃n−1

Fn|δ〉〈δ|F̃n
1

1+Fn−1F̃n−1
|δ〉

1 − 〈δ|F̃n
1

1+Fn−1F̃n−1
Fn|δ〉

− 〈δ|F̃n
1

1 + FnF̃n
Fn+1|δ〉zn. (L63)

Using Eq. (L47), we recognize in the right-hand side the expression of zn and we use Eq. (L54) to express the remaining
difference as the product znz̃n and obtain

∂t zn = −zn + zn−1 +
(

〈δ|F̃n−1
1

1 + Fn−1F̃n−1
Fn|δ〉 − 〈δ|F̃n

1

1 + FnF̃n
Fn+1|δ〉

)
zn

= −zn + zn−1 + z2
nz̃n. (L64)

6. Discrete Fredholm framework for the solution of the nonlinear system

The operator manipulations done so far can be related to a more fundamental object which is the Fredholm determinant of
the FnF̃n defined as

Dn = Det(I + FnF̃n)�2(N∗ ), (L65)
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and we expect the operators to live to act on �2(0,∞). Let us develop some algebraic framework for such object similarly to
what was done in Refs. [42,43] for the Fredholm determinant of products of continuous Hankel operators.

The finite difference relation (L59) implies a multiplicative recursion for the Fredholm determinant Dn. Using the matrix
determinant lemma, we have that

Dn+1 = Det(I + Fn+1F̃n+1) = Det(I + FnF̃n − Fn+1|δ〉〈δ|F̃n+1)

= Det(I + FnF̃n)(1 − 〈δ|F̃n+1
I

I + FnF̃n
Fn+1|δ〉)

= Dn

(
1 − 〈δ|F̃n+1

I

I + FnF̃n
Fn+1|δ〉

)
. (L66)

This recursion can also be written backwards:

Dn = Det(I + FnF̃n) = Det(I + Fn+1F̃n+1 + Fn+1|δ〉〈δ|F̃n+1)

= Det(I + Fn+1F̃n+1)(1 + 〈δ|F̃n+1
I

I + Fn+1F̃n+1
Fn+1|δ〉)

= Dn+1

(
1 + 〈δ|F̃n+1

I

I + Fn+1F̃n+1
Fn+1|δ〉

)
, (L67)

which implies the identity (
1 + 〈δ|F̃n+1

I

I + Fn+1F̃n+1
Fn+1|δ〉

)(
1 − 〈δ|F̃n+1

I

I + FnF̃n
Fn+1|δ〉

)
= 1. (L68)

The multiplicative recursion between implies that a suitable object to study is actually the logarithm of the Fredholm
determinant, and thus we obtain that

+ log Dn = log

(
1 − 〈δ|F̃n+1

I

I + FnF̃n
Fn+1|δ〉

)

= − log

(
1 + 〈δ|F̃n+1

I

I + Fn+1F̃n+1
Fn+1|δ〉

)
. (L69)

We also have from Eq. (L43) the relation between the logarithmic finite difference of the Fredholm determinant and the
variables {zn, z̃n} of our problem:

log
Dn+1

Dn
= + log Dn =

∞∑
�=n+1

log(1 − z̃�z�+1), (L70)

which implies that the logarithmic second-order finite difference of the Fredholm determinant reads

(+)2 log Dn = +
∞∑

�=n+1

log(1 − z̃�z�+1)

= − log(1 − z̃n+1zn+2). (L71)

Exponentiating this identity, we obtain

D2
n+1

Dn+2Dn
= 1 − z̃n+1zn+2. (L72)

This identity is akin to one obtained in the continuous setting of the weak noise theory of KPZ [1], Eq. (13). We can expect as
in Refs. [42,43] that a hierarchy of functions can be constructed which will verify a differential recursion. This precise recursion
is left for future work. The first step towards this construction would be to study the finite difference of the resolvant of FnF̃n; the
starting formulas were presented in Appendix L 4 b, and we recall them here for completeness:

