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Dislike of general opinion makes for tight elections
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In modern democracies, the outcome of elections and referendums is often remarkably tight. The repetition of
these divisive events are the hallmark of a split society; to the physicist, however, it is an astonishing feat for such
large collections of diverse individuals. Many sociophysics models reproduce the emergence of collective human
behavior with interacting agents, which respond to their environment according to simple rules, modulated by
random fluctuations. A paragon of this class is the Ising model which, when interactions are strong, predicts
that order can emerge from a chaotic initial state. In contrast with many elections, however, this model favors a
strong majority. Here we introduce a new element to this classical theory, which accounts for the influence of
opinion polls on the electorate. This brings about a new phase in which two groups divide the opinion equally.
These political camps are spatially segregated, and the sharp boundary that separates them makes the system
size dependent, even in the limit of a large electorate. Election data show that, since the early 1990s, countries
with more than about a million voters often found themselves in this state, whereas elections in smaller countries
yielded more consensual results. We suggest that this transition hinges on the electorate’s awareness of the
general opinion.
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I. TIGHT ELECTIONS

In May 2016, after a divisive campaign, the United King-
dom voted to leave the European Union, with a majority of
51.9%—a close call indeed (e.g., Ref. [1]). Does this mean
that, as chance would have it, about half of British voters were
in favor of leaving, while the other half opposed? Opinion
polls before the vote suggest a different picture. In January
2011, Remainers were ahead of Brexiteers by about 20 per-
centage points (pp), but this gap fluctuated widely in the
following. polls, while slowly shrinking on average [2]. At
some point in 2013, the fluctuations became comparable to
the gap itself, and the two curves that would decide the fate of
the UK started to routinely cross—the electorate had reached
a polarized opinion.

In fact, given a binary choice, the opinion of modern
democracies often splits itself into remarkably even parts [3].
During the 2020 presidential election in Poland, for instance,
opinion surveys showed a similar evolution: over the last two
weeks before election day, the polls relaxed towards equality
(Fig. 1a). The actual election yielded only a small margin to
the winner, Andrzej Duda (51.0% of the expressed votes).
What leads a population to distribute its votes so evenly
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between two political options? The null hypothesis, of course,
is that every citizen flips a coin to pick their favorite candidate.

Figure 1(b) shows the geographical distribution of votes
during the same election. Essentially, the votes distribute
themselves into two main clusters: the eastern part of the
country voted for Andrzej Duda, whereas the west voted for
Rafał Trzaskowski, with smaller clusters around cities. We
take this clustering, a common feature of electoral maps (e.g.,
Refs. [1,7,8]), as a rebuttal of the null hypothesis.

An alternative route is to represent an electorate as a col-
lection of interacting agents. There is little doubt, indeed,
that our decisions depend on the opinion of others and on
how closely we relate to them [9]. Right before the era of
desktop computers, for instance, Schelling [10] reproduced
the formation of segregated neighborhoods with deterministic
agents who choose their next abode based on simple rules. The
agents distribute themselves on a grid, until an equilibrium
is reached, which features clusters of homogeneous popu-
lation. These clusters, however, remain small, because the
agents’ decisions are strictly deterministic and based on local
information [11].

In the celebrated voter model [12], the opinion s of each
citizen can take two values (+1 or −1) and, at each time
step, every voter transmits its opinion to a randomly chosen
neighbor of theirs. At first, it certainly seems rough (and
slightly degrading) to reduce a citizen’s political views to a
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FIG. 1. Polish presidential election in 2020. (a) Opinion polls
before the election. Source: Wikipedia contributors [2]. Blue dots:
Opinion in favor of Andrzej Duda (Appendix A 1). Solid blue line:
Average over 4-day bins (Appendix A 2). Blue circle: Election result.
(b) Map of the election result in Polish counties (powiat). Source:
National Electoral Commission of Poland [4]. The black dashed line
shows the Prussian border in 1890 [5], virtually unchanged from
1815 to 1914 [6].

two-state variable submitted to such simplistic evolution rules.
The collective behavior of these mechanical citizens, however,
is not trivial. In fact, it depends crucially on the topology of
the network that connects the voters. When only neighbors
are connected, rough clusters form and diffuse through the
network in dimension two or less, but not in higher, dimen-
sions [13–15]. When they exist, these clusters coarsen, until
one invades the entire domain, and the population eventually
reaches unanimity. This is also true for the related majority-
rule model, wherein voters adopt the dominant opinion of a
random set of their neighbors [16].

This relaxation to consensus is not surprising if one as-
sumes that voters tend to align their opinion with their
neighbors (or friends). This is exactly what happens in the
Ising model, which was initially designed to represent a mag-
net and later became the archetypal model of phase transition
[17,18]. When thermal fluctuations are small, the spins of a
magnet align with each other and thus induce a macroscopic
magnetic field. This ferromagnetic behavior disappears above
the Curie temperature, as disorder takes over the system. The

analogy with the social behavior of humans (and fish, for
that matter) was recognized early [19], but the original Ising
model, like the voter model, cannot evenly split an electorate
(unless the null hypothesis prevails).

One way to circumvent this limitation is to make voters
influence their neighbors’ in a deterministic way [20,21]. A
population of such voters ultimately reaches an ordered equi-
librium: either a complete consensus, or a gridlock wherein
every voter opposes their neighbors. In the last scenario, the
opinion is evenly split, but the initial state needs to be finely
tuned to ensure this outcome.

To prevent a single ordered phase to invade the entire pop-
ulation, Nowak et al. [22] randomly alters the bond between
two voters after their opinion has flipped. This disconnects
some groups of voters from the majority and allows them to
hold their views. The propagation of politically oriented in-
formation through a community can also break cross-ideology
ties; this rewiring is visible in the network data of social media
[23]. Another way to maintain some cultural diversity is to
strengthen the influence of like-minded individuals over each
other, a processed called “homophily” [14,24–28]. A social
network can even evolve on its own, regardless of its users’
opinion, as recommendation algorithms steers them toward
isolated communities [29]. These mechanisms, however, do
not favor any special partition of the opinion. For this to
happen, the voters need to be either marshaled or informed
about the general opinion.

Opinion polls, when publicly available during an election,
can affect its outcome, for instance by enticing some electors
to cast their vote in a head-to-head election, when they might
not have cared to otherwise [30]. Tactical considerations in-
formed by opinion polls also enter electoral dynamics [7].
When there are more than two candidates, one might indeed
prefer to use their vote to evict a candidate they strongly
dislike and thus vote for a contender that appears more likely
to win than their favorite. This might explain why two can-
didates often take over the election, while the others are
marginalized.

In binary elections, there can be no tactical voting; opin-
ion polls can still influence a voter’s decision but not for
strategic reasons. Clearly, if all voters were purely conformist,
then the polls would drive them towards unanimity. Noncon-
formists, however, can drastically change the propagation of
trends and opinions in a population [31–34]. Here we add
an element of nonconformity to the Ising model by assum-
ing that voters tend to oppose the general opinion, while
remaining faithful to their friends. In the words of social
psychology, they have a negative attitude toward the winning
camp [35].

Pham et al. [36] and Korbel et al. [27] recently introduced
this tension between homophily and heterophily (members
of a group tend to oppose those of other groups) in their
glass-spin models. Evolving the connectivity of the population
according to the affinity between two individuals, Korbel et al.
[27] found that the population spontaneously fragments into
groups, the size of which follows a realistic distribution.

In the model we propose here, heterophily also plays a key
role, but every voter experiences it towards the entire popu-
lation. The average opinion, communicated by the media, is
perceived as the opinion of others—which every voter would
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like to oppose. To fix ideas, we could call this negative attitude
towards the average opinion an antiestablishment feeling or an
ingrained guard against the rule of the majority. However, we
shall not speculate further about its psychological or cultural
origin; rather, we shall investigate its mathematical conse-
quences and compare them to actual elections.

