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Anomalous behavior in entanglement speed profile through spin chains
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The origin of the uniform Dzyaloshinskii-Moriya interaction (DMI), which is responsible for the creation of
chiral magnetism, has been the subject of extensive research. Recently, modern technology has allowed for its
production and utilization in a modulated form. Not only can magnetic phases of spin chains be enriched by the
presence of such a potential as detailed in Japaridze et al. [Phys. Rev. E 104, 014134 (2021)], but the capacity of
such systems for information transmission is also greatly enhanced. The current paper examines the impact of a
staggered pattern of DMI (STDMI) on a chain with a substrate XX Heisenberg interaction. It is demonstrated how
enhancing the intensity of this coupling improves the propagation of an entangled quantum state. Additionally,
as our analysis has shown, the initial condition over the system’s state has a profound effect on the speed at which
entanglement spreads. The aberrant behavior of the entanglement’s speed profile in response to fine-tuning of
the phase factor which adjusts the initial state is the focus of this paper. This anomalous behavior is characterized
by dramatic drops in speed for certain phase factor values. We have also shown that, using wave interference
principles, we can predict exactly why these phenomena occur. This research will pave the way for additional
studies on STDMI and its potential applications in the field of quantum information.
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I. INTRODUCTION

The dynamic evolution of many-body or statistical systems
has long been a topic of interest in physics and other branches
of science. If the number of particles in the system is very
large, investigating the behavior of such a system with nu-
merical approaches may lead to problems; in this case, having
an exact solution is extremely valuable. In such systems, the
emergence of a critical point at which the system behaves er-
ratically has been of great importance to statistical mechanics
researchers. In many circumstances, the system’s anomalous
behavior is triggered by the initial condition of the problem.
The aforementioned systems are widely employed even in the
realm of quantum information and computation.

In the present paper, we look at the dynamic evolution of a
many-particle system employed in quantum information sci-
ence, which has an anomalous behavior for the transmission
of entanglement that is reliant on the initial conditions. By
having an exact solution for the problem, we were able to
get rid of the challenges arisen by approximate and numerical
methods.

Quantum computing may be realized on a diversity of plat-
forms, consisting of cold atoms [1,2], trapped ions [3–6], and
superconducting quantum circuits [7–10]. On these platforms,
controlling the transferring of quantum states is a foundational
prerequisite. While quantum communication over long dis-
tances has been achieved to a long distance in free space and
optical fibers [11–13], it is still crucial to create chances for
transferring quantum states across solid-state equipment. A
variety of quantum state transfer (QST) protocols for various
solid-state instruments have been proposed [14–19]. There has
been considerable interest in QST through the use of a spin
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chain in last years, and several methods have been developed
for this purpose; see Refs. [20–22] just to name but a few.

The rich magnetic phases of a spin chain with Heisenberg-
type magnetic interaction in many forms (such as the XY
type [23–25], XXZ chain [26], or the compass model [27–30],
for example) have recently attracted considerable interest.
Such systems may also serve as a quantum data bus over
practical distances, as proved by Bose in Ref. [31]. According
to the proposal, a quantum state is encoded on a spin at one
end of the chain to initiate communication, followed by a wait
period at the other end. Spin chains have not been the only
structures utilized to accomplish this objective; more intricate
structures like honeycomb and two-leg ladders have also been
implemented recently [32,33].

Aside from the Heisenberg interaction, another type
of magnetic coupling, i.e., Dzyaloshinskii-Moriya interac-
tion (DMI) has been thoroughly investigated in the field
of entanglement dynamics research [34–36]. Historically,
Dzyaloshinskii [37] and Moriya [38] introduced such an
anisotropic antisymmetric interaction that results from the
spin-orbit effect. Its initial application was an example of
the antiferromagnetic interaction; however, Kavokin demon-
strated that it also takes place on quantum dots [39]. The DMI
was shown to be artificially sensitive to gating, voltage bias,
and temperature difference between the dots, in addition to the
spin polarization of the system, as demonstrated by Fransson
et al. [40]. To observe the effect of DMI on the QST, we
represent this interaction as an assist driving in the XX model
described by the Hamiltonian