1

1 + FnF̃n
= 1

1 + Fn+1F̃n+1 + Fn+1|δ〉〈δ|F̃n+1

= 1

1 + Fn+1F̃n+1
− 1

1 + 〈δ|F̃n+1
1

1+Fn+1F̃n+1
Fn+1|δ〉

1

1 + Fn+1F̃n+1
Fn+1|δ〉〈δ|F̃n+1

1

1 + Fn+1F̃n+1
(L73)
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and
1

1 + Fn+1F̃n+1
= 1

1 + FnF̃n − Fn+1|δ〉〈δ|F̃n+1

= 1

1 + FnF̃n
+ 1

1 − 〈δ|F̃n+1
1

1+FnF̃n
Fn+1|δ〉

1

1 + FnF̃n
Fn+1|δ〉〈δ|F̃n+1

1

1 + FnF̃n
. (L74)

APPENDIX M: LIMIT TO THE CLASSICAL
TODA SYSTEM

The weak noise theory of the O’Connell-Yor polymer can
be seen as a generalization of the classical Toda system [45].
This can be seen from the Lax pair of the model as in Ref. [33]
but also directly from the dynamical system (10). To see this,
consider the following Cole-Hopf-type change of variable:

zn(t ) = αehn (t )+α2t ,

z̃n(t ) = e−hn (t )−α2t [α + pn(t )]. (M1)

Note that the Jacobian of this change of variable is a constant.
Then the dynamics verified by the two fields {hn, pn} is

∂t hn = −1 + ehn−1−hn + αpn + an,

∂t pn = ehn−1−hn (α + pn) − ehn−hn+1 (α + pn+1). (M2)

Rescaling t = τ
α

, and an = αân, the action S0 of the
O’Connell-Yor polymer (B3) reads in terms of the new vari-
ables:

S0 = S[h, p] =
∫

dτ

N∑
n=1

[
α

(
1 − ehn−1(τ )−hn (τ ) − 1

2
pn(τ )2

+ pn(τ )∂τ hn(τ ) − ân pn(τ )

)

+α2∂τ hn(τ ) + (1 − ehn−1(τ )−hn(τ ) )pn(τ )

+ α3

2
− α2ân

]
. (M3)

Note that the terms proportional to α2 and α3 are, respectively,
is a total derivative and a constant, hence they do not con-
tribute to the equations of motion. Taking α → ∞ we find the
classical Toda action, and the associated equations of motion
(i.e., saddle point equations):

∂τ hn = pn + ân,

∂τ pn = ehn−1−hn − ehn−hn+1 . (M4)

This result brings a few comments:
(1) Since we have solved the weak noise theory of the

O’Connell-Yor polymer using the discrete Fredholm determi-
nant framework in Appendix L, our result is also extended for
the Toda lattice.

(2) Note that our Lax pair formulation has allowed us to
include drifts ân in the Toda system. It would be interesting to
understand their role in the dynamics.

(3) Finally, the Toda system has been related histori-
cally to the QR decomposition in linear algebra; see, e.g.,
Refs. [48,49]. It would be extremely interesting to relate
the O’Connell-Yor dynamics (10) as an extension of the

flow of the QR decomposition. Furthermore, as we expect
the existence of an integrable time discretization of the
O’Connell-Yor dynamics and thus of the Toda model, under-
standing the discrete flow could also shed some new light on
linear algebra algorithms. We leave these questions open for a
future work. Furthermore, the interpretation of the drifts an in
these algorithms have to be understood.

APPENDIX N: SMALL-TIME LIMIT OF THE FREDHOLM
DETERMINANT RESULT FOR THE O’CONNELL-YOR

POLYMER

In this Appendix we start from the formula for the gener-
ating function of Zβ

N (t ), the OY partition sum studied in [37]
which is is identical to ours if we identify β = √

ε. We study
its weak noise limit ε � 1, leading to a conjectural form for
�N (�) which agrees with the one derived in the text using
inverse scattering. The manipulations in this Appendix are
quite heuristic but they have the merit to show that the alge-
braic structure which emerges from the Fredholm determinant
is similar to the one derived in the text from first principles
by the inverse scattering method. The method applied in this
Appendix is similar to the one used in Ref. [6], Sec. X of the
Supp. Material in the context of the crossover from the large
deviations of the macroscopic fluctuation theory to the weak
noise theory of the KPZ equation.