II. HERDING AND DISLIKE OF GENERAL OPINION

Inspired by Nowak et al. [22] and Araújo et al. [7], we
represent an electorate with a population of N voters, each
holding one of two opposite opinions:

si = ±1, i ∈ {0, 1, . . . , N − 1}. (1)

The state of a voter is thus binary, like the spins of the Ising
model. With this definition, the general opinion is the average
of individual opinions:

s̄ = 1

N

N−1∑
i=0

si, (2)

and the fraction of the electorate that supports opinion +1 is
(s̄ + 1)/2.

We now define rules to evolve the electorate. To express
them, we introduce a Hamiltonian H(s), with the underlying
idea that states for which H is large are unlikely to occur
spontaneously (s is the vector of dimension N that represents
the state of the electorate). We also want H to account for
the influence of a voter’s neighbors on their opinion and for
their sensitivity to publicly available poll results. A simple
expression for the Hamiltonian is

H = −
N−1∑
i, j=0

Ji jsis j + Nεs̄2, (3)

where Ji j corresponds to the influence of voter j on voter i and
ε is the sensitivity of a voter to general opinion.

The first term in Eq. (3) is common to all Ising mod-
els; here, it represents social impact [7,22]. We assume that
Ji j = Jji = 1/2 when voters i and j are socially connected
and Ji j = 0 otherwise. The structure of the electorate can
thus be represented by a lattice, in which the nodes represent
voters, and edges represent social connections [Fig. 2(b), for
instance]. Since J is a nonnegative matrix, the corresponding
term in the Hamiltonian favors unanimity: The energy of the
population (i.e., the value of the Hamiltonian) decreases when
connected voters agree.

The second term in Eq. (3), which reads

εNs̄2 = εs̄
N−1∑
i=0

si = ε

N

N−1∑
i, j=0

sis j, (4)

is unusual, although similar ones have appeared in some spin-
glass models (notably in the cost function of computer-chip
layout; Ref. [37]). Here it represents the impact of opinion
polls on the electorate. We assume ε to be positive, which
means that, although voter i tends to agree with their friends
and neighbors, they prefer to oppose general opinion, in pro-
portion to −εs̄. Equivalently, one can say that every possible
pair of voters is coupled with a small negative coefficient
−ε/N .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. [(a)–(f)] Numerical simulations on a 94-voters triangular
mesh. [(a), (c), and (e)] Evolution of the average opinion and exam-
ples of final state. Corresponding point shown on (a), (c), and (e)
with black circles. [(g) and (h)] Initial and final opinion of 335 voters
distributed on a narrow-necked mesh (β = 30, ε = 1). [(a), (e), and
(g)] Initial opinions are randomly distributed with 90% of blue votes;
(c) 50% of blue votes.

As a simple limit case, we may consider an entirely dis-
connected population (J vanishes). The Hamiltonian then
depends on the state of the electorate only through s̄2. Such
a population will tend to distribute its votes evenly to min-
imize its energy (s̄ will be close to zero). To the contrary,
a well-connected population with no sensitivity to opinion
polls (ε = 0) will tend to vote uniformly when fluctuations are
weak, although disconnected groups might form clusters of
opposed opinion. In both cases, however, random fluctuations
can perturb the system away from the low-energy states.

We now return to a nontrivial Hamiltonian, which repre-
sents voters that are sensitive both to their neighbors’ opinion
and to general opinion. To represent the influence of neighbor-
ing voters on each other, we need to specify the connectivity
matrix J. In line with earlier models [12,22], we assume
that voters are distributed on a two-dimensional lattice, such
as the one of Fig. 2(b)—a crude representation of electoral
geography. As a result, the connectivity matrix is sparse:
Voters that are far away from each other on the lattice do
not interact directly. The only long-range interactions in the
present model are those that are mediated by opinion polls,
through which each voter is connected to the electorate as a
whole. A more realistic connectivity, perhaps, would involve
a scale-free distribution of interactions [21,38,39] but, to keep
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things intuitive, we limit the present investigation to networks
in which connectivity essentially maps onto geometrical
distance.

Let us assume that each new issue of an opinion poll
triggers a debate in the population of voters. As a result of this
debate, some voter i changes their mind under the combined
influence of their neighbors and of the new poll. How likely
is the transition si �→ −si? Obviously, this likelihood should
decrease with the associated energy gain,

�Ei = H(s) − H(Ti · s), (5)

where the linear operator Ti realizes the transition si �→ −si.
In our model, �Ei is the only quantity that systematically
influences a voter.

Of course, we cannot model a voter’s decision in a fully
deterministic way. Instead, we treat the complicated dynamics
of electoral decision-making as random fluctuations that are
biased towards negative �Ei. We represent the strength of this
bias with a positive parameter, β, and assume that the proba-
bility pi that voter i change their mind is a decreasing function
of β�Ei. Specifically, we choose the algorithm of Glauber
[40] to evolve the electorate: At each step, we randomly pick
a voter i and flip their vote, also randomly, with probability pi.
This probability decreases exponentially with β�Ei:

pi = exp(−β�Ei )

1 + exp(−β�Ei )
. (6)

As visible in this expression, the units of the Hamlitonian do
not really matter, provided the product βH is dimensionless.

We then pick another voter and repeat the procedure; this
loop defines an algorithm for the noise-driven evolution of
the electorate. A natural definition for time is then t = nG/N ,
where nG is the number of iterations. By this definition, at time
t , each voter has been picked t times on average.

After many iterations (t → ∞), Glauber dynamics drives
any Hamiltonian system toward the Boltzmann distribution,
wherein the probability of a given state s is proportional to
exp[−βH(s)]. The analogy with classical thermodynamics is
now obvious and justifies our calling “energy” the value of the
Hamiltonian. Similarly, we call 1/β the “temperature,” with
the understanding that it represents the propensity of a voter
to follow their own judgment rather than the opinion of others.

For illustration, when the temperature vanishes (β → ∞),
the electorate is deterministic: Voter i automatically changes
their mind when �Ei is negative and sticks to their opinion
otherwise. Conversely, an infinite temperature (β → 0) means
that every voter chooses their opinion based only on their
own judgment (at random, in the present model). In between
these two extremes, an intermediate value of β portends richer
dynamics.

III. SPLIT SOCIETY

We are now ready to numerically simulate the evolution
of our model. To do so, we first create a two-dimensional,
triangular lattice with 94 voters [Fig. 2(b), Appendix B]. Each
edge in this lattice corresponds to a positive element in the
connectivity matrix J—two socially connected voters.

We then run a first series of simulations without any opin-
ion poll (ε = 0, Appendix B). When the temperature is large

enough (1/β = 10, for instance), we find that the opinion
relaxes to about 50% [Fig. 2(a)]. This is not surprising, since
voters are then indifferent to both their neighbors and general
opinion—at large temperature, the model boils down to the
null hypothesis. As it turns out, the general opinion then
behaves much like actual opinion polls [Fig. 1(a)], but the
opinions of individual voters are scattered randomly across
the network [Fig. 2(b)]. The absence of any structure in this
distribution indicates that the connectivity of the electorate
does not really matter at high temperature.

The picture changes radically when we decrease the tem-
perature [1/β = 0.02; Figs. 2(c) and 2(d)], that is, when
voters become unlikely to change their mind if that means
opposing their neighbors. As a result, even if we start the
simulation with evenly distributed votes, the population now
relaxes to unanimity. The resulting consensus can be either
of the two options, but most voters then think alike. Such a
population is ruled by the majority; only seldom does some
isolated voter dare opposing the general opinion. If we want
to represent a population in which social connections matter,
but which does not give in to the majority altogether, then we
still lack an ingredient.

