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Sublattice-selective percolation on bipartite planar lattices
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In conventional site percolation, all lattice sites are occupied with the same probability. For a bipartite
lattice, sublattice-selective percolation instead involves two independent occupation probabilities, depending
on the sublattice to which a given site belongs. Here, we determine the corresponding phase diagram for the
two-dimensional square and Lieb lattices from quantifying the parameter regime where a percolating cluster
persists for sublattice-selective percolation. For this purpose, we present an adapted Newman-Ziff algorithm.
We also consider the critical exponents at the percolation transition, confirming previous Monte Carlo and
renormalization-group findings that suggest sublattice-selective percolation belongs to the same universality
class as conventional site percolation. To further strengthen this conclusion, we finally treat sublattice-selective
percolation on the Bethe lattice (infinite Cayley tree) by an exact solution.
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I. INTRODUCTION

Percolation provides a remarkably simple route to non-
trivial critical phenomena, which have a broad range of
applications in many fields of science and engineering [1,2].
In its most basic formulation, one considers an infinite pe-
riodic lattice, occupying each lattice site independently with
equal probability p. The occupied sites form contiguous clus-
ters of connected lattice sites, which turn out to exhibit several
interesting properties. In particular, an infinite, spanning (per-
colating) cluster of connected occupied sites emerges for
sufficiently large values of p beyond a particular threshold
value pc. For example, considering a two-dimensional square
lattice, the site percolation threshold psq

c = 0.592 746 . . . [3,4]
is known from computational studies to rather high accuracy
– the exact value being, however, unknown to date. In the
vicinity of the percolation threshold, various characteristics
of the cluster distribution exhibit nontrivial scaling behavior:
For p � pc, the strength P of the percolating cluster, i.e., the
probability that a given site belongs to the percolating cluster,
increases with p by an asymptotic power law,

P ∝ (p − pc)β, (1)

resembling the scaling behavior of an order parameter near a
thermal ordering phase transition. Upon approaching pc, the
correlation length ξ , defined as the mean distance between two
sites belonging to the same finite cluster, increases as

ξ ∝ |p − pc|−ν, (2)

and the mean number of sites of a finite cluster S increases as

S ∝ |p − pc|−γ , (3)

corresponding to the order parameter susceptibility in thermal
ordering transitions. The scaling exponents describe the crit-
ical behavior at the percolation transition of the above state
functions, and they are considered universal in the sense that
within a given dimension d they do not depend on details of

the lattice structure (e.g., square or triangular in d = 2) or the
kind of percolation problem considered (site, bond, or also
in the continuum) [2]. For d = 2 the exponents are known
as β = 5/36 = 0.138̄, ν = 4/3, and γ = 43/18 = 2.38̄, re-
spectively [2,5]. Furthermore, at the percolation threshold, the
infinite cluster has a fractal dimension d f = d − β/ν, e.g.,
d f = 91/48 = 1.895 83̄ for the two-dimensional case.

In physical systems the lattice sites considered above may
represent objects such as atoms in a solid-state crystal, an
empty site being related to a defect, e.g., an impurity atom.
In many condensed-matter systems, the underlying lattice
structure shows further characteristics, such as being bipartite,
i.e., the total set of lattice sites can be decomposed into two
disjoint sublattices, denoted A and B in the following, with
nearest-neighbor sites always belonging to different sublat-
tices (cf. Fig. 1 for two examples). If, for example in a binary
system, the objects occupying the A and B sublattice are of
different species, it becomes feasible that the susceptibility
to a defect differs on the A and B sublattice. In the context
of site percolation, such a circumstance can be described by
assigning two different occupation probabilities pA and pB to
sites from sublattices A and B, respectively. Such sublattice-
selective percolation was introduced by Scholl and Binder in
Ref. [6], motivated by the properties of diluted magnetic com-
pounds, with a special focus towards experimental findings in
three-dimensional spinel structures. For the latter case, they
performed Monte Carlo simulations to extract the phase dia-
gram in terms of percolating versus nonpercolating regimes
of parameters (pA, pB), and they provided numerical evidence
that the critical exponents of sublattice-selective percolation
are those of the universality class for conventional site perco-
lation (where pA = pB). Reference [6] also considered several
other lattice structures, both in three and two dimensions,
focusing on the extreme case in which one sublattice is fully
occupied, e.g., pB = 1. In various cases, the critical value
pA,c for pA can then be expressed in terms of the perco-
lation threshold of certain related conventional percolation
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problems. For example, for a square lattice with pB = 1,
the threshold value pA,c equals the site percolation threshold
for a square lattice with next-nearest-neighbor connectivity.
Using the concept of matching lattices, this value can fur-
thermore be shown to be equal to 1 − psq

c = 0.407 253 . . .