H =
∑

j

J
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) +
∑

j

D j · [S j × S j+1], (1)

where D j is the DM vector along a preferred axis (gen-
erally corresponding to Heisenberg model ẑ is preferable).
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Symmetry limitations determined by the features of physical
solid-state substances usually exclude the vast majority of
alternatives and confine theoretical debate to two primary
instances: uniform DMI [41–43] and staggered DMI [44–46],
in which D is parallel on neighboring links for the for-
mer but antiparallel for the latter. We previously estimated
the rate at which a QST occurs in a Heisenberg model
with uniform DMI [47]. Then, we could wonder how the
QST procedure differs, depending on whether the DMI is
uniform or staggered. In the present paper, we report find-
ings that particularly address how the staggered DMI affects
QST. Not only does the obtained exact solution of the
problem eliminate limitations imposed by the number of
particles associated with the numerical tools but the math-
ematical method employed here may be lucrative for future
research.

Because QST is believed to be associated with entangle-
ment propagation [48,49], we employ entanglement notions to
monitor the QST procedure. In fact, the current paper’s central
idea is to understand how the maximal entanglement that is
initially shared by the first pair of the chain propagates over
the remaining initially unentangled pairs. Whenever we refer
to a chain, we are talking about the XX model modulated by
STDMI.

We structured the paper as follows to deal with the afore-
mentioned scenarios in detail: In Sec. II, we describe the
XX chain with additional staggered DMI, along with the ma-
jor steps of the analytic methodologies used to dynamically
evolve the initial state of the system. Section III describes the
entanglement measurement utilized in this paper. Section IV
discusses the most impressive findings for entanglement
propagation. Lastly, Sec. V summarizes the findings and
conclusions.

II. DESCRIPTION OF THE MODEL AND TIME
EVOLUTION OF THE INITIAL STATE

This section will examine the dynamic behavior of entan-
glement in a spin-1/2 chain modulated by the STDMI. For
this purpose, we first introduce the Hamiltonian of the desired
system, which is considered as follows:

H =
∑

j

J
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) +
∑

j

(−1) jD · [S j × S j+1].

(2)

The first term of Eq. (2) described the Heisenberg interaction
via the XX model where Sx

j and Sy
j are respectively x and y

component of spin operators on jth position. Moreover, the
second one introduces the alternating DM coupling over the
chain. This section assumes that D is oriented along the ẑ axis
of spin space, with the coordinates D = (0, 0, D). The symbol
D represents the magnitude of STDMI’s strength in all subse-
quent calculations. In addition, by employing Jordan-Wigner
transformations,

S+
j = c†

j e
iπ

∑
�< j c†

�c� , S−
j = e−iπ

∑
�< j c†

�c� c j,

Sz
j = c†

j c j − 1

2
.

FIG. 1. Schematic picture of moving into the reduced Brillouin
zone and consequent changing variables [see Eq. (6)].

The earliest spin Hamiltonian is reconstructed in terms of
spinless fermions as follows:

Hf =
∑

j

J

2
(c†

j c j+1 + c†
j+1c j )

+
∑

j

iD

2
ei jπ (c†

j c j+1 − c†
j+1c j ), (3)

where c†
j (c j ) indicates the creation (annihilation) operator

for spinless fermions at the jth site. Following the Fourier
transformation,

c j = 1√
N

∑
k

c̃ke−ik j, (4)

the Hamiltonian is translated to Fourier language in the
momentum space. Then the diagonalization process will be
carried out there. As a result of calculations, the following
result is obtained:

H̃ =
∑

k

[J cos(k)c̃†
k c̃k − iD cos(k)c̃†

k c̃k+π
],

k = 2π j

N
j = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1, (5)

where we take the lattice constant equal to unity (a ≡ 1).
To implement the diagonalization process, we must restrict
ourselves to the reduced Brillouin zone (−π/2 � k < π/2);
see Fig. 1. For this purpose, we consider that

Here, any term appeared in the front of the summation
[Eq. (5)] is substituted by the circle symbol. For −π � k <

−π/2, we can define q = k + π so the previous interval
moves into [0, π/2) by the wave number of q. So, for π/2 �
k < π , we choose q = k − π , then the last term of Eq. (6)
goes into q ∈ [−π/2, 0). Moreover, because the wave number
of c̃†

q+π differs by 2π from the wave number of c̃†
q−π , then they

are equivalent. It makes that Eq. (5) can be cast into

H̃ =
π/2∑
q=0

[−J cos(q)c̃†
q+π c̃q+π + iD cos(q)c̃†

q+π c̃q]