We now switch on the influence of opinion polls, by set-
ting ε = 1, while maintaining a low temperature [1/β = 0.02;
Figs. 2(e) and 2(f)]. Like in the high-temperature case, the
average opinion relaxes to evenly split votes, although at the
slower pace dictated by a low temperature. Again, the evo-
lution of the opinion resembles that of Fig. 1(a). However,
the distribution of individual opinions in this population is
entirely different from that of Fig. 2(b): Like-minded voters
gather into two clusters of comparable size. The two camps
are virtually unanimous, and their sizes match each other
almost perfectly—the epitome of a split society. The rest of
the paper focuses on the existence and the properties of this
new, split-society phase.

IV. VOTE PATTERN AND SOCIAL RIFT

Although the coin-flipping electorate and the interacting,
poll-sensitive one both relax to 50% [Figs. 2(a) and 2(e)],
the corresponding patterns on the connectivity lattice look
entirely different [Figs. 2(b) and 2(f)]. These patterns, of
course, are only visible to an all-seeing observer, but an in-
dividual voter would nonetheless be able to tell them apart,
based only on local perceptions. One measure of these per-
ceptions is the clustering coefficient, c, which is the average
proportion of a voter’s neighbors that share their opinion. At
high temperature, only half of them agree [c = 0.5 ± 0.01
in the simulation; Fig. 2(b)]. Conversely, in a split soci-
ety, every voter is surrounded with like-minded neighbors,
with barely any contact with political opponents (c = 0.9 ±
0.02)—except for those voters who find themselves on the
boundary between the two camps [Fig. 2(f)].

Where does this boundary lie? On the disk lattice of
Fig. 2(f), it often settles along a diameter. To fix its position,
we generate a peanut-shaped mesh, in which a narrow neck
separates the network into two equal parts [Figs. 2(g) and
2(h)]. This configuration creates a social rift: Voters are better
connected to their own side of the network than to the opposite
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side. This rift exists prior to the election process; we now
investigate how it expresses itself in the election result.

Starting the simulation with a biased opinion (90% of blue
votes initially, β = 30 and ε = 1), we find that clusters of
like-minded voters appear and begin to merge [Figs. 2(g) and
2(h)]. Over time, these clusters tend to split the population
into two compact camps of equal size, and the boundary that
separates them places itself right across the neck of the mesh.
This location, of course, minimizes the length of the interface
and therefore minimizes the energy of the population; in an
hourglass filled with two immiscible fluids, surface tension
would favor the same configuration.

Clearly, the symmetric mesh of Figs. 2(g) and 2(h) favors
the partition of the electorate into two equal camps. The elec-
torate’s connectivity and opinion polls thus concur to bring the
average opinion to 50%. An assymetric mesh, with one side
larger than the other, would likely push the average opinion
away from 50%—an example of the connectivity’s influenc-
ing an election (we shall not investigate this phenomenon
here). In a real population, however, one can expect that the
lines of weak connectivity are many and therefore that the
system can find a path along some of those lines that splits
the electorate into two equal parts.

At the scale of a country, social connections pertain, at
least partly, to geography. We can thus expect that the spatial
distribution of votes during an election bears the mark of
social connections. In 1815, for instance, Poland was reparti-
tioned between Prussia, Austria, and Russia, and this partition
still lingers on in Polish society [41]. If we superimpose
the 1815 border to the 2020 electoral map [dashed line in
Fig. 1(b)], then we find that they match remarkably well.
This phenomenon occurred in many Polish elections and is
often attributed to cultural and political differences between
the three empires [6,42].

The present model suggests a distinct interpretation,
whereby the social structure of present-day Poland bears the
mark of historical borders, across which people are less likely
to be connected—as visible, for instance, in marriage statistics
[43–45]. Like in the narrow-necked lattice of Fig. 2(h), the old
borders would then be a favorable location for the interface
between political camps. The same mechanism might also ac-
count for the opposition between cities and rural areas around
them [Fig. 1(b)]. This interpretation is entirely speculative
at this stage, but we take this resemblance with reality as
encouragement.

V. FLUCTUATION-INDUCED PHASE TRANSITION

The Ising model was introduced to explain the phase tran-
sition that temperature induces in ferromagnetic materials
[17,18]; we therefore expect that the present election model
undergoes a similar transition.

We begin with the one-dimensional, periodic network
shown in Fig. 3(a); when ε vanishes, this is the original Ising
model in one dimension. It has a simple analytical solution
which, in the thermodynamic limit (N → ∞), shows no sin-
gular phase transition [black dashed lines in Figs. 3(c), 3(e)
and 3(g)]. As they should, our simulations conform to this
theory [blue dots in Figs. 3(c), 3(e) and 3(g)]: As β increases,
the energy density e (total energy divided by N) decreases

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Fluctuation-induced transition. Left column: Periodic
one-dimensionnal lattice (N = 1000, 1 of 10 nodes shown). Right
column: Triangular lattice (N = 1046). [(a) and (b)] Examples of
equilibrium states. [(c)–(h)] Final stage of the numerical simulation.
Blue dots: No influence of the polls (ε = 0); pink dots: polls matter
(ε = 1). Black circles correspond to states shown in (a) and (b).
Dashed black lines in (c), (e), and (g) show the exact solution [ε = 0,
[17]]. The dotted black lines in (d), (f), and (h) show the critical
temperature for a regular, infinite, triangular lattice, βc = log(3)/4.

continuously, the clustering coefficient c increases, and the
general opinion s̄ fluctuates about zero.

When the opinion-polls term is introduced (ε = 1), not
much changes, although the fluctuations of the average opin-
ion at low temperature are reduced [pink dots in Figs. 3(c),
3(e) and 3(g)]. The simulations therefore suggest that, in one
dimension, temperature induces no singular phase transition
in the present model, like in the original Ising model.

In two dimensions, the Ising model can be solved only
in some specific cases [46] but, in general, it is known to
have a critical point at some finite, nonzero temperature. On
an infinite, regular, triangular lattice, the inverse critical tem-
perature is βc = log(3)/4 [47,48]. (Using a periodic square
lattice does not change qualitatively the results we report
here, Appendix B 2.) In the absence of the opinion-poll term
(ε = 0), our numerical simulations on an irregular, triangular
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mesh [N = 1046, Fig. 3(b)] show a similar behavior [blue
dots in Figs. 3(d), 3(f) and 3(h)]: on increasing β, the system
acquires a spontaneous magnetization near βc. An ordered
phase then emerges, whereby the general opinion takes one of
two opposed, nonzero values (s̄ = ±s∗, where s∗ is a positive
function of β).

Despite the small size of our numerical simulations (N =
1046), the transition that occurs near the theoretical value of
βc is sharp [Fig. 3(h)]. Its rigorous characterization, however,
would require larger meshes; we leave it for future inves-
tigations. Nonetheless, confident that our small simulations
behave qualitatively as they should, we proceed with the in-
troduction of opinion polls.

When the opinion-poll term is switched on (ε > 0), it
causes a drastic change in the ordered phase [ε = 1, pink dots
in Figs. 3(d), 3(f) and 3(h)]. Like in one dimension, the energy
density and the clustering coefficient are barely affected by
ε (a slight shift is visible at high β), but s̄ remains small at
any temperature [Fig. 3(h)]. Above βc, two seemingly ferro-
magnetic domains coexist, at the energetic cost of maintaining
an interface between them—a cost that the opinion-poll term
needs to balance. The next section is devoted to this energy
trade-off.

VI. CONTINUOUS APPROXIMATION

We now assume that the temperature is low and that the
population of voters is ordered: It has either reached a con-
sensus or split into two camps. We can then represent it as a
connected block of n voters which support one opinion and
another, opposed block of N − n voters (the size of either
block can vanish). These blocks are essentially uniform, but
a small proportion p of isolated voters can oppose the bulk of
their own group (p is likely to increase with temperature).

In Appendix C, we propose a continuous model which
approximates the Hamiltonian, Eq. (3); here we briefly present
the assumptions it is based on and their implications. In the
thermodynamic limit (N → ∞), and in two dimensions, the
two blocks are separated by a smooth interface of length L.
This interface has an energetic cost, since it causes some vot-
ers to oppose their neighbors. On a two-dimensional triangular
lattice, the number of links ni cut by this interface is, roughly,
twice the number of triangles that it crosses (Appendix C 2):

ni = 2

√
N

AL, (7)

where A is the total area occupied by the population of voters.
This area is arbitrary, since only connectivity matters, but it
provides a scale for L.