[7]. For pB = 1, the percolation threshold for pA thus falls
below the value of psq

c , as expected, since half of the lat-
tice is already occupied for pB = 1. Due to the equivalence
between the two sublattices of the square lattice, the prob-
lem is symmetric under the exchange of pA and pB in this
case. In particular, pB,c = 1 − psq

c along the line pA = 1, and
along the symmetric line pA = pB, the critical value psq

c is
recovered. A quantification of the full boundary line in the
(pA, pB)-plane of the percolating regime, however, was not
performed in Ref. [6] for the basic square lattice case. Later,
approximate renormalization-group (RG) calculations were
used to estimate this boundary line [8] and to address the ques-
tion of universality (the method was furthermore employed
to study sublattice-selective percolation on other lattices and
sublattice geometries [9,10]). However, while the RG ap-
proach finds that sublattice-selective percolation is indeed
controlled by the same fixed point as the uniform case, its
numerical accuracy is limited. For example, in the uniform
case a best estimate of 0.610 was obtained for psq

c [8]. Re-
lated work, using a decoupling approximation for an effective
field theory of the Ising model with sublattice-selective de-
pletion, yields results of a similar accuracy [11,12]. Since
those early works on sublattice-selective percolation, several
methodological advances have been achieved, such as the
Newman-Ziff algorithm [13,14], which allows for efficient
high-accuracy numerical studies of conventional lattice-based
percolation problems. It is thus feasible now to also perform
a systematic and accurate exploration of sublattice-selective
percolation on basic planar lattices, such as the square lattice
using such advanced algorithms.

Here, we perform such an analysis using an adapted ver-
sion of the Newman-Ziff algorithm [13,14], which we detail
further below. This algorithm allows for efficient Monte Carlo
studies of the phase diagram, like the original algorithm does
for conventional percolation problems on periodic lattices. In
addition to the square lattice, we examine the case of the
planar Lieb lattice, which is also bipartite, and for which con-
ventional site-percolation has been considered recently [15].
This lattice, which is of interest in the context of flat band
physics, ferrimagnetism, and topological states, is a decorated
square lattice and bipartite; cf. Fig. 1. However, in contrast
to the square lattice, the two sublattices A and B of the Lieb
lattice are not equivalent, and the phase diagram of sublattice-
selective percolation is nonsymmetric in the (pA, pB)-plane.
Furthermore, we use finite-size scaling in order to estimate
the critical exponents for sublattice-selective percolation on
the square lattice. Our results support previous conclusions
[6,8] regarding the universal properties.

The remainder of this article is organized as follows: In
Sec. II, we introduce an adapted Newman-Ziff algorithm for
efficient computational studies of sublattice-selective percola-
tion. Then, we report our results for the square and Lieb lattice
in Secs. III and IV, respectively. Finally, in Sec. V, we study
sublattice-selective percolation on the Bethe lattice, which in
various aspects corresponds to infinite dimension, d = ∞, for

pA pB

(a) pA pB
(b)

FIG. 1. Illustration of the square (a) and Lieb lattice (b). Sites
from sublattices A and B are shown in gray (white). The square lattice
is shown as a checkerboard, while the nearest-neighbor bonds of the
Lieb lattice are shown explicitly.

coordination numbers z � 3, cf. Fig. 2 for an illustration for
z = 3. We determine the critical exponents analytically for the
cases z = 2 (corresponding to the chain, d = 1) and z = 3,
thereby demonstrating explicitly the anticipated universality.
Our final conclusions are given in Sec. VI.

II. BIPARTITE NEWMAN-ZIFF ALGORITHM

The Newman-Ziff algorithm [13,14] performs Monte Carlo
sampling of the percolation problem on finite lattices of lin-
ear size L and with N ∝ L2 lattice sites in two dimensions.
For a given system size, one measures appropriate finite-size
estimators QL for any of the state functions Q, such as the
quantities P, ξ , and S introduced above. In the following, we
consider finite systems with periodic boundaries, and a cluster
is defined to be percolating if it completely wraps around
in either direction. The main idea behind the Newman-Ziff
algorithm can be loosely described as first calculating a given
state function QL in the microcanonical ensemble and then
transforming to the canonical ensemble. In the microcanonical
ensemble for a bipartite lattice, the state function is a function
QL(nA, nB) of the number of occupied sites nA and nB for each
sublattice, while in the canonical ensemble it is a function of
the probabilities, QL(pA, pB). This is an analogy to thermody-
namics, where nA corresponds to the energy of the system and
pA corresponds to the temperature.

To explore the phase diagram, we take cuts for fixed values
of pB, which means populating each site on the B sublat-
tice with probability pB and then successively and randomly
adding sites to the A sublattice until it is full, thus calculat-
ing QL(nA, pB) for all values of nA. Then the transformation
to the canonical ensemble, i.e., QL(nA, pB) → QL(pA, pB), is

pA

pB

FIG. 2. Illustration of the Bethe lattice for z = 3. Sites from
sublattices A and B are shown in gray (white). Note that for the
infinite lattice, all sites are in fact topologically equivalent.
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performed for the A sublattice only. For a given value of pA,
the probability B(NA, nA, pA) that there are exactly nA sites
occupied from the total number of NA sites of the A sublattice
is given by

B(NA, nA, pA) =
(

NA

nA

)
pnA

A (1 − pA)NA−nA , (4)

since choosing the occupied sites is a Bernoulli process.
Weighing the (with respect to the A sublattice) microcanon-
ical state function QL(nA, pB) by the probability in Eq. (4)
and summing over all values of nA gives the canonical state
function QL(pA, pB),

QL(pA, pB) =
NA∑

nA=0

B(NA, nA, pA)QL(nA, pB), (5)

which is essentially a convolution with the binomial distribu-
tion. This transformation is again analogous to thermodynam-
ics, where the transformation is performed via the Boltzmann
distribution instead of the binomial distribution.