+
π/2∑

q=−π/2

[J cos(q)c̃†
qc̃q − iD cos(q)c̃†

qc̃q+π ]

+
0∑

q=−π/2

[−J cos(q)c̃†
q+π c̃q+π + iD cos(q)c̃†

q+π c̃q]. (6)
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The combination of the first and last term of Eq. (6) results
in

H̃ =
π/2∑

q=−π/2

[−J cos(q)c̃†
q+π c̃q+π + iD cos(q)c̃†

q+π c̃q]

+
π/2∑

q=−π/2

[J cos(q)c̃†
qc̃q − iD cos(q)c̃†

qc̃q+π ]. (7)

By introducing c̃q+π = d̃†
q , the final form of the Hamiltonian

is summarized as follows:

H̃ =
∑

q

[J cos(q)(c̃†
qc̃q − d̃†

q d̃q ) − iD cos(q)(c̃†
qd̃q − d̃†

q c̃q )].

(8)
According to the goal of the problem, which is to investigate
the propagation of entanglement in a spin chain over time, we
need an initial entangled state between two arbitrary neigh-
bors and then the effect of the time evolution operator on it.
To this end, we consider an initial state as Eq. (9), where N
counts system’s particles. Moreover, ϕ is a phase factor and
|0〉 and |1〉 refer to the eigenstates of the z component of the
spin operator such that Sz|0〉 = −h̄/2|0〉 and Sz|1〉 = h̄/2|1〉:

|ψ (t = 0)〉 = |1A0B〉 + eiϕ |0A1B〉√
2

⊗ |00...0〉︸ ︷︷ ︸
N−2

. (9)

As long as the system is subject to the unitary dynamics as
a result of the time evolution operator Û (t ) = exp(−iĤt/h̄),

we would like to express its application to the initial state as

Û (t )|ψ (0)〉 = exp

{
−iJt

h̄

[∑
q

cos(q)(c̃†
qc̃q − d̃†

q d̃q )

− i
D

J
cos(q)(c̃†

qd̃q − d̃†
q c̃q )

]}
|ψ (0)〉, (10)

where |ψ (0)〉 = 1√
2
(c†

A + eiϕc†
B)|0〉. Considering Eq. (10),

t and D are then normalized to h̄/J and J , respectively. Then,
in this situation, we assume h̄ ≡ 1 and |J| = 1 without sacri-
ficing generality. As a result, t and D get to be dimensionless
parameters in the following computations.

Even if we did our work here at zero temperature and for
a closed system, the desired method may also be tested in a
scenario of equilibrium [50] or in the presence of a heat source
with a temperature of T by defining the memory [51] and the
absence of that [52].

In the case of using relation (8), we must use a modified
Fourier transformation of fermionic creation or annihilation
operators in the reduced space:

c†
j = 1√

N

∑
−π
2 �q< π

2

(d̃†
q ei(q+π ) j + c̃†

qeiq j ). (11)

With the combination of two Eqs. (9) and (10) in addition to
using Eq. (11), we have

|ψ (t )〉 = e−it H̃

√
2N

(∑
q

eiqc̃†
q + ei(q+π )d̃†

q︸ ︷︷ ︸
c†

A

+ eiϕ
∑

q

e2iqc̃†
q + e2i(q+π )d̃†

q︸ ︷︷ ︸
c†

B

)
|0〉

= e−it H̃

√
2N

∑
q

[(eiq + e2iq+iϕ )c̃†
q − (eiq − e2iq+iϕ )d̃†

q ]|0〉. (12)

To apply the time evolution operator, we must diagonalize the considered Hamiltonian through which we use a unitary operator
as

U =
(

cos(α) i sin(α)
i sin(α) cos(α)

)
, (13)

where

α = arctan

(
J − √

J2 + D2

D

)
. (14)

In other words, the Hamiltonian (8) can be diagonalized with a new basis:

γ̃ †
q = cos(α)c̃†

q + i sin(α)d̃†
q , β̃†

q = i sin(α)c̃†
q + cos(α)d̃†

q . (15)

Then, the result of U†H̃ U yields diagonalized Hamiltonian in the same basis:

H̃ =
∑

q

(
√

J2 + D2 cos(q)︸ ︷︷ ︸
ε(q)

)[γ̃ †
q γ̃q − β̃†

q β̃q ]. (16)