This scaling is critical to the continuous approximation. On
a regular square grid, for instance, only the prefactor of Eq. (7)
would change, and the continuous approximation would hold,
although the anisotropy of the grid would probably affect
the orientation of the interface. Conversely, on a scale-free
network, the continuous approximation cannot hold, and the
split-society phase might altogether disappear. On which class
of meshes can this phase form? This is yet an open question.

Returning to our triangular mesh, we need to estimate the
average energy associated to a link cut by the interface. In
general, there is no easy solution to this problem, because the

two phases include mavericks voters, the proportion of which,
p, increases near the critical temperature. When p becomes
significant, the very definition of the interface becomes am-
biguous; we avoid this issue by assuming that the temperature
is low enough for mavericks to be ignored (p = 0 and s∗ = 1).
The energy cost associated to the boundary is then simply 2ni.

The next significant assumption is that, at low temperature,
the only relevant configuration is that which minimizes the
total energy. We thus neglect the entropic contribution of the
fluctuations, in the spirit of the mean-field theory. This turns
our problem into a purely geometrical optimization: For a
given value of the general opinion s̄, we look for the config-
uration that minimizes L (Appendix C 3). Just like intuition
suggests, the best possible shape for the interface is a circle
which intersects the boundary of the lattice at a right angle (or
a collection of such circles). The relation between the length
of the optimal interface, Lmin, and the general opinion, s̄, de-
pends on the geometry of the lattice. (Similarly, the interface
between two immiscible liquids adjusts to the shape of the
container.)

To fix ideas, we represent the entire population with a disk
of radius unity—the geographical equivalent of a physicist’s
spherical cow (Appendix C 3). Elementary trigonometry then
yields an implicit formula which relates the minimal length
of the interface Lmin to the general opinion s̄. Accordingly,
we propose a continuous approximation for the Hamiltonian,
which we write as a function of s̄ (Appendix C 4):

Hc(s̄) = εN

[
4

ε
√

Nπ
Lmin(s̄) + s̄2

]
. (8)

The state of the electorate is then found by minimizing this
expression with respect to s̄.

Figure 4(a) shows the rescaled energy density e/ε as a
function of the general opinion s̄ and the rescaled sensitivity
to polls ε

√
N . There are three energy valleys in the (ε

√
N, s̄)

plane (loci of local minima with respect to s̄). Two of them,
along s̄ = ±1, correspond to unanimity, whereas the the third
one, along s̄ = 0, represents the split-society state, which ex-
ists only when ε

√
N > 3π3/2/8. For small values of ε

√
N ,

the two unanimity states are global minima for the energy. As
ε
√

N increases, however, the system undergoes a first-order
transition and, when ε

√
N = 8/

√
π , the split-society state

becomes the global minimum (Appendix C 4). The parameter
that controls the stability of each phase is thus ε

√
N , which

means that the existence of the split-society phase depends
not only on the sensitivity to the polls but also on the size of
the electorate.

These results are based on an approximate, continuous
model. To check them, we use a series of numerical sim-
ulations on triangular lattices (Appendix B); we find good
agreement with the continuous model [Fig. 4(a)]. The nu-
merical simulations appear to switch from unanimity to the
split-society phase when N exceeds the transitional number
of voters, namely

Nt = 64

πε2
. (9)

Despite this good agreement, the above expression should be
treated with caution. Its prefactor, in particular, depends on
the geometry of the lattice. The scaling relation Nt ∼ ε−2,
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(a)

(b)

FIG. 4. (a) Phase transition at low temperature. Blue shading:
rescaled energy density e/ε, Eq. (8). Black dashed lines: Global
energy minima with respect to the average opinion s̄. Shaded
dotted lines: Local minima. Dots: Numerical simulations on a two-
dimensional triangular mesh (β = 0.5). (b) Magnetization induced
on a two-dimensional, triangular mesh by an external field H . The
population of voters is in the split-society state. Dashed black line:
Continuous approximation, Eq. (11).

however, is likely to hold in other networks with a similar
topology.

In summary, the split-society phase is thermodynamically
stable only when voters are sensitive enough to opinion polls.
Because this phase involves an interface, its stability depends
on the size of the electorate; we shall make use of this depen-
dence in Sec. VIII, which is devoted to actual elections. Before
we do so, however, we first need to consider fluctuations.

VII. SUSCEPTIBILITY AND FLUCTUATIONS

Thermal systems fluctuate, and the amplitude of their fluc-
tuations depends on their sensitivity to external forces—their
susceptibility. Identifying, let alone measuring, some external
forcing in an electorate is, at best, challenging, but measuring
fluctuations should be straightforward.

Establishing the fluctuation-dissipation relation for the
Ising model has become a textbook exercise, and the
opinion-poll term does not affect this classical derivation
(Appendix C 5). It begins with the introduction of an addi-
tional term, −HNs̄, to the Hamiltonian of Eq. (3), where H
represents the intensity of an external magnetic field. Here
this term serves a mathematical purpose, but one can also
propose a sociological interpretation for it. It could represent
a general preference for one of the two candidates or the suc-
cessful propaganda of one party. Alternatively, the polls could
be biased and systematically evaluate the general opinion to

s̄ − H/ε instead of s̄ [49]; this would add the same term to the
Hamiltonian.

Clearly, the equilibrium configuration of the electorate will
depend on H and so will the general opinion s̄. Assuming the
system has reached the Boltzmann equilibrium, we find that
the susceptibility χ0 reads (Appendix C 5):

χ0 ≡ ∂ s̄

∂H

∣∣∣∣
H=0

= βNσ 2
o , (10)

where σ 2
o is the variance of the voters’ opinion—the amplitude

of the fluctuations. Written in this form, the susceptibility of
the electorate seems unrelated to ε; in reality, the sensitivity to
polls will express itself through σo.

To see this, we leave the realm of exact derivations and
return to the continuum approximation of Sec. VI. Adding an
external forcing, −HNs̄, to the approximate Hamiltonian of
Eq. (8) shifts the split-society valley vertically in Fig. 4(a).
Elementary calculus yields

χ0 = 1

2ε
(11)

in the thermodynamic limit (N → ∞, Appendix C 5). To
validate this expression, we run numerical simulations on
triangular lattices; we find good agreement between the two
[Fig. 4(b)]. Again, the numerical prefactor in Eq. (11) de-
pends on the topology of the lattice, but we expect the scaling
χ0 ∼ 1/ε to be generic.

Equation (11) shows how exotic the split-society phase is.
Like a magnet below the Curie temperature, it is an ordered
phase wherein the interactions between neighbors overcome
thermal fluctuations. Unlike the classical ferromagnetic phase,
however, its susceptibility remains finite—in the fashion of the
paramagnetic phase. In that sense, the split-society phase is a
hybrid.

In electoral terms, the susceptibility tells us how easily one
political camp can expand at the expense of the other. For
instance, if the polls are biased, then the camp that appears
to lose will grow, because voters will tend to oppose the
winner. The actual opinion will thus shift in proportion to the
susceptibility of the split-society phase. Through Eq. (10), this
susceptibility should relate the fluctuations of electoral results
to the size of the electorate.

VIII. POPULATION SIZE

Opinion polls provide some insight about the fluctuations
of public opinion during an election campaign [Fig. 1(a)] [50].
In particular, we can measure their variance σp but, because
pollsters survey only a small subset of the electorate, σp is
not the variance of the opinion, σo. To distinguish the two,
we average the polls over time, until their variance reaches
a plateau, which we interpret as σo (Appendix A 1). During
the 2020 Polish presidential election, for instance, we find
σo ≈ 0.01 (0.5 pp). This can only be an order-of-magnitude
estimate, which we now use to illustrate how the present
model can be compared to observations.
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FIG. 5. Average margin of victory, estimated over at least three
binary elections since 1990. Error bars show standard deviation.
Dashed line: estimated transitional electorate size Nt (Appendix E 3).