The efficiency of the Newman-Ziff algorithm derives from
the fact that the number of samples for pA is only limited
by the cost of the transformation in Eq. (5) and that this
transformation is linear in the state function QL. Hence, only
the average of the microcanonical state function after many
Monte Carlo steps has to be transformed explicitly,

〈QL(pA, pB)〉 =
NA∑

nA=0

B(NA, nA, pA)〈QL(nA, pB)〉. (6)

The algorithm thus consists of three main steps. First, every
site on the B sublattice is occupied with a given probability
pB, as seen in the example of Fig. 3(a). Since the lattice is
bipartite, there are no clusters of size greater that single sites
at this point.

Second, sites on the A sublattice are randomly occupied
according to a random permutation of the sublattice indices.
Every time a site is occupied, one checks each nearest neigh-
bor one by one, and if the neighbor is occupied and belongs to
a different cluster, these are merged using a union-find routine,
as in the original Newman-Ziff algorithm. Every time a site is
newly occupied, the state functions QL(nA, pB) are added to
the mean 〈QL(nA, pB)〉. In Fig. 3(b), the state in which the
cluster first percolates (with periodic boundary conditions)
is shown. In Fig. 3(c), the lattice is shown after adding 75
occupied sites, and only a few small clusters besides the
percolating cluster remain.

Third, all the state functions are transformed according to
Eq. (6). The binomial coefficients are computed recursively
[14], as

B(NA, nA, pA) =
{

B(NA, nA − 1, pA) NA−nA+1
nA

pA

p̄A
,

B(NA, nA + 1, pA) nA+1
NA−nA

p̄A

pA

for nA > pANA and nA < pANA, respectively, with p̄A = 1 −
pA. In practice, B(NA, nA, pA) is negligible for many values of
nA, so only seven standard deviations

√
pA(1 − pA)NA around

the maximum value pANA are actually calculated, which only
excludes B(NA, nA, pA) � 10−10.

In the actual implementation, the lattice is represented by
an integer array of size N . If a site is occupied, it is part of

(a)

(b)

(c)

FIG. 3. Illustration of the sublattice-selective percolation process
for an L = 32 square lattice and periodic boundary conditions. Oc-
cupied (empty) sites are shown in gray (white), and the percolating
cluster is in black. Starting from a random occupation of the B
sublattice sites with probability pB = 0.7, the A sublattice is empty
in (a), filled by nA = 225 sites in (b), and nA = 300 sites in (c).

a tree, and each tree corresponds to one cluster. A cluster of
size s has one root, which has an array entry of value −s,
while the other sites of the cluster have pointers (indices of
the array) which eventually lead to the root. The idea behind
the aforementioned union-find algorithm is that the union
operation merges two trees and the find operation returns the
root of a given occupied site. So if there are two neighboring
occupied sites on the lattice, the roots can be compared via
find, and if the roots are different, the trees will be merged
via union. Figure 4 shows an example of this procedure. The
light gray site in Fig. 4(a) has been newly added, making it a
tree just consisting of a root. Next, it is merged with the right
cluster in Fig. 4(b), making a larger cluster of size s = 5. In
the next step in Fig. 4(c), the roots of the light gray site and the
site to the left of it are compared via the find operation, and the
roots are at different lattice sites. Thus, the union operation is
invoked, and the root of the left tree then points to the root of
the right tree and the cluster sizes are added. Now every site in
the cluster returns the same root with find. There are a couple
of methods to make this procedure more efficient: First, the
so-called path compression is the idea that the find operation
is most efficient when the path to the root involves as few
pointers as possible. So every time the find operation follows
a path from some site to the root, all the pointers on its way
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-1

-4 -4

(a)

-4 -5

(b)

-9

(c)

FIG. 4. Example of adding a newly occupied site on a square
lattice. Gray sites are occupied, and the light gray site is newly
occupied. The roots are marked by negative numbers, and the arrows
symbolize pointers.

are set to point directly to the root—in practice, this makes the
trees never deeper than a few generations. Second, a smaller
cluster is always appended to a bigger one. The find operation
for the cluster that is appended takes one step longer, hence
by appending the smaller cluster, the average number of steps
is again minimized.

In terms of computational complexity, using approaches
based on alternative methods, such as the Hoshen-Kopelman
algorithm [16], one would have to build all clusters for every
value of pA from scratch, and the time complexity would be
O(N2

A ) for each realization for a given value of pB. In contrast,
the Newman-Ziff algorithm takes time of order O(NA + MT )
to calculate the NA samples of QL(nA, pB) and transform
from the microcanonical to the canonical ensemble, where
MT is the number of steps needed to calculate the sum and
binomial distribution in the transformation of Eq. (6). For the
system sizes used here, MT and thus the computational time
for the transformation are comparably small. For a detailed
discussion of the computational advantage of the Newman-
Ziff algorithm, we refer the reader to Ref. [14].

III. SQUARE LATTICE

We used the bipartite Newman-Ziff algorithm algorithm to
examine sublattice-selective percolation on the square lattice,
and we report our numerical results in this section.

A. Percolation threshold

We first consider the determination of the percolation
threshold line for sublattice-selective percolation on the
square lattice. As noted in the previous section, for this pur-
pose we consider a set of fixed values of pB, and then we
use the bipartite Newman-Ziff algorithm to obtain QL(pA, pB)
for essentially any value of pA. Denoting by RL the probabil-
ity for the existence of a percolating cluster (and estimated

0.4 0.6pA

0

R∞

1

R
L

pB = 1 pB = psq
c

16
32
64
128
256
512

FIG. 5. Numerical results for the dependence of RL as a function
of pA for different values of L for sublattice-selective percolation
on the square lattice for pB = 1 (left curves) and pB = psq

c (right
curves). The horizontal line indicates the exact value of R∞ at psq

c

from Ref. [14].

by the Monte Carlo mean), this state function increases
monotonously from 0 to 1 smoothly upon increasing pA for
finite L. This behavior is shown for two different values of pB

in Fig. 5, considering pB = psq
c and pB = 1, respectively.