Based on Eqs. (12) and (15), we have

|ψ (t )〉 = e−it H̃

√
2N

∑
q

[
(eiq+iα + eiϕe2iq−iα )︸ ︷︷ ︸

η(q)

γ̃ †
q + (eiϕe2iq−iα − eiq+iα )︸ ︷︷ ︸

ζ (q)

β̃†
q

]
|0〉. (17)
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In other words,

|ψ (t )〉 = e−it
∑

k′ ε(k′ )[γ̃ †
k′ γ̃k′−β̃

†
k′ β̃k′ ]

√
2N

∑
q

[η(q)γ̃ †
q + ζ (q)β̃†

q ]|0〉. (18)

To apply the time evolution operator, we must expand it as

|ψ (t )〉 = 1√
2N

∑
q

{
1 − it

∑
k′

ε(k′)[γ̃ †
k′ γ̃k′ − β̃

†
k′ β̃k′ ] + (−it )2

2!

(∑
k′

ε(k′)[γ̃ †
k′ γ̃k′ − β̃

†
k′ β̃k′ ]

)2

+ · · ·
}

(η(q)γ̃ †
q + ζ (q)β̃†

q )|0〉.

(19)

Considering the anticommutator relations {γ̃ †
q , γ̃k′ } = {β̃†

q , β̃k′ } = δqk , {γ̃ †
q , β̃q} = {γ̃q, β̃

†
q } = 0, we get γ̃

†
k′ γ̃k′ γ̃ †

q |0〉 = δk′qγ̃
†
q |0〉

and β̃
†
k′ β̃k′ β̃†

q |0〉 = δk′qβ̃
†
q |0〉. For this reason,

|ψ (t )〉 = 1√
2N

∑
q

η(q)

(
1 − itε(q) + 1

2!
(−itε(q))2 + · · ·︸ ︷︷ ︸

e−itε(q)

)
γ̃ †

q |0〉 + 1√
2N

∑
q

ζ (q)

(
1 + itε(q)) + 1

2!
(itε(q))2 + · · ·︸ ︷︷ ︸

eitε(q)

)
β̃†

q |0〉.

(20)
Because we intend to employ c†

j again acting on |0〉, we must return to the old basis by utilizing Eq. (15) in an inverse process.

Moreover, considering ε(q) = J̃ cos(q) where J̃ = √
J2 + D2, we reach

|ψ (t )〉 = 1√
2N

∑
q

∑
l

(−i)lη(q)Jl (J̃t )eiql cos(α)c̃†
q|0〉 + 1√

2N

∑
q

∑
l

(−i)lη(q)Jl (J̃t )eiql i sin(α)d̃†
q |0〉

+ 1√
2N

∑
q

∑
l

(i)lζ (q)Jl (J̃t )eiql i sin(α)c̃†
q|0〉 + 1√

2N

∑
q

∑
l

(i)lζ (q)Jl (J̃t )eiql cos(α)d̃†
q |0〉, (21)

where Js denotes the Bessel function of the first order s [53]. In the next step, by modifying the variable κ = q + π in the last
term of Eq. (21) and the variable names (q → κ) in the first expression, we find that the first and last ones of this equation can be
concatenated in such a way as to cover the range 0 to 2π . The second and third terms follow the same procedure. Consequently,
we can write

|ψ (t )〉 = 1√
2N

∑
κ,l

[(−i)l (ei(2κ−α)+iϕ + ei(κ+α) ) cos(α) + il+1(ei(2κ−α)+iϕ − ei(κ+α) ) sin(α)]Jl (J̃t )eiκl c̃†
κ |0〉. (22)

Given that c̃†
κ = 1√

N

∑
j e−iκ jc†

j and 1
N

∑
κ e−i(m−n)κ = δm,n,

we have

|ψ (t )〉 =
∑

j

a j (t )c†
j |0..00〉,

a j (t ) = (−i) j−1eiα(1+(−1) j )

√
2

(J j−1(J̃t ) + iei(ϕ−2α)J j−2(J̃t )).

(23)

Here, a j (t ) defines an amplitude, the magnitude of which
indicates how probably a fermion occupies jth position in the
chain. Then, we can see that Eq. (23) implements the single-
particle states (c†

j |00..0〉) to present each qubit’s contribution
to the time evolution of the wave function. This equation is
crucial for calculating the system’s density matrix to ac-
cess a popular entanglement measurement, i.e., concurrence,
for keeping an eye on the QST procedure in the following
sections.