Combining the two expressions of the susceptibility de-
rived in Sec. VII, Eqs. (10) and (11), we find

βε = 1

2Nσ 2
o

(12)

when the electorate is in the split-society state. In 2020, 16.4
million voters took part in the Polish presidential election; we
therefore estimate that βε ≈ 3 × 10−4. To separate the ε from
β, we now use the transitional size Nt of the split-society state
(Sec. VI).

If the social temperature 1/β is low enough, then the elec-
torate should be in an ordered state and prone to the phase
transition of Fig. 4(a). Accordingly, countries with a small
population would reach a near consensus during an election,
whereas larger ones would find themselves in the split-society
state. To check this, we collect the result of 168 binary elec-
tions in 31 countries since 1990 (Appendix E 1). Countries
where the electorate is less than about a million voters tend
to generate large margins of victory (Fig. 5). Larger countries,
on the other hand, typically generate a margin of victory of
about 7 pp. A more careful analysis of the data confirms that a
transitional population size Nt = 106 indeed separates the data
into two classes with distinct distributions (Appendix E 3).

Looking at this empirical fact through the lens of the
present model, we can estimate the sensitivity to polls with
Eq. (9); we then find ε ≈ 0.005. This value means that, for
an average voter, the result of opinion polls matters about
200 times less than their friends’ and neighbors’ opinion.
This weak influence, however, accumulates over the electorate
and can ultimately maintain an entire population in the split-
society state.

Combining this result with Eq. (12), we find a temperature
of β ≈ 0.07, about a quarter of the critical value βc (Sec. V).
This estimate therefore suggests that β is near the critical
value, which means that the political decisions of voters are,

on average, balanced—a voter is about as likely to be influ-
enced by others as to make a personal decision.

These estimates should be treated as preliminary, as they
are based on a small data set and on several crude approxi-
mations (a specific connectivity, identical voters and constant
parameters, to name a few). If confirmed, however, they would
indicate that electorates self-adjust to criticality, through a
mechanism that remains to be elucidated.

IX. CONCLUSION

Inspired by election results and electoral maps, we have
introduced the influence of opinion polls in a model of inter-
acting voters. The resulting system differs from the original
Ising model only by a long-range interaction term, but this
elementary change allows the split-society phase to emerge.
This new phase is ordered, in the sense that most voters share
their neighbors’ opinion, but the general opinion is evenly
split. Opinion polls can thus foster the emergence of two
opposed camps.

The split-society phase has remarkable properties. In par-
ticular, its susceptibility remains finite and independent of
temperature (unlike that of the classical ferromagnetic state).
In addition, the interface that splits the electorate into two
camps makes the system size-dependent and tends to place
itself along preexisting fault lines in the electorate.

These properties need to be better understood and formally
established. A specially enticing endeavor is to seek the exact
partition function of a two-dimensional electorate in the ther-
modynamic limit. This would yield the critical temperature
below which the split-society state exists and explain why the
susceptibility of this phase is constant (beyond the rudimen-
tary reasoning of Sec. VI). The kinship of the present model
with the original Ising model suggests that these questions
could be addressed with the tools of statistical physics, at least
to some extent.

Does the split-society phase deserve its name? Its most
striking properties certainly match our perception of what a
split society is: two political camps of similar strength stand
face to face, with little connections between them. To reverse
an election, only a small number of marginal voters need to
flip their allegiance, while the bulk of the two camps stick to
their opinion.

These features are familiar to the observer of modern elec-
tions, but the present model needs a more rigorous evaluation.
In Sec. VIII, we delineated a path towards its comparison with
observations. Among the numerical estimates we propose, the
transitional number of voters Nt , above which the split-society
phase appears, is probably the most robust. It is, after all,
directly based on election results, which are widely available
and reliable data. In itself, though, it is not an exacting test of
the model.

The evaluation of the two other parameters, the tempera-
ture 1/β and the sensitivity to polls ε, is more fragile. It relies
on an accurate estimate of the opinion fluctuations and on
the assumption that these parameters are constant. Their value
should be treated with caution, but we find it at least encour-
aging that β is close to 1. Extreme values, indeed, would be
unrealistic: Every voter would be either entirely disconnected
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from the others (β → 0) or completely determined by them
(β → ∞).

Finally, there is the connectivity network. We have limited
ourselves to a two-dimensional geometry for simplicity and
for comparison with electoral maps. In reality, social networks
are more complicated (possibly scale-free) and the notion
of neighbors becomes hazy. The pursuit of the split-society
phase in complex networks promises an exciting mathemati-
cal quest—one from which we might learn about ourselves.
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APPENDIX A: POLISH PRESIDENTIAL
ELECTION OF 2020

1. Opinion polls

The 2020 presidential election in Poland lasted from June
10 to July 12. During the first round (until June 28), two can-
didates were selected for the vote of the second round, which
took place two weeks later. Various polling organizations
started probing the Polish opinion about this configuration
(A. Duda vs R. Trzaskowski) as early as May 14; Wikipedia
contributors [51] have collected this data, which we use here
to probe the dynamics of a binary election [Fig. 6(a)].

In total, 70 opinion polls make up this data set (we drop an
early poll from 2019); they are distributed over the 59 days be-
fore the election. The polling rate is about 0.85 poll day−1 ini-
tially. It increases to 2.0 poll day−1 during the last 20 days be-
fore the second round [Fig. 6(b)]. Since the opinion appears to
have converged at the time of this transition, we limit our anal-
ysis to the polls made less than 20 days before the election.

After relaxing to a value close to 50%, the opinion polls
fluctuate around their average. We now try to separate, in this
fluctuation, the contribution of measurement noise from the
actual variability of the opinion.

2. Fluctuations

Over the last 20 days of the election, the standard deviation
of the polls is σ ≈ 1.40 pp, slightly less than the measurement
uncertainty we would expect in a sample of 1000 voters,
which is typical for opinion polls [52]. This observation alone
tells us that estimating the fluctuations of a population’s opin-
ion based on surveys is fraught with statistical traps.

Indeed, assuming that opinion polls are an unbiased, but
noisy, measure of the actual opinion, their variance, σ 2

p , and
that of the opinion, σ 2

o , should add up to the total variance:

σ 2 = σ 2
p + σ 2

o . (A1)

The opinion polls of Fig. 6(a) provide a direct estimate of the
first term only—which we find to be comparable to what we
expect σ 2

p to be for a typical opinion survey.
To distinguish the fluctuations of the polls from those of

the opinion, we assume that the latter are correlated in time,
whereas the former are not. This assumption is consistent with

(a)

(b)

(c)

FIG. 6. (a) Opinion polls before the Polish presidential election
of 2020 (blue dots, in favor of Andrzej Duda) [51]. Pink squares:
Four-day average (error bars show the standard deviation in each
bin). (b) Poll variance as a function of bin size (solid blue line, in
squared percentage points). Shaded area shows variability, estimated
by bootstrapping (3/4 of data points selected randomly 1000 times).
Black dashed line: Estimate of poll noise σ 2

p . Black dotted line: Poll
variance over entire, nonbinned sample σ 2. (c) Number of opinion
polls accumulated during the election (blue line). Polls less than 20
days before election appear in (b) [vertical dashed line in (a) and (c)].

the Glauber dynamics: When the temperature is low enough
(large β), only a small fraction of the population will change
their mind between two polls.

If this assumption is true, and if the polls are frequent
enough, then we should be able to reveal the slow evolution
of the opinion by assigning the data points to time bins of
varying size. This binning should allow us to reduce the
variability within each bin, and thus strip the time series from
the polling noise.