In the infinite system limit, this quantity—denoted
R∞(pA)—exhibits a jump at the percolation threshold, and we
can obtain an estimate pA,c(L) of pA,c at the specified value
of pB from the condition RL(pA,c(L)) = C, where C ∈ (0, 1)
is kept fixed upon varying L. The speed of convergence of
pA,c(L) towards pA,c varies for different choices of C. For
conventional site percolation, Newman and Ziff [14] suggest
taking C equal to the exactly known value of R∞ at psq

c ,
which equals 0.6904 . . . , and finding an algebraic asymptotic
convergence,

pA,c(L) − pA,c ∝ L−X , (7)

conjecturing that X = 2 + 1/ν, which equals 2.75 for d = 2,
leading thus to fast convergence. From our simulations, we
observe no significant change in the threshold value of R∞ for
the sublattice-selective case (cf., e.g., the crossing point values
in Fig. 5). A formal proof of this statement would, however,
still be valuable. In any case, we always fixed C to the above
value in order to fit pA,c(L) to the finite-size scaling in Eq. (7).

In particular, we performed finite-size calculations for sys-
tem sizes between L = 16 and 512, doubling consecutive
values of L. For each fixed value of pB, we scaled the number
of Monte Carlo steps [each corresponding to an initial con-
figuration as in Fig. 3(a), followed by successively increasing
nA] with L−3/2, taking 107 steps at L = 16. This procedure en-
sures a similar absolute statistical uncertainty on the estimator
for RL(pA,c(L)) upon varying L, as it does for conventional
percolation [14]: For a given probability pA, the state function
RL(pA) is either 1 or 0, so the uncertainty comes from the
binomial distribution,

σRL =
√

RL(pA)[1 − RL(pA)]

M
, (8)

where M is the number of Monte Carlo steps. As the width of
the critical region decreases as L−1/ν , the gradient dRL/d pA

of RL(pA) in the critical region increases as L1/ν . Together
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TABLE I. Numerical results obtained for sublattice-selective
percolation on the square lattice using the bipartite Newman-Ziff
algorithm.

pB pA,c X ν

psq
c 0.5927483(16) 2.80(10) 1.3318(4)

0.65 0.5431265(18) 2.66(13) 1.331(4)
0.7 0.5095937(13) 2.49(7) 1.3290(7)
0.75 0.4826738(13) 2.42(7) 1.3340(6)
0.8 0.46082758(35) 2.561(18) 1.3352(10)
0.85 0.4430110(13) 2.60(6) 1.3368(12)
0.9 0.4284801(17) 2.56(8) 1.33241(28)
0.95 0.4166941(8) 2.598(34) 1.3321(4)
1 0.4072524(6) 2.556(21) 1.3337(5)

with Eq. (8), the uncertainty on pA,c thus scales as σpA,c ∼
L−1/νσRL ∼ L−1/νM−1/2. To keep σpA,c constant, M thus has
to scale with L−2/ν . For d = 2, the universal value is ν = 4/3,
and this value will also be used for this uncertainty calculation
here (this has no impact on the estimation of the critical expo-
nents as performed in the next section—there will indeed also
be no evidence that ν 
= 4/3). Overall, the whole procedure
was repeated 100 times for a given pB in order to obtain the
statistical error on all other estimated state functions. For the
final transformation from nA to pA, we used a narrow pA grid
with a spacing of order 10−4.

Based on the numerical data, we obtain the values of pA,c

for several values of pB reported in Table I. Also included in
this table are the values of the exponent X that we obtain based
on these fits [the values of χ2/d.o.f. (degree of freedom) are
of O(1)]. Overall, the estimated values of X exhibit some scat-
ter, but no significant systematic deviation from the proposed
value for the conventional case [14]. The numerical results
for pA,c that we obtain for the specific cases of pB = psq

c

and pB = 1 are in accord with the previously reported values,
ensuring the overall accuracy of our approach. Based on the
numerical values of pA,c, and using the symmetry under the
exchange of pA and pB, we obtain the phase diagram for
sublattice-selective percolation on the square lattice shown in
Fig. 6.

B. Critical exponents

In addition to the percolation threshold, we estimated the
critical exponents for sublattice-selective percolation on the
square lattice using appropriate finite-size scaling analysis [2].
We first consider the critical exponent ν, which can best be
estimated from the finite-size scaling of the gradient R′

L =
dRL/d pA of RL(pA) near the percolation threshold,

R′
L ∝ L1/ν . (9)

We approximate R′
L from the slope of a linear regression

within a pA range of 10−3 around the estimated value of
pA,c. The thus obtained estimates for ν are given in Table I,
and Fig. 7 shows best fits to the numerical data for different
values of pB. The values that we obtain for ν scatter with no
systematic dependence of pB, and taking their average gives
ν = 1.3352(11), which is in good agreement with ν = 4/3 for
the d = 2 universality class. We also find no indication that