III. CONCURRENCE MONITORS QST

A system is said to be entangled if the quantum states of
any two or more particles inside it are inextricably connected,
even at great separations in space. In other words, once the

particles in a system are in a superposition state, their quantum
states are called to be entangled. One example of occurring
entangled states is in the bipartite systems which have gained
a lot of attention and interest. Such systems are made up of
two components, for example, A and B which may be pure
or mixed, and belong to a Hilbert space H of dimension d .
Numerous notable approaches for characterizing and quanti-
fying the measure of entanglement for such systems have been
proposed. Bennett’s entanglement of formation (E f ) [54] may
be the most significant entanglement measure for bipartite
systems. The von Neumann entropy [S = −Tr ρ(Log ρ)] of
the reduced density matrix ρ = ρA(ρB) generated by partially
tracing ρ = |�〉〈�| through one subsystem B(A) is defined
as the E f for a pure state. Reference [55] is a good source
that goes over the history and details of the entropy’s concept.
Now the question arises whether it is possible to define and
calculate E f for a mixed state as well. The answer of this
question is positive. The E f for a mixed state is then calculated
by minimizing the E f s associated with each pure state that
contributes to the mixed state,

E f (ρ) = min

{∑
i

piE f (φi )

}
, (24)
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in which ρ is the density matrix of a bipartite mixed state that
defined as an ensemble of pure states as

ρ =
∑

i

pi|φi〉〈φi|, (25)

where pi � 0 and
∑

i pi = 1. The scenario of mixed states
greatly complicates analytical processing of the extremization
problem. Nevertheless, Hill and Wootters introduced the con-
currence (C) as an ancillary measure of E f where A and B are
two-level systems, such as a pair of qubits [56]. These two
measures (E f and C) are related via the binary entropy (h) as
E f = h( 1

2 [1 + √
1 − C2]), however, C almost can be consid-

ered a stand-alone measure of entanglement. In this relation,
h acts on a variable, for example, x as h(x) = −x log2(x) −
(1 − x) log2(1 − x). For mixed states, the minimal average
concurrences of pure states are given by [57]

C(ρ) = min

{ ∑
i

piC(ϕi )

}
, (26)

which is the modification of Eq. (24). Wootters derived the
following straightforward expression for this minimization:

C(ρ) = max {λ1 − λ2 − λ3 − λ4, 0}, (27)

where λ js are the square roots of the eigenvalues of matrix
R = ρ.(σy ⊗ σy).ρ∗.(σy ⊗ σy) that are decreasingly sorted.
Here, ρ(ρ∗) is the density matrix for a certain pair (conjugate
of it) and σy is the y-component Pauli matrix. The concurrence
varies from 0, indicating an unentangled state, to 1, represent-
ing a maximally entangled state. Due to the time-dependent
nature of the quantum state, the concurrence function and
the density matrix are likewise subject to temporal variation.
To create a concurrence function between two particles in a
multiparticle system, we should utilize the reduced density
matrix (ρmn) obtained by tracing over all sites except for sites
m and n (Ref. [58]). Moreover, the matrix form of ρmn against
the two-point correlations between any two sites (m, n) can be
expressed as follows:

ρmn = 1

4

⎛
⎜⎜⎜⎝

〈G ↑
m G ↑

n 〉 〈G ↑
m σ−

n 〉 〈σ−
m G ↑

n 〉 〈σ−
m σ−

n 〉
〈G ↑

m σ+
n 〉 〈G ↑

m G ↓
n 〉 〈σ−

m σ+
n 〉 〈σ−

m G ↓
n 〉

〈σ+
m G ↑

n 〉 〈σ+
m σ−

n 〉 〈G ↓
m G ↑

n 〉 〈G ↓
m σ−

n 〉
〈σ+

m σ+
n 〉 〈σ+

m G ↓
n 〉 〈G ↓

m σ+
n 〉 〈G ↓

m G ↓
n 〉

⎞
⎟⎟⎟⎠,

(28)
where G ↑

i = 1 + σ z and G ↓
i = 1 − σ z. Moreover, σ± = σ x ±

iσ y. In Eq. (28), 〈 〉 stands for the expectation values of any
operator defined over the quantum state described by Eq. (23).
For the system under consideration, concurrence between
nearest neighbors can be summarized in the subsequent closed
form