In practice, we calculate the variance within each bin, σ 2
b ,

and plot its average over bins, 〈σ 2
b 〉, as a function of the

bin size [Fig. 6(b)]. To estimate the uncertainty about this
quantity, we randomly pick three quarters of our data and
bin the data again. Repeating this bootstrapping procedure
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1000 times, we find a standard deviation of about 0.4 pp (20%
relative uncertainty).

As the bin size increases, the average variance in a bin also
increases (the variance of a bin that contains a single data
point vanishes). When the bin size reaches about 3 days, the
average variance 〈σ 2

b 〉 seems to plateau around 1.75 pp2 before
it finally reaches the total variance σ 2, after about 7 days. We
interpret the first plateau as the variance of the polls σ 2

p . The
rest, σ 2 − σ 2

p , provides us with an estimate of the opinion
fluctuations: σo ≈ 0.5 pp (expressed in terms of the variance
of s̄, σo ≈ 0.01).

For the sake of consistency, we finally distribute the data
into 5-day bins [pink line in Fig. 6(a), also in Fig. 1] and
calculate the variance of this binned data set—hoping that
it is rid of most of the measurement noise. We then find
σo ≈ 0.2 pp.

APPENDIX B: NUMERICAL SIMULATIONS

1. Numerical procedure

To illustrate the theory and evaluate our approximations,
we run simulations on one- and two-dimensional lattices.
The triangular lattices shown in Figs. 2 and 3, and used in
the simulations of Fig. 4, are generated with the mesher of
FreeFem + + [53]. We then generate the connectivity matrix
J associated to these meshes by setting Ji j = Jji = 1/2 when
nodes i and j are connected and Ji j = Jji = 0 otherwise. The
resulting matrix is sparse, since only neighboring nodes can
be connected. The circular mesh of Fig. 2(b) has 94 nodes.
The boundary of the peanut-shaped mesh of Figs. 2(g) and
2(h) is parameterized by

r = 1 + 0.7 cos(2θ ), (B1)

where r and θ are the polar coordinates of a point along the
boundary. The mesh has 335 nodes.

We use the Glauber algorithm to evolve the state of the
system [40]. At each time step, after node i has been picked
randomly, the entire Hamiltonian is evaluated to get the tran-
sition energy �Ei. Clearly, this algorithm is not optimized
for performance, but it serves its illustrative purpose well. All
numerical routines are available online [54].

2. Fluctuation-induced phase transition

The one-dimensional lattice of Fig. 3(a) is made of 1000
nodes, each connected to exactly two neighbors. For each
run, log10 β is randomly picked from a uniform distribu-
tion between −1 and 1. Each simulation runs until t = 103.
The two-dimensional, triangular lattice of Fig. 3(b) has 1046
nodes; log10 β is randomly picked between − log10 4 and
log10 4. Simulations run until t = 104.

To check whether this transition occurs in the traditional
two-dimensional Ising model, we run similar simulations on
a periodic square grid [Fig. 7(a)]. When the influence of the
polls is switched off [ε = 0, blue dots in Figs. 7(a), 7(c) 7(e),
and 7(g)], we recover the classical phase transition [46]. When
polls matter (ε = 1, pink dots), a similar transition seems to
occur, but the general opinion s̄ (i.e., the average magnetiza-
tion) of the ordered phase vanishes. This is the signature of
the split-society phase.

In the split-society phase that occurs on a periodic square
grid [Fig. 7(a)], the boundary between the two domains can
lie anywhere on the grid. To break this symmetry, and repro-
duce the narrow-necked mesh of Figs. 2(g) and 2(h), we now
consider a square grid wherein a series of neighboring nodes
are disconnected [Fig. 7(b)]. The disconnected nodes separate
the grid into two equal parts, joined only through a bottleneck
around the center of the grid. This topology barely affects
the phase transition (Figs. 7(d), 7(f) and 7(h)] but, this time,
the two domains of the split-society phase tend to occupy
each side of the bottleneck, thus minimizing the length of the
boundary between them.

3. First-order transition at low temperature

The simulations shown on Fig. 4 were made on three tri-
angular meshes of circular shape, with 116, 330, and 1045
nodes. In Fig. 4(a) the temperature is fixed to β = 0.5, while
log10(ε

√
N ) is randomly picked between log10 7 − 2 and

log10 7 + 1. Each simulation runs until t = 103. In Fig. 4(b),
β = 1 and ε is fixed to the value indicated in the legend.
The (rescaled) exterior magnetic field H/ε is picked randomly
between −1/2 and 1/2. Each simulation is run until t = 103.

APPENDIX C: CONTINUOUS LIMIT

1. Political camps

We consider the Hamiltonian of Eq. (3) in the limit of a
large number of voters (N → ∞), when they are distributed
on a two-dimensional lattice, such as the one of Fig. 3(b). In
the presence of an external field H , this Hamiltonian becomes

H = −
∑
i, j

Ji jsis j + ε

N

(∑
i

si

)2

− H
∑

i

si. (C1)

We want to approximate our system as a two-dimensional
continuum. To do so, we first consider that the voters dis-
tribute themselves over a fixed domain. The density of voters
thus grows with N , and we can introduce the local opinion s,
which is some local average of the opinions of nearby voters.
By construction, in the thermodynamic limit (N → ∞), s
becomes a function of position which can take any real value
between −1 and +1.

When the temperature is low enough, we expect that the
population of voters will form one or two homogeneous
phases. In other words, the disk that represents the population
will be either covered with a single phase of local opinion
+s∗ or −s∗ [Fig. 2(d)] or split into two phases of opposite
opinions +s∗ and −s∗ [Fig. 2(f)]. This allows us to introduce
the next simplification: We assume that the local opinion s can
take only two values, +s∗ and −s∗. The local opinion s thus
splits the main domain into subdomains with distinct phases
(political camps).

Each phase represents a group of connected voters, most of
whom share a common opinion. Within each phase, however,
there are isolated voters whose opinion oppose the majority
of their group. As a result, s∗ can be less than 1, especially
when the temperature gets close to its critical value. In fact,
we expect these phases to be essentially the same as those of
the classical Ising model (ε = 0) at low temperature.
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We now return to the Hamiltonian of the original model,
Eq. (C1). Its first term accounts for the interactions between
neighbors. In the continuous limit, and for an isotropic and
homogeneous mesh, we expect this contribution to be propor-
tional to the length 
 of the interface separating two phases; we
shall estimate this term in the next section. As for the energy
stemming from the interaction of neighboring voters within
each phase, it is independent from the shape of the political
camps, and its density is the same in both camps. It can thus
be discarded as a constant contribution to the total energy.

The second and third terms of the Hamiltonian depend on
the system’s state only via the global opinion

s̄ = 1

N

N∑
i=1

si = s∗
(

2A

A − 1

)
, (C2)

where A is the area occupied by the phase of local opinion
s∗ and A is that of the whole domain. As a consequence, the
system’s energy depends essentially on the area of one of the
phases (A, for instance) and on the length of the interface 
.
Therefore, we can use these two parameters (or, equivalently,
s̄ instead of A) to describe the system—this is our third,
and last, simplification. Of course, these parameters are not
fully independent; when A vanishes, for instance, 
 must also
vanish.

2. Interface energy

To calculate the energy increase associated to the interface
between two phases, we first need to estimate the number of
links that are crossed by this interface and then the energy
associated to each link.

If, on average, the mesh is homogeneous and isotropic,
then the number of links that an interface crosses, ni, does not
depend on the location of the interface, nor on its orientation.
In the thermodynamic limit (N → ∞), the typical distance
dN between nodes becomes infinitesimal. Therefore, if the
interface is smooth, then it will appear as a straight line at the
scale of dN . In other words, ni depends only on the interface’s
length L, not on its shape. We can thus calculate ni along any
smooth path we like.

