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Understanding the emergent behavior of chemical reaction networks (CRNs) is a fundamental aspect of
biology and its origin from inanimate matter. A closed CRN monotonically tends to thermal equilibrium, but
when it is opened to external reservoirs, a range of behaviors is possible, including transition to a new equilibrium
state, a nonequilibrium state, or indefinite growth. This study shows that slowly driven CRNs are governed
by the conserved quantities of the closed system, which are generally far fewer in number than the species.
Considering both deterministic and stochastic dynamics, a universal slow-dynamics equation is derived with
singular perturbation methods and is shown to be thermodynamically consistent. The slow dynamics is highly
robust against microscopic details of the network, which may be unknown in practical situations. In particular,
nonequilibrium states of realistic large CRNs can be sought without knowledge of bulk reaction rates. The
framework is successfully tested against a suite of networks of increasing complexity and argued to be relevant
in the treatment of open CRNs as chemical machines.
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I. INTRODUCTION

The goal of theory for complex systems is often to reduce
the number of degrees of freedom from a large intractable
number down to something manageable, whose dynamics can
then be understood intuitively. Ideally, such a reduction should
be principled, mathematically well controlled, and lead to a
description in terms of universal effective variables. This chal-
lenge is especially acute in the biosciences where dizzying
complexity is the norm. We address it for chemical reaction
networks (CRNs), which provide the substrate for biochem-
istry and hence biology.

Model reduction for CRNs has a long history [1–3].
Since CRNs often contain a wide range of timescales, many
reduction methods exploit this by quasiequilibrium or quasi-
steady-state approximations [4]. However, existing theories
employ different reductions for each particular CRN, thus not
leading to any universal description. This may be sufficient
for detailed analysis of a particular system, but makes cross-
system analysis difficult and hinders unification of diverse
phenomena. Moreover, these approaches work at the level of
the rate equations, ignoring stochastic effects known to be
important in biochemistry [5]. They may also fail to respect
thermodynamic constraints [6].

Here we take a different route, grounded in hydrodynam-
ics, a branch of condensed-matter physics [7]. The starting
point for hydrodynamics is the observation that molecular
timescales, on the order of picoseconds, are minuscule com-
pared to macroscopic forcing timescales. Thus most degrees
of freedom relax very rapidly to a state of local thermo-
dynamic equilibrium. However, over macroscopic distances,
forcing conditions can differ, thus leading to different local

*These authors contributed equally to this work.

equilibria. In such a hydrodynamic limit in which forcing is
slow in time and gradual in space, only a subset of degrees
of freedom, dictated by symmetries and conservation laws,
are important. Indeed, conserved quantities are precisely those
whose densities need to be tracked, while the other degrees of
freedom relax quickly and can be neglected.1 Conventional
continuum theories for fluids, elastic solids, liquid crystals,
and others are all of this type, differing only in the assumed
symmetries [7].

This vantage is natural for chemical reaction networks,
since individual reactions conserve the number of each ele-
ment, leading to a large number of conservation laws. While
previous and ongoing work on CRNs in the mathematical
literature has also exploited conservation laws [8–10], such
approaches do not incorporate thermodynamic constraints,
nor do they yield a universal description. Instead we combine
notions from hydrodynamics with stochastic thermodynam-
ics [11–16], building thermodynamic consistency in from the
beginning. This is useful to quantify CRNs as chemical ma-
chines, as will be discussed later [15,16].

In particular, we consider slowly driven well-mixed phys-
ical CRNs and show that they are governed by conserved
quantities, similar to hydrodynamic theories. We derive a
universal slow-dynamics equation [(25) below] that can be
applied to generic slowly driven CRNs. For a CRN with N
species and L conserved quantities, the reduced theory in-
volves only L variables, which is generally the number of
elements, far fewer than the number of species. We work at
the large-deviation level of the particle-number distribution,
thus incorporating the leading stochastic effects.

1If a continuous symmetry is broken, then one also needs to track
the density of its associated elastic variable, like the displacement
field in an elastic solid. This phenomenon will play no role here.
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This article is organized as follows. First, we define our
CRN, emphasizing the role of microscopic reversibility. Then
we analyze the rate equation in the slowly driven setting,
showing that a naive perturbation expansion breaks down.
This is cured by a singular perturbation theory, which leads
to the slow-dynamics equation. We then extend the theory to
include stochastic effects and test our theory with numerical
simulations, showing its broad utility. Finally, we show how
the theory can be extended to initial states that are far from
equilibrium.

Species are indexed with i, j, . . . while reactions are
indexed with α, β, . . .. We use vector notation whenever pos-
sible. For example, stoichiometric coefficients piα and qiα

are also written as �pα and �qα . All contractions are explicitly
indicated by dots. In CRNs, many functions appear that act
componentwise on different species. We write [ �f (�n)�g(�n) · · · ]
for the vector in species space whose components are
f j (�n)g j (�n) · · · . For example, [�neq e��] has components neq

j e� j ,
etc. When such expressions are considered as diagonal ma-
trices, we double the brackets, i.e., [[ �f ]] is the matrix with
elements δi j fi. To sum or multiply over