C(ρ) =
√

�m�m+1, (29)

in that

�m = |Jm−1(
√

1 + D2t )|2 + |Jm−2(
√

1 + D2t )|2

− 2Jm−1(
√

1 + D2t )Jm−2(
√

1 + D2t )

× sin(ϕ)sgn[J] + D cos(ϕ)√
1 + D2

. (30)

In Eq. (30), the function of sgn[.] determines the sign of J
and since the value of |J| = 1, this function takes ±1. In the
present paper, we are interested in learning how entanglement
is transmitted through the chain, hence we are measuring
how much entanglement there is between the nearest of sites.
In other words, we investigate the process of entanglement
propagation between pairs of physically adjacent qubits. In
the context of time evolution of concurrence, aspects of en-
tanglement transmission are made available, such as its speed
or its dependency on the phase factor. In the following section,
we get into the essentials of it all.

IV. RESULTS

This section showcases the results attained for C and V (the
speed of entanglement propagation) through the examination
of several parameters and variables. Let us commence with
Fig. 2, where panels (a)–(e) display the temporal evolution
of C for distinct couples (where D and J are specified on
each panel). To obtain these plots, we set ϕ equal to π , as
will be discussed later. It is evident from the behavior of
C in each panel that the maximum value of this function
decreases as the distance between a typical pair (of qubits)
and the initially entangled pair (IEP) increases. Moreover, by
comparing Figs. 2(a)–2(e), it is evident that as D increases,
the duration of the maximum value of C (Cmax) decreases, i.e.,
the curves of concurrences become more compact. This com-
pression exhibits that the transmission of the utmost degree of
entanglement to the far qubits is accomplished in a reduced
timeframe. In qualitative terms, this signifies that the transfer
of entanglement has occurred at a faster rate. This is true for
both ferromagnetism with J < 0 and antiferromagnetism with
J > 0. Given Eq. (30), sin(ϕ = π ) = 0 (for plots of Fig. 2),
it can be concluded that the sign of J does not influence the
behavior of C. Consequently, quantitative analysis also shows
that the higher values of D result in a faster entanglement rate,
as we will discuss below.

Here, we designate with X the distance between a typical
pair ( j, j + 1) and the IEP for the purpose of quantitatively
calculating entanglement speed (V ). The rate at which entan-
glement spreads is determined by the gradient of X against t .
The speed, denoted by the symbol V without any subscripts,
quantifies the rate at which entanglement is being transferred.
Velocity, on the other hand, quantifies both the speed and
direction of its movement. The speed refers to the absolute
value of the velocity, meaning it is always positive and cannot
be negative. The terms velocity and speed are often used
interchangeably in daily conversation but they hold distinct
meanings in the field of physics. In the present paper, it is
employed of “speed” by focus on the magnitude of velocity.

As an illustration of speed calculation, we address the value
of X which is equal to 1 for the pair (2,3), and equal to 2 for
the pair (3,4), and so forth. Subsequently, we determine the
specific time instance (tmax) associated with the highest level
of entanglement (represented by Cmax) for each X . As a result,
the variable X is graphed in Fig. 2(f) as a function of tmax

for different values of D. For a given value of D, this panel
demonstrates that the time interval between consecutive peaks
remains constant, of course, by avoiding the critical condition
that will be explained below. Then V can be defined as the
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FIG. 2. (a)–(e) The behavior of concurrence towards time t for different pairs. Additionally, by comparing these figures we can see the
effect of increasing value of staggered DMI. The first three are related to J < 0 and the next two are related to J > 0. For all plots, ϕ = π . As
D increases, the concurrence’s maxima happens in shorter time instances for any pairs showing V grows. (f) X − tmax dependency for different
D values.

slope of the fitted lines. This is analogous to the position-time
graphs of objects moving at a constant speed in Newtonian
physics. These curves also illustrate that the speed of entan-
glement propagation improves as the value of D increases.

Nevertheless, the growth of the speed is not directly pro-
portional to D, i.e., doubling D does not double the speed due
to two main factors: first, the nature of J̃ in Eq. (23), which
is determined by the value of D as J̃ = √

1 + D2; second,
the complex nature of mixing the value of J and D by the
multiplication of sin(ϕ) and cos(ϕ) functions in the coefficient
that appeared in Eq. (30).