Let us consider a path that runs straight through an
isotropic and homogeneous triangular mesh, such as the one
of Fig. 8(a). On average, this path will cut two edges over a
distance dN (the average distance between nodes). This sug-
gests ni ≈ 2L/dN . To estimate dN , we simply take the square
root of the inverse density of nodes: dN ≈ √

A/N . Overall, we
find Eq. (7). To test this estimate, we generate a series of trian-
gular mesh over a disk of radius unity [A = π , Fig. 8(a)] and
count the number of edges that intersect a diameter (L = 2).
We find that Eq. (7) is in excellent agreement with the exact
results [Fig. 8(b)].

We now need to evaluate the energy gain associated to each
link crossed by the interface. To do so, we first consider that
the whole domain is invaded by one of the two phases. At a
low-enough temperature, the phase is virtually homogeneous,
and the general opinion is s∗ ≈ 1. We then draw an interface
and flip all the nodes that are on one side of the interface. For
each link cut by the interface, the average energy increase is

δE = 2, (C3)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Fluctuation-induced transition. Left column: Periodic
square lattice (N = 1024). Right column: Square, nonperiodic grid
with bottleneck (N = 961). [(a) and (b)] Examples of equilibrium
states. [(c)–(h)] Final stage of the numerical simulation. Blue dots:
No influence of the polls (ε = 0); pink dots: polls matter (ε = 1).
Black circles correspond to states shown in (a) and (b). The dotted
black lines in show the critical temperature for an infinite square
lattice, βc,s = log(1 + √

2)/2 [46].

whereas the energy associated to the other links does not
change. When the temperature increases, we expect that there
will be more and more isolated voters who oppose the opinion
of their phase; s∗ would then decrease and so would the
energetic cost of the interface. Hereafter, for simplicity, we
assume that the temperature is low enough that s∗ = 1.

Understanding the structure of an interface in the two-
dimensional Ising model is an end in itself, which requires
a rigorous, dedicated investigation [55]. The simplistic
approach we use here will eventually break on approaching
the critical temperature. Before this happens, however, we ex-
pect the continuous model to behave like the original, discrete
model, at least when N is large and the temperature is well
below criticality.
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(a) (b)

FIG. 8. Interface between two phases. (a) Example of straight
interface (dashed black line) cutting through a triangular mesh (gray
lines). The number of edges cutting the interface is ni (pink lines).
(b) Relation between the number of nodes N and the number of edges
crossing the interface, ni (blue dots). The pink dot corresponds to
panel (a). The black dashed line shows Eq. (7).

3. Hamiltonian of the continuous model

We can now combine equations (C1), (7), and (C3) to write
a Hamiltonian Hc for the continuous model:

Hc = 4

√
N

A
 + εNs̄2 − HNs̄. (C4)

where one can use Eq. (C2) to replace s̄ with A.
From now on, we shall interpret this expression within the

framework of the mean-field theory. In other words, we shall
look for a configuration that minimizes the Hamiltonian Hc

(as opposed to the free energy of the system). To do so, we
need to relate the length 
 of the interface to the general
opinion s̄ or, equivalently, to the area A of one of the two
political camps.

At low temperature, the population of voters will tend to
minimize its total energy, which we can treat as an approxi-
mation of its free energy. If the approximations of section C 1
hold, then we need to minimize the Hamiltonian Hc with re-
spect to the general opinion s̄ and the length 
 of the interface.
Fortunately, we can minimize the Hamiltonian in two steps:
We first look for the minimum value of 
 for a fixed value of
s̄ (and thus A) and then minimize the resulting Hamiltonian
with respect to s̄.

The first step of this procedure is a purely geometri-
cal problem, which is analogous to finding the shape of a
(two-dimensional) droplet of oil in water: Surface tension
minimizes the length of the interface between the two fluids.
The droplet’s shape depends on the container’s and on the
contact angle of the triple point (where the interface joins the
container). Here, for simplicity, we assume that the domain is
a disk of unit radius, and therefore of area A = π [Fig. 9(a)].
Our aim is then to find the shape that minimizes the length 


of the interface between two phases on this disk for a fixed
value of A (the area of the first phase).

Based on the analogy with surface tension, we know that
this optimal droplet will be a portion of a disk [Fig. 9(a)].
This observation reduces our optimization problem to two
parameters: the radius of the droplet and the distance from
its center to the center of the system.

Our Hamiltonian is insensitive to the interface between any
of the two phases and the outside world [the border of the

(a)

(b)

FIG. 9. Optimal droplet in a disk. (a) Example of optimal droplet
(orange area) for s̄ = 3/4 (equivalently, A = π/8). The small black
square indicates a right angle. (b) Relation between the optimal
length 
min and the droplet area A, Eqs. (C6) and (C5).

country, black line in Fig. 9(a)]. Pursuing the surface tension
analogy further, this observation corresponds to neutral wetta-
bility, which implies that the contact angle at the triple point is
90◦. Our optimization problem now depends only on a single
parameter, which we chose to be the angle α formed by the
centers of the two disks and one of their intersections (Fig. 9).

We now need to identify the circles that intersect the unit
disk at a normal angle and determine the area A of the intersec-
tion and the length 
min of the interface. Based on elementary
geometry, we find that the two quantities can be expressed as
functions of α:

A = π

2
− α + α

(tan α)2
− 1

tan α
, (C5)


min = 2α

tan α
. (C6)

We have thus parameterized the relation 
min(A) [Fig. 9(b)].
As expected, in the split-society state (s̄ = 0, A = π/2, α →
0), the length of the interface is 
min = 2, that is, the diameter
of the unit disk.

4. Energy landscape

We are now ready to express the energy of the population
as a function of the general opinion s̄ only. To do so, we note
that for a configuration to minimize the Hamiltonian (C4), it
needs to minimize the length 
 of the interface between the
two phases. Thus, using relation (C2), the energy density ec

of the population reads, in the mean-field theory,

ec

ε
= 1

ε∗ 
min

[
π

2
(1 + s̄)

]
+ s̄2 − H

ε
s̄, (C7)
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FIG. 10. Energy landscape for a population of voters at low
temperature. The three curves represent Eq. (C7) with H = 0. The
colored disks show the geometrical distribution of the opposed
phases (s̄ corresponds to the center of each disk).

where we have defined the (rescaled) sensitivity to polls as

ε∗ = ε
√

Nπ

4
. (C8)

To convert Eq. (C7) into Eq. (8), we simply need to choose
H = 0 and, for convenience, define

Lmin(s̄) = 
min

[
π

2
(1 + s̄)

]
. (C9)

Let us first consider Eq. (C7) in the absence of any external
field (H = 0, Fig. 10). When the sensitivity of the population
to polls is small enough (blue curve, Fig. 10), the energy
reaches a maximum for s̄ = 0 (split-society state) and two
minima of equal depth for s̄ = ±1 (consensus). Above some
transitional value, the maximum turns into a local minima
(pink curve, Fig. 10). This transition occurs when the second
derivative of the energy vanishes, that is, when

ε∗ = −π2

8

′′

min

(π

2

)
. (C10)

Using Eqs. (C5) and (C6), we find that there is a local min-
imum at s̄ = 0 when ε∗ > 3π2/32. We now need to know
whether the minimum for s̄ = 0 is a global one. This is easily
achieved by evaluating Eq. (C7) at s̄ = 0 (then 
min = 2) and
at s̄ = ±1 (then 
min = 0). We find that the split-society state
is a global minimum when ε∗ > 2. This value, of course, relies
on our assumption that s∗ ≈ 1. At nonzero temperatures, the
energy of the interface should decrease, and s̄ gets bounded
by −s∗ and +s∗; these changes will affect the stability of the
split-society state.

The above reasoning holds only for the global minimum of
the energy (thermodynamically stable state) but, as suggested
by Fig. 10, there could also be local minima (metastable
states). A thorough investigation of the latter would require
us to consider distinct droplets of the same phase, or droplets
away from any boundary. As this would significantly compli-
cate the analysis, we shall not pursue this investigation here.