0 1pA

0

1

p
B

p
sq c1
−

p
sq c

psq
c

1 − psq
c

FIG. 6. Phase diagram for sublattice-selective percolation on the
square lattice, as obtained from the bipartite Newman-Ziff algorithm.
The dotted regime is percolating.

the critical exponents β and γ differ from their conventional
values for d = 2. To access these exponents, we consider the
finite-size scaling forms

PL = L−β/νFP[L1/ν (pA − pA,c)] (10)

for the estimate PL of the strength of the percolating cluster in
terms of a scaling function FP, and similarly

SL = Lγ /νFS[L1/ν (pA − pA,c)] (11)

for the mean number S of finite clusters. From appropriate
data-collapse plots, one can adjust the values of β and γ ,
based on our previous estimates for ν and pA,c, in order to
obtain the best collapse within the critical region. Using such
an analysis, we find that the best-fit values are in fact in
accord with the known values for conventional percolation in
d = 2. This is illustrated for several values of pB in Fig. 8. We
thus conclude from our finite-size analysis that the critical ex-
ponents for sublattice-selective percolation are in agreement
with the universal values for d = 2 percolation, supporting
previous findings [6,8].

IV. LIEB LATTICE

As a further example, we examine sublattice-selective per-
colation on the Lieb lattice, for which the case of uniform
site percolation (pA = pB) has recently been considered [15].

0 64 512L

0

20

40

60

R
′ L

FIG. 7. Fits of the numerical data for R′
L to the finite-size scaling

form in Eq. (9) for different indicated values of pB.
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FIG. 8. Data collapse plots for finite-size data labeled by L for P and S for different values of pB using the critical exponents for d = 2
percolation.

Since the Lieb lattice is in fact a decorated square lattice,
sublattice-selective percolation is equivalent in this case to
mixed bond-site percolation on the square lattice, with pA (pB)
specifying the bond (site) occupation probability. In partic-
ular, in the limit pA = 1 (pB = 1), we obtain conventional
pure site (bond) percolation on the square lattice, and thus
pB,c = psq

c (pA,c = 1/2) along these lines, respectively (here,
we used the fact that the percolation threshold 1/2 for bond
percolation on the square lattice has been exactly determined
[17]). This shows explicitly that due to the inequivalence of
the two sublattices of the Lieb lattice, the phase diagram is
not symmetric in the (pA, pB)-plane. In Ref. [18], the general
case of mixed bond-site percolation is considered for various
lattices, including the square lattice (mixed bond-site percola-
tion on several lattices is also considered in Refs. [19–22]).
The phase diagram was numerically estimated, but only to
comparably low accuracy, so that here we employed the
bipartite Newman-Ziff algorithm in order to obtain more ac-
curate values for the threshold line for sublattice-selective
percolation on the Lieb lattice. The numerical results are
provided in Table II, and the corresponding phase diagram
is shown in Fig. 9. Comparing the value of pA,c obtained
for pB = 1 to the exact value (1/2) confirms the accuracy

of our results. For estimating these numbers, C was chosen
identical to the square lattice value from the previous sec-
tion, resulting in similarly fast convergence. Additionally, the
previous estimate [15] for the conventional (pA = pB) site
percolation threshold pLieb

c on the Lieb lattice was improved
using the Newman-Ziff algorithm. Along this line, we find

TABLE II. Numerical results obtained for sublattice-selective
percolation on the Lieb lattice using the bipartite Newman-Ziff
algorithm.

pB pA,c

0.6 0.983336(4)
0.65 0.8809405(10)
0.7 0.7965947(21)
0.75 0.7261839(20)
0.8 0.6666702(16)
0.85 0.6157944(18)
0.9 0.5718775(14)
0.95 0.5336113(21)
1 0.4999987(19)
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FIG. 9. Phase diagram for sublattice-selective percolation on the
Lieb lattice, as obtained from the bipartite Newman-Ziff algorithm.
The dotted regime is percolating.

that C = 0.68 yields better convergence (however, even then
the exponent X ≈ 1/ν is significantly lower). The obtained
value pLieb

c = 0.739 712 0(17) is consistent with the previous
best estimate [15].

V. BETHE LATTICE

To complement the above numerical study by exact analyti-
cal results, we finally consider sublattice-selective percolation
on the Bethe lattice. We first consider the case z = 2, essen-
tially corresponding to the one-dimensional chain.

A. Percolation on a chain (z = 2)

In this case, percolation occurs only at the singular
point (pA, pB) = (1, 1). To extract the critical exponents
upon approaching the percolation point along different lines
within the (pA, pB)-plane, we next examine appropriate state
functions.

A cluster containing s occupied sites with one empty site to
either side is called an s-cluster. The number of s-clusters per
lattice site ns is a useful state function. Another way of looking
at ns is that it is the probability of an arbitrary site to be the
left-end site of an s-cluster. This is the case if the site to the
left is empty, then s consecutive sites are occupied, followed
by another empty site. For pA = pB = p, the state function
would be ns = (1 − p)p2(1 − p), but for pA 
= pB one has to
consider whether the left end site is from the A or B sublattice,
and whether s is even or odd. The probability that an arbitrary
site is from the A or B sublattice is equal to 1/2, and from
thereon it is a matter of counting the A- and B-sublattice sites
in the cluster to find

ns(pA, pB) = 1
2 (( p̄B)2 pA + ( p̄A)2 pB)p(s−1)/2

A p(s−1)/2
B (12)

for odd s, and

ns(pA, pB) = p̄A p̄B ps/2
A ps/2

B (13)

for even s, where p̄A = 1 − pA, p̄B = 1 − pB. The probability
that an arbitrary site is part of an s-cluster is ns(pA, pB)s, so
the probability that an arbitrary site is part of any cluster is

given by

∞∑
s=1

ns(pA, pB)s = 1

2
(pA + pB), (14)

i.e., equivalent to the probability that an arbitrary site is occu-
pied. From ns, the mean cluster size S can be evaluated, which
equals the ratio of the second divided by the first moment of
the cluster size distribution,