Another notable fact that can be deduced from the compar-
ison of Fig. 2(a) to Fig. 2(e) is that the peaks of concurrence
for different pairs increase as the value of D increases, and this
remains consistent for both ferromagnetic and antiferromag-
netic conditions. However, this statement is not universally
valid for any given value of ϕ. The increase in transmission
speed is proportional to the growth of D. However, the extent
to which Cmax varies in reaction to the growth of D depends
entirely on the value of ϕ. For these specific figures, when the

value of ϕ is equal to π , a rise in D leads to a simultaneous
enlargement of the peaks. On the other hand, when the value
of D is increased at ϕ = 0, it leads to a decrease in the
amount of peaks. We will discuss this topic again once we
have clarified the meaning of Fig. 5.

Hence, it is vital to think about how the initial state’s phase
factor (ϕ) affects the behavior of entanglement transmission.
The relevance of this parameter for the concurrence function
is given by Eq. (30). The mysterious role that this parameter
plays in the entanglement propagation process is illustrated in
the plots of Fig. 3. For accessing these plots, fine adjustments
were made to ϕ, and V was measured against the new settings.
The top row of the corresponding figure, where D = 1, indi-
cates that for a range of phase factors between −π and 0, V
drops considerably in the situation of J = −1. On the other
hand, when J is positive, we observe that V also exhibits the
same spectacular trend, of course, in ϕ ∈ [0, π ]. To examine
the impact of adjusting the value of D on both V and the
critical interval, we put together the bottom row of Fig. 3.
Regarding these two figures in this row, D is assigned a value
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FIG. 3. The speed profile towards the phase factor is shown here.
There are regions of ϕ in the speed profile where the value of V de-
clines precipitously; this corresponds to the destructive interference
of the waves in the context of wave interference. Beyond that specific
region, the speed maintains a nearly constant value. Furthermore,
the critical region of speed is observed for the ferromagnetic state
in (a) and (c) when ϕ < 0, whereas it is defined for the antiferro-
magnetric state in (b) and (d) when ϕ > 0. Additionally, these plots
illustrate that the speed does not diminish by the same magnitude
when the power of D is reduced by a quarter for (c) and (d), compared
to (a) and (b) (where its value is equal to one). Through the same
comparison, it becomes evident that the critical region shifts further
away from ϕ = 0 as the value of D decreases.

of 0.25. The comparison between the top and the bottom row
of Fig. 3 confirms that as D decreases, not only does the
speed value decrease but the position of the crucial zone also
moves further away from ϕ = 0. The rationale behind this will
subsequently be thoroughly elucidated.

We temporarily revisit Fig. 2 once more. As shown in its
plots, each pair has a maximum value of concurrence (Cmax)
at a specified time. The question here is how this maximum
value is affected by the phase factor (ϕ). Figures 4(a) and 4(b)
address this question. Although these plots show the results
dedicated only to one particular pair (2,3), they are still ap-
plicable to other couples. As shown in these plots, when D is
held constant (D = 1) and J = −1 or J = +1, the maximal
value of C23 changes by tuning the value of ϕ.

To create Fig. 4(a) with J < 0, we first selected the value
of π/2 for ϕ. Then, by modifying ϕ to −π/2, we can observe
how the maximal value of C23 will decrease in this instance.
In contrast, to produce Fig. 4(b) with J > 0, we initially chose

FIG. 4. To directly observe the effect of ϕ on the reduction of
Cmax, the graphs of (a) are for J < 0 where concurrence between a
typical pair (2,3) experiences a reduction when ϕ changes from π/2
to −π/2 and the graphs in (b) pertain to the case where J > 0, where
concurrence between the considered pair decreases significantly as ϕ

varies from −π/2 to π/2.

the value of −π/2 for ϕ. Subsequently, by adjusting it to π/2,
we may analyze the corresponding reduction of C23 in this
particular case. The selected values for ϕ precisely correspond
to those provided in the speed profile depicted in Figs. 3. This
implies that whenever Cmax drops, we may experience a drastic
drop in transmission speed (V ).

So far, we have looked qualitatively at how V and Cmax are
affected by ϕ and D. To quantitatively explain this relation-
ship, we turn to Eq. (30), where we may use the concepts
of destructive and constructive interferences. Equation (30)
can be analogous to the well-known phenomenon of wave
interference, with the exception that it incorporates Bessel
functions instead of amplitudes of interfering waves. The
quality of entanglement transmission is determined by the
sign of the last term in Eq. (30). In other words, the function
f (ϕ, J, D) = sin(ϕ)sgn[J] + D cos(ϕ) in this equation plays
a pivotal and meaningful role in establishing the propagation
of entanglement through the chain.