5. Susceptibility of the split-society state

We now turn our attention to the susceptibility of a pop-
ulation: How does the general opinion s̄ change when some
external forcing H is applied to the electorate? We limit our-
selves to the split-society case (s̄ ≈ 0). Up to second order, the
population’s energy reads

ec

εN
≈ 2

ε∗ +
(

1 − 3π2

32ε∗

)
s̄2 − H

ε
s̄. (C11)

The application of an external field H thus shifts the minimum
of the population’s energy. This minimum can be found by
differentiating Eq. (C11) with respect to s̄, which yields the
susceptibility χ0 of the split-society phase:

χ0 = ∂ s̄

∂H

∣∣∣∣
s̄=0

= 1

2ε

(
1 − 3π2

32ε∗

) . (C12)

As expected, the susceptibility diverges when the split-society
phase disappears (ε∗ → 3π2/32). In the thermodynamic limit
(N → ∞), or when the population is very sensitive to polls
(ε → ∞), the susceptibility takes the simple form

lim
ε∗→∞

χ0 = 1

2ε
. (C13)

The numerical simulations shown in Fig. 4(b) are compatible
with this approximate expression. In the next section, in line
with classical statistical physics, we relate the susceptibility to
the intensity of the fluctuations.

APPENDIX D: FLUCTUATION-DISSIPATION RELATION

When its evolution is governed by the Glauber dynamics,
our discrete model relaxes to the Boltzmann equilibrium.
A general consequence of this equilibrium is the relation
between the amplitude of the fluctuations, and the suscep-
tibility of the system to external forces—an instance of the
fluctuation-dissipation theorem (e.g., Ref. [56]).

The Ising model we use yields this classic relation, in the
form of Eq. (10). The new term that we added to the Hamilto-
nian, which accounts for the influence of opinion polls, does
not affect the textbook derivation of the fluctuation-dissipation
relation. To show this, we begin with recalling the probability
density in the Boltzmann equilibrium:

ρ(s) = exp[−βH(s)]

Z , (D1)

where the partition function Z reads

Z =
∑
{s}

exp [−βH(s)]. (D2)

The above summation applies to all possible configurations
of the electorate (the values of all si). From there, it is just a
matter of arithmetic to reach Eq. (10). Indeed, the opinion of
the electorate reads

s̄ = 1

N

∑
i

si. (D3)

For later convenience, we now introduce

M = Ns̄, (D4)
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and call this quantity “magnetic moment,” as is customary
in the context of the original Ising model. The Hamiltonian
H, as expressed in Eq. (C1), depends linearly on the external
field H , and the coefficient of this relation is just the magnetic
moment:

M = −∂H
∂H

. (D5)

This result is entirely independent from the term we have
introduced in the Hamiltonian (the impact of opinion polls).
Combining it with Eq. (D2) yields

1

Z
∂Z
∂H

= β〈M〉, (D6)

where the brackets denote the average over all configurations:

〈M〉 =
∑
{s}

ρ(s) M(s). (D7)

Differentiating the partition function once more, we get

1

Z
∂2Z
∂H2

= β2〈M2〉. (D8)

Finally, differentiating Eq. (D6) with respect to H , and com-
bining the result with Eq. (D8), yields

∂〈M〉
∂H

= β(〈M2〉 − 〈M〉2), (D9)

which we can rephrase in terms of the opinion’s variance and
susceptibility using equations (D4) and (C12):

χ = βNσ 2
o . (D10)

In the absence of any external field (H = 0), χ becomes χ0,
and the above formula is Eq. (10).

APPENDIX E: MARGIN OF VICTORY

1. Election data

To compare the present model to observations, we focus on
countrywide elections. We first select countries that are either
“full” or “flawed” democracies according to the Economist In-
telligence Unit [57]. Among those, we select countries where
the head of either state or government is chosen by direct
election [58]. We then collect election results with a Python
routine [59] that parses the dedicated Wikipedia web pages
(e.g., Ref. [60]). After the result of an election is collected, the
routine fetches the page of the previous election in the same
country, and so on, until the election occurred before 1990 (or
until the series of elections ends).

We then need to ensure that each election was a binary
choice. To do so, we keep only elections for which the scores
of the two leading candidates sum up to the total number of
votes. (This condition is always satisfied in some countries,
like Poland or France, where the second round of the presi-
dential election involves only the two candidates who lead the
first round.) Finally, we keep in our data set only countries for
which there are more than three binary election results (this
allows us to estimate, albeit roughly, the standard deviation
of the result). In total, we are left with 168 elections in 31
countries.

(a) (b)

(c)

FIG. 11. (a) Margin of victory in quasibinary elections as a func-
tion of the electorate size (colored markers correspond to Fig. 5).
Dashed gray line: Logarithmic binning of the same data. Verti-
cal dashed line: Estimated transitional number of voters Nt = 106.
(b) Probability distribution of the margin of victory. Blue (respec-
tively, pink) bars: Population larger (respectively, smaller) than Nt .
Blue dashed line: Exponential distribution fitted to electorates larger
than 5 × 106 voters. (c) Probability that the observed margin of vic-
tory for electorates smaller than N is sampled from the exponential
distribution of (b) (p-value from Pearson’s chi-squared test over three
bins). The shaded area shows the standard deviation estimated by
bootstrapping (1000 random samples of 3/4 of the data set). The
dashed black line is p = 0.1 (90% confidence interval).

We call N1 and N2 the number of votes received by the two
leading candidates and define the size of the electorate as N =
N1 + N2 (the actual electorate can be a bit larger than N). For
each election, the margin of victory is then δ = |N1 − N2|/N .
Figure 11(a) shows the margin of victory, δ, as a function of
the electorate size, N , for the complete data set.

2. Probability distribution of the margin of victory

When the electorate is larger than a few million voters,
most elections are tight [Fig. 11(a)]. Conversely, in smaller
countries (Iceland, Cape Verde, and Monte Negro in our data
set), many elections lead to a landslide victory or a near
consensus. We now investigate this transition.

We first select the 65 elections whose electorate is larger
than 5 × 106 voters (large countries) and plot the probabil-
ity distribution of their result [blue bars in Fig. 11(b)]. The
resulting histogram is well approximated by an exponential
distribution f :

f (δ) = 1

δl
exp (−δ/δl ), (E1)

where δl ≈ 7.1% is the average margin of victory in large
countries [dashed blue line in Fig. 11(b)].

Equipped with this distribution of reference, we can now
look for the subset of our data to which it does not apply. For
illustration, the pink bars in Fig. 11(b) show the distribution
of the margin of victory in countries where the electorate is
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smaller than 3 × 105 voters. It features a peak around a mar-
gin of 45% and therefore does not look like the exponential
distribution of Eq. (E1).

3. Transitional population size

To locate the transition from consensus to tight elections,
we look for the transitional number of voters, Nt , below which
the results are unlikely to be drawn from the exponential
distribution of Eq. (E1). Looking at Fig. 11(a), we expect that
this number will lie somewhere between 5 × 105 and 5 × 106

voters.
To refine this estimate, we pick a value for Nt , and select

the election whose electorate is smaller than this value. We
then distribute the results into three bins of equal size between
0 and 50%. Finally, we estimate the likelihood of this three-
bin histogram based on the chi-square distribution, assuming

that the probability density is Eq. (E1) (Pearson’s chi-squared
test). We then evaluate the corresponding p-value—the prob-
ability that the difference between the histogram and the
exponential distribution is at least what we find. This p-value
is represented as a function of the transitional electorate size
in Fig. 11(c).

When the guessed value of Nt is less than about 9 × 105

voters, the p-value is consistently less than 0.1 (90% con-
fidence interval). In other words, these data are unlikely to
be a sample from Eq. (E1). Conversely, this conclusion does
not hold any more for larger values of Nt , except at about
2.5 × 106 voters. Finally, we evaluate the robustness of this
result by bootstrapping (1000 random samples of 3/4 of the
data set) and find that Nt lies between 6 × 105 and 3 × 106

voters [shaded area in Fig. 11(c), 80% confidence interval].
In views of these results, we estimate Nt to about a million
voters.
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