S(pA, pB) =
∑∞

s=1 ns(pA, pB)s2∑∞
s=1 ns(pA, pB)s

= p2
A pB + pA p2

B + 4pA pB + pA + pB

pA + pB − p2
A pB − pA p2

B

, (15)

which approaches 1 for (pA, pB) → (0, 0) and diverges upon
approaching (1,1). We obtain the critical exponent γ from
analyzing the singular behavior of S near (1,1). Fixing pB = 1,
the asymptotic singularity is obtained as

S(pA, 1) = p2
A + 6pA + 1

1 − p2
A

∼ 4(1 − pA)−1 for pA ∼ 1, (16)

so that γ = 1. This asymptotic scaling also results upon ap-
proaching (1,1) along any other line. Namely, for pA = 1 −
r cos(φ), pB = 1 − r sin(φ), with φ ∈ [0, π/2], the asymp-
totic behavior S ∼ 4/{[cos(φ) + sin(φ)] r} for r → 0 is
obtained.

To obtain the correlation length ξ , we first calculate the
correlation function (pair connectivity function) g(r), which
equals the mean number of sites that are in the same cluster as
a given occupied site, at a distance r apart. Thus, there have
to be r − 1 consecutive occupied sites in between. For pA =
pB = p this is just 2pr (2 for both directions), but for pA 
= pB

the parity of r and the starting site have to be accounted for.
The starting site is on the A sublattice with probability pA

pA+pB

and on the B sublattice with probability pB

pA+pB
. Accounting for

the parity of r and the special case r = 0, we obtain

g(r) =

⎧⎪⎨
⎪⎩

1, r = 0,
4

pA+pB
p(r+1)/2

A p(r+1)/2
B , r odd,

2pr/2
A pr/2

B , r even.

(17)

The correlation length ξ quantifies the lengthscale of the cor-
relation function, and can also be viewed as the radius of the
clusters that give the main contribution to the mean cluster
size S [2]. The formal definition is

ξ 2 =
∑

r r2g(r)∑
r g(r)

. (18)

A well-known identity in conventional percolation is that the
sum over all g(r) equals the mean cluster size, and this indeed
also follows for sublattice-selective percolation, as we obtain

∞∑
r=0

g(r) = S. (19)

The numerator in Eq. (18) can also be calculated, and for
pB = 1 it scales as (1 − pA)−3 near the percolation threshold.
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Since 1/S scales as (1 − pA), the singularity of ξ is thus
obtained as

ξ 2(pA, 1) =
∑

r r2g(r)

S
∼ (1 − pA)−2 for pA ∼ 1, (20)

and we extract the critical exponent ν = 1 for the divergence
of ξ near the percolation threshold.

The third state function that we consider is the strength of
the percolating cluster P. For the chain this function is trivially
1 for pA = pB = 1 and 0 otherwise. P is thus constant with a
discontinuity at the percolation threshold, and β = 0.

In summary, for the one-dimensional case, the critical
exponents for sublattice-selective percolation, specifying the
behavior at the singular point pA = pB = 1, are given by β =
0, ν = 1, γ = 1. These are the same exponents as for con-
ventional percolation in d = 1 [2]. Since only pA = pB = 1
percolates, this conclusion may not be surprising.

B. Percolation threshold line for general z

The percolation condition on the Bethe lattice is that a
chain of occupied sites reaches out to infinity. In other words,
the system percolates if from some occupied site there exists
a path of connected occupied sites that never ends (note that
on the Bethe lattice such a path cannot form loops). If a chain
of sites from a specific site up to some other site are occupied,
at least one of the two neighbors going outwards also has to
be occupied to have a percolating cluster. Hence, the mean
number of occupied sites going outwards has to be at least 1 in
order to form a percolating cluster. Furthermore, on the Bethe
lattice the A and B sublattices alternate. The mean number
of occupied sites going outwards can thus be calculated for
z neighbors by using two nested binomial distributions, one
accounting for the mean number of A-sublattice sites and the
other for the mean number of B-sublattice sites. This leads to
the condition

1
!=

z−1∑
k=0

(
z − 1

k

)
pk

A(1 − pA)z−1−k

×
(z−1)k∑

l=0

l

(
(z − 1)k

l

)
pl

B(1 − pB)(z−1)k−l , (21)

which can be simplified to yield the condition for the percola-
tion transition,

pA pB = 1

(z − 1)2
. (22)

Note that this result is also correct for z = 2, treated in the
previous section. The percolation threshold line for z = 3 is at
pA pB = 1/4, which is plotted in Fig. 10. The larger z is, the
bigger the area of the phase diagram that is percolating, but
here only z = 3 will be further examined.

C. Scaling exponents for z = 3

To access the critical exponents, three state functions will
again be calculated: The strength of the percolating cluster P,
the mean cluster size S, and the correlation length ξ . Here, we
focus on z = 3.