In this analysis, we investigate the factors that signify
destructive interference in the context of wave interference
and can provide a rationale for the occurrence of the min-
ima shown in Fig. 5. Given this matter, it can be asserted
that if f (ϕ, J, D) holds the greatest positive magnitude, the
requirement for destructive interference is met [in accordance
with the negative symbol following it in Eq. (30)]. When
D = 0 and J = −1, J sin(ϕ) will have the greatest value if
ϕ = −π/2. A decrease in the value of ϕ will result in a cor-
responding decrease in this term. Assuming a constant value
of J , if D starts to grow, ϕ must correspondingly approach
zero (ϕ → 0) to maximize the values of f (ϕ, J, D). Undoubt-
edly, this sentence remains accurate even when evaluating the
denominator as

√
1 + D2. Figure 5(a) confirms that when the

value of D increases, the minimum of the Cmax function occurs
at ϕ values approaching zero.

On the other hand, for constructive interference, which
explains the peaks in Fig. 5(a), it can be said that when
D is absent, the value of J sin(ϕ) is greatly influenced by
ϕ = π/2. Consequently, this term becomes large and sig-
nificant [as indicated by the negative sign in the coefficient
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FIG. 5. Maximum concurrence value for (2,3) against ϕ. Com-
paring these panels with those of Fig. 3 shows that the lowest
entanglement value causes a phase interval during which the speed
behaves critically.

in Eq. (30), given J < 0]. Conversely, when D increases, ϕ

should approach π for the value of f (ϕ, J, D) to stay big,
yet negative, hence amplifying the effects of constructive
interference. Figure 5(a) confirms that when the value of D
increases, the maximum of the function occurs at ϕ values ap-
proaching π . The contents mentioned here can be generalized
for the scenario where J > 0, which determines the outcomes
of Fig. 5(b). We abstain from delving into the subject matter
at this juncture in order to prevent protracted debates.

As previously stated, how cmax changes in terms of D
completely depends on the value of ϕ. This statement is also
proved in Fig. 5, where raising the value of D leads to drop of
cmax at ϕ = 0. On the other hand, at ϕ = π , raising D causes
an increase in cmax.

V. CONCLUSION

Many researchers have focused on the implications of sys-
tems like one-dimensional spin chains because of their interest

in the QST traits they exhibit. The QST process, which in-
volves the use of spin structures in entanglement transmission,
is just one example of the many exciting avenues that have
opened up because of the cooperation between the quantum
information community and the field of quantum magnetism.
The focus of this study has been on the QST characteristics
of the spin-1/2 XX chain associated with a staggered type
of DM interaction. The system’s initial state that is to be
transformed consists of a pair of entangled qubits that, of
course, govern by an arbitrary phase, while the other particles
are fully nonentangled. The time evolution operator was used
to generate the time-dependent quantum state and reduced
density matrix for any closest pair of spins We made use of
Jordan-Wigner transformation to get a closed form for the
system’s wave function at time t . Consequently, we looked at
the time dependence of the concurrence function (for mon-
itoring entanglement) for every nearest neighbor spaced X
apart from the IEP. We found that for a distance X , the time
needed for the entanglement crests (tmax) to meet a pair site
is proportional to X . Using the slope of the X − tmax plot,
we were able to derive the measurable values of speed at
which entanglement spreads. The results demonstrated that
higher levels of D lead to faster propagation. Nevertheless, the
growth of the speed is not directly proportional to D. We like-
wise examined the impact of the phase factor (ϕ) regulating
the initial state of the system on the spread of entanglement.
It turns out that there are specific values of the phase factor
responsible for drastically dropping the entanglement’s speed.
We have additionally demonstrated the ability to forecast the
precise position of these significant declines by employing the
principles of wave interference. This attribute is ubiquitous
and may be observed for both ferro- and antiferromagnetic-
type Heisenberg exchanges. Moreover, entanglement crests
that reach any pair, a key factor in determining the value
of transmission speed, was shown to be a function of
ϕ as well. The mentioned function reaches its minimum
value in the phase interval where the speed profile flattens
out.
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