The starting identity, given in Refs. [28] and [37], Proposi-
tion 14 reads

E

[
e
− e−βuZβ

N (t )

β2(N−1)

]
= Det(I + L)L2(C0 ), (N1)

where the kernel is written as

L(v, v′) =
∫

iR+δ

dw

2iπ
π

sin[π (v′ − w)]

eεw2t/2−wũ

eεv′2t/2−v′ũ

1

w − v

�(v′)N

�(w)N

(N2)

with C0 a contour enclosing the origin with radius r < 1/2
and r < δ < 1 − r. The measure over C0 is dv/2iπ , and we
further have the constraint that

0 < Re(w − v′) < 1. (N3)

The identification with our variables reads

zN (t ) = e−(1+ ε
2 )t ZN (t ), ZN (t ) = Zβ=√

ε

N (t ) (N4)

as well as

β = √
ε, (N5)

so that the Fredholm determinant identity yields

E[e−εN−1e−ũ+(1+ ε
2 )t zN (t )] = Det(I + L)L2(C0 ). (N6)
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To complete our identification, we further introduce the
relation

εN−1e−ũ+(1+ ε
2 ) = �

ε
. (N7)

Endowed with the identification, we now transform the
Fredholm identity (N6) to derive the large deviation function
�N (�). The first step is the introduction of a factorization of
the kernel L(v, v′) as

L(v, v′) =
∫

iR+δ

dw

2iπ
A(v,w)Ã(w, v′), (N8)

where have defined the kernels

A(v,w) = 1

v − w
,

Ã(w, v′) = π

sin[π (w − v′)]
eεw2t/2−wũ

eεv′2t/2−v′ũ

�(v′)N

�(w)N
, (N9)

Introducing the identity

π

sin(πs)
zs =

∫
R

dr
z

z + e−r
e−sr, 0 < �(s) < 1, (N10)

which we apply using

s = w − v′, z = e−ũ. (N11)

This allows us to rewrite the kernel Ã(w, v′) and to factorize
it as

Ã(w, v′) =
∫
R

dr
1

1 + eũ−r

eεw2t/2−wr

eεv′2t/2−v′r

�(v′)N

�(w)N

=
∫
R

dr σ (r)A1(w, r)A2(r, v′), (N12)

where we have defined

σ (r) = 1

1 + eũ−r
, A1(w, r) = 1

�(w)N
eεw2t/2−wr,

A2(r, v′) = e−εv′2t/2+v′r�(v′)N . (N13)

To summarize, the Fredholm manipulations we have done
lead to the factorization

Det(1 + L)L2(C0 ) = Det(1 + AA1σA2)L2(C0 )

= Det(1 + σA2AA1)L2(R), (N14)

where from the first to the second line we have used
Sylvester’s identity Det(I + AB) = Det(I + BA). This last
Fredholm determinant has the typical structure for which the
first cumulant method, developed in [64–66] to study the
relevant asymptotics (here small ε), applies. This allows us
to formally interpret this Fredholm as an expectation value of
a determinantal point process {a�}��1 which correlations are
controlled by the kernel A2AA1. Hence

Det(1 + L)L2(C0 ) = E

[+∞∏
�=1

[1 − σ (a�)]

]

= E

[+∞∏
�=1

e−ϕ(a� )

]
, (N15)

where we have introduced e−ϕ = 1 − σ to interpret (N15) as
a linear statistics of the point process over the observable

ϕ(r) = log(1 + er−ũ) = −Li1(−er−ũ). (N16)

The first cumulant approximation applied to the expecta-
tion value (N15) asserts [64], Sec. 6 that as some parameter
goes to infinity (here it will be 1/ε; see below), we expect the
point process to self-average,

Det(1 + L)L2(C0 ) = Det(1 + σA2AA1)L2(R)

= E

[+∞∏
�=1

e−ϕ(a� )

]
∼ eTr(ϕA2AA1 ). (N17)

The quantity of interest only involves the diagonal part of the
kernel A2AA1 and we have to evaluate

Tr(ϕA2AA1) =
∫
R

dr
∫

iR+δ

dw

2iπ

∫
C0

dv′

2iπ

× Li1(−er−ũ)eεw2t/2−εv′2t/2 �(v′)N

�(w)N

e−(w−v′ )r

w − v′ ,

(N18)

taking into account that the measure on the variables v′ is dv′
2iπ .

Since 0 < Re(w − v′) < 1, we can proceed to an integration
by part with respect to the integration variable r to obtain

Tr(ϕA2AA1) =
∫
R

dr
∫

iR+δ

dw

2iπ

∫
C0

dv′

2iπ

× Li2(−er−ũ)eεw2t/2−εv′2t/2 �(v′)N

�(w)N
e−(w−v′ )r .