0 1/4 1pA

0

1/4

1

p
B

FIG. 10. Phase diagram of sublattice-selective percolation on the
Bethe lattice for z = 3.

To obtain P, we first calculate the probability of a path not
leading to infinity. Let wA (wB) be the probability that an arbi-
trary A (B) sublattice site does not lead to infinity, respectively.
An A sublattice site does not lead to infinity if the site itself
is not occupied (given by the probability 1 − pA) or if the two
neighbors leading outwards do not lead to infinity (given by
the probability pAw2

B), and similarly for a B sublattice site.
Altogether, this gives the recursive expressions

wA = (1 − pA) + pAw2
B, (23)

wB = (1 − pB) + pBw2
A. (24)

This nonlinear system of equations has polynomials of degree
4 as solutions. The trivial solution is wA = wB = 1, while the
other real solution, denoted by wP

A,wP
B , is rather lengthy, and

given explicitly as a function of pA and pB in Appendix A. We
note that for larger coordination number z, the corresponding
recursion equations lead to higher-order equations for wA and
wB, for which closed expressions for the roots are known not
to exist from Galois theory. For pA pB < 1/4 there exists no
infinite cluster, and thus the trivial solution applies, while for
pA pB � 1/4 the other real solution is valid, i.e.,

wA/B =
{

1, 4pA pB < 1,

wP
A/B(pA, pB), 4pA pB � 1.

(25)

From these probabilities, the strength of the percolating clus-
ter P can be calculated as

P(pA, pB) = 1
2

(
pA

(
1 − w3

B

) + pB
(
1 − w3

A

))
, (26)

since the probability that the center site is from the A or B sub-
lattice is 1/2 and the probability that the site is occupied and
at least one neighbor leads to infinity equals pA/B(1 − w3

B/A).
The strength of the percolating cluster is plotted in Fig. 11.
In Fig. 12, cuts of P at three different values of pB are
shown, along with the function 6pA pB − 3/2, which yields
the leading asymptotic of P for conventional site-percolation
on the Bethe lattice [2]. We thus find that near the percolation
threshold line, i.e., for pA � 1/(4pB), pB � 1/4, the scaling
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p
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0

1
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FIG. 11. Strength P of the percolating cluster for sublattice-
selective percolation on the Bethe lattice for z = 3.

behavior

P(pA, pB) ∼ −3/2 + 6pA pB = −6pB

(
1

4pB
− pA

)
(27)

emerges, implying a critical exponent β = 1.
Next, the mean cluster size S will be calculated. For this,

an arbitrary occupied starting site is considered and the mean
mass of the cluster it belongs to is calculated. This approach
is only valid below the percolation threshold line, i.e., for
4pA pB < 1, because otherwise the mass of the percolating
cluster has to be accounted for as well. If the starting site
belongs to the A (B) sublattice, then let SB (SA) be the con-
tribution to the mean cluster size from each neighbor. The
mean cluster size is then composed of the contribution from
the center site plus the contribution from the three neighbors,
so that

S(pA, pB) = 1 + 3
1

pA + pB
(pASB + pBSA). (28)

The contributions SA and SB can be accessed recursively: If the
starting site belongs to the A sublattice, then a given neighbor
only contributes a nonzero SB with probability pB. The size of
this contribution is the site itself plus SA for the two neighbors
going outwards. With a similar reasoning for the B sublattice,

0 1
pA

0

1
(a)

P

10−4 100

pA − 1
4p

10−4

100

P

pB = 0.3
pB = 0.5
pB = 1.0

(b)

FIG. 12. Strength P of the percolating cluster as a function of pA

for various values of pB (a) along with the function 6pA pB − 3/2,
and (b) in shifted log-log form near the percolation threshold.

we thus obtain

SA = pA(1 + 2SB)
SB = pB(1 + 2SA)

}
⇒ SA = 2pA pB+pB

1−4pB pA
,

SB = 2pA pB+pA

1−4pB pA
.

(29)

Both SA and SB diverge upon approaching the threshold condi-
tion pA pB = 1

4 . Hence, the behavior of S near the percolation
threshold line can be described by

S(pA, pB) ∼
(

1

4pB
− pA

)−1

, (30)

giving the critical exponent γ = 1.
Finally, the correlation length will be calculated. Here, the

topological distance rt and the Euclidean distance r have to
be distinguished. The topological distance between two sites,
also called the chemical distance, is defined as the number of
bonds that connect them, in contrast to the Euclidean distance,
which is the distance that these points are apart in space.
For d = ∞, the conversion becomes easy because all bonds
are pairwise perpendicular, so that the Euclidean distance
can be calculated by the generalized Pythagorean theorem as
r = √

rt [23].
The correlation function g(r) = g(

√
rt ), for 4pA pB < 1,

equals the mean number of occupied sites that are within the
same cluster as a given occupied site, a topological distance
rt apart—corresponding to the Euclidean distance r = √

rt .
At rt = 0, the center site is already occupied, while at rt = 1
the site has three neighbors, and from thereon the number
of neighbors doubles in each step, and the probabilities are
otherwise the same as for the case of the chain, so that we
obtain

g(
√

rt ) =

⎧⎪⎨
⎪⎩

1, rt = 0,

3 × 2rt −1 2
pA+pB

p
(rt +1)

2
A p

(rt +1)
2

B , rt odd,

3 × 2rt −1 prt /2
A prt /2

B , rt even.

The Euclidean correlation length can also be expressed in
terms of the topological distance, since

ξ 2 =
∑

r∈{0,1,
√

2,
√

3,... } r2g(r)∑
r∈{0,1,

√
2,

√
3,... } g(r)

=
∑

rt ∈N0
rt g(

√
rt )∑

rt ∈N0
g(

√
rt )

. (31)

We note that the identity
∑

r g(r) = S is again satisfied,
and hence the denominator of Eq. (31) behaves like (1 −
4pA pB)−1 for pA ∼ 1/pB. Furthermore, we find that the
numerator behaves like (1 − 4pA pB)−2 for pA ∼ 1/pB, and
together the singularity of ξ near the percolation threshold is
given by

ξ (pA, pB) ∼
(

1

4pB
− pA

)− 1
2

, (32)

so that ν = 1/2. We thus obtain the same critical exponents as
for conventional percolation on the Bethe lattice.

VI. CONCLUSIONS

We presented an adapted Newman-Ziff algorithm to exam-
ine sublattice-selective percolation on bipartite lattices, and
we applied it to accurately determine the percolation threshold
lines for the square lattice and the planar Lieb lattice. The
latter case relates to mixed bond-site percolation on the square
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FIG. 13. Comparison between the percolation threshold line for
sublattice-selective percolation on the square lattice (solid line) and
the Bethe lattice with z = 4 (dashed line).

lattice, and our numerical results for the percolation threshold
line refine previous estimates. Our numerical estimates for the
critical exponents at the percolation transition are consistent
with the universality class for percolation in d = 2.

In addition, we examined sublattice-selective percolation
on the Bethe lattice, which was in fact the geometry con-
sidered in the pioneering work on percolation by Flory in
the context of polymerization [1]. For this case, we obtained
the exact percolation threshold line and critical exponents for
z = 2 and 3, which are again in accord with the values for
conventional percolation. Given that the sites of the square
lattice have a uniform coordination number of z = 4, it may be
interesting to compare its phase diagram to that of the Bethe
lattice with z = 4. Such a comparison is shown in Fig. 13,
illustrating the substantially larger percolating regime for the
latter case. Indeed, the absence of closed loops for a chain
of connected sites leads to an overall prior appearance of
the percolating cluster upon increasing the site occupation
probabilities on the Bethe lattice. We checked explicitly that a
rescaling of the analytic expression for the percolation thresh-
old line for the z = 4 Bethe lattice to match the ends points at
pA = 1 and pB = 1 does not fit the full numerical data.

Related to the last point, we note that the authors of
Ref. [18] considered various proposed analytic expressions for
the general functional form of the percolation threshold line
for mixed bond-site percolation. They observed clear system-
atic deviations from the numerical data for low-coordinated
lattices. Based on our refined data on the Lieb lattice, we
can also exclude the validity of these expressions for the
square lattice (cf. Appendix B). It thus remains an interest-
ing open question for further research to derive analytical

0.5 0.6 0.7 0.8 0.9 1.0

pb

0.5

0.6

0.7

0.8

0.9

1.0

p s

This paper
Ref. [18] (numerical)
Ref. [19] (analytical)
Ref. [18] (analytical)

FIG. 14. Comparison between the estimates for the percolation
threshold line for mixed bond-site percolation on the square lattice
as obtained from the adapted Newman-Ziff algorithm, the numerical
estimates from Ref. [18], as well as the analytical formulas proposed
in Ref. [19] [their Eq. (3)] and Ref. [18] [their Eq. (19)], respectively.

expressions for the percolation threshold line for sublattice-
selective as well as mixed bond-site percolation, respectively.
We hope that our refined numerical data will be valuable
as a benchmark for such investigations. Finally, let us note
that sublattice-selective percolation can also be related to the
problem of antisite defect percolation, such as that considered
in Ref. [24] for the case of a simple cubic lattice. Certainly, the
adapted Newman-Ziff algorithm can be of use also for further
investigations of such generalized percolation problems.
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APPENDIX A: NONTRIVIAL REAL SOLUTION
FOR THE z = 3 BETHE LATTICE

The nontrivial real solution to Eqs. (23) and (24), obtained
using the Sympy Python library, is

wP
A/B = − 1

3

(
1 − aA/B

cA/B
+ cA/B + 1

)
, where

aA/B = 3
(
2 − pB/A

)
pB/A

,

bA/B = 27(−pA/B p2
B/A + 2pA/B pB/A − 1)

pA/B p2
B/A

,
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cA/B = 3

√√−4(1 − aA/B)3 + (2 − 3aA/B + bA/B)2

2
+ 1 − 3

2
aA/B + bA/B.

APPENDIX B: COMPARISON FOR MIXED BOND-SITE
PERCOLATION ON THE SQUARE LATTICE

In Fig. 14, we compare our results for the transi-
tion line for mixed bond-site percolation on the square
lattice (as discussed in Sec. IV, this relates to sublattice-
selective percolation on the Lieb lattice) to previous numerical

estimates from Ref. [18], and two proposed analytical for-
mulas for this transition line, taken from Ref. [19] [their
Eq. (3)] and Ref. [18] [their Eq. (19)], respectively. We
find that our data, based on the adapted Newman-Ziff algo-
rithm, are in accord with the numerical estimates reported in
Ref. [18] and exclude the validity of both proposed analytical
formulas.
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