(N19)

The function Li2 denotes the dilogarithm.
As a summary, after replacing the variable ũ by the identi-

fication (N7), we obtain that

E[e− �
ε

zN (1)] ∼ e−Tr(−ϕA2AA1 ), (N20)

and upon taking t = 1 in the kernel, we have

−Tr(ϕA2AA1) = −
∫
R

dr
∫

iR+δ

dw

2iπ

∫
C0

dv′

2iπ

× Li2
(− e−(1+ ε

2 )ε−N�er
)eεw2/2−wr

eεv′2/2−v′r

�(v′)N

�(w)N

= −
∫
R

dr Li2(−�er )I (r + 1 + ε/2 + N log ε)

(N21)

from the first to the second line, we have shifted the variable r
to absorb the additional factors in the dilogarithm. We further
perform the change of variable

w = w̃

ε
, v′ = ṽ′

ε
(N22)

and subsequently drop the tilde. Upon this change, the integral
I reads

I (R = r + 1 + ε/2 + N log ε)

= 1

ε2

∫
iR+δ′

dw

2iπ

∫
C′

0

dv′

2iπ
e

1
ε

(w2/2−wR)

e
1
ε

(v′2/2−v′R)

�(v′/ε)N

�(w/ε)N
, (N23)
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which we formally write in the following form:

I (R = r + 1 + ε/2 + N log ε)

= 1

ε2

∫
iR+δ′

dw

2iπ

∫
C′

0

dv′

2iπ
e

1
ε
�(w)

e
1
ε
�(v′ )

. (N24)

Since the parameter ε is taken to be small, it is natural to
introduce the function �(w) to obtain a rate function. Its
expression reads

�(w) = w2

2
− wR − εN log �

(
w

ε

)
. (N25)

We now evaluate the two integrals in I using the saddle point
method controlled by the rate 1/ε. From the asymptotics of
the � function

log �(z) = z log z − z − 1

2
log z + 1

2
log 2π

+ 1

12z
− 1

360z3
+ O(1/z5) (N26)

alongside the expression R = r + 1 + ε/2 + N log ε one
obtains in the limit ε → 0

�(w) = w2

2
+ (N − 1 − r)w − Nw log(w)

+ 1

2
ε(N log(w) − N log(ε) − N log(2π ) − w)

+ O(ε2). (N27)

At leading order, we re-write �(w)

1

ε
�(w) = 1

ε
(φ(w) − rw) − 1

2
w + N

2
log(w)

− N

2
log(2πε) + O(ε) (N28)

and obtain the rate function φ(w) as

φ(w) = w2

2
+ (N − 1)w − Nw log w. (N29)

Its derivative reads

φ′(w) = w − 1 − N log w. (N30)

The saddle point equation is therefore

φ′(w) = r ⇐⇒ er = w−N ew−1. (N31)

At the saddle point for w and v′ the subdominant terms as
well as the constants compensates between the two integrals
in (N24) and we have the following estimate:

I (R) � 1

2iπε

1

φ′′[w(r)]
, (N32)

so that

−Tr(ϕA2AA1) = − 1

2iπε

∫
γ

dr Li2(−�er )
1

φ′′[w(r)]
.

(N33)

To make this saddle point easily attainable, one way is to
deform the integration contour of r which is not R anymore
but the image of (N31) as v′ varies along C′

0, which we call γ .
We have also assumed that the integration contour of w could
be deformed to be folded around C′

0.
It is possible to further simplify the estimate of the first

cumulant in (N33) by proceeding to a change of variable r →
w using the saddle point equation φ′(w(r)) = r. The Jacobian
of this change of variable reads

φ′′[w(r)]
dw

dr
= 1,

dr

φ′′[w(r)]
= dw. (N34)

To summarize, the first cumulant of the Fredholm determinant
reads in the small ε-limit

−Tr(ϕA2AA1) = −1

ε

∫
C′

0

dw

2iπ
Li2(−�w−N ew−1), (N35)

and our calculation have given us the following large deviation
principle:

E[e− �
ε

zN ] ∼ e− 1
ε
�(�), (N36)

where the final large deviation function reads

�(�) = −
∫

C′
0

dw

2iπ
Li2(−�w−N ew−1). (N37)

This agrees with the result of the main text (28) using the
inverse scattering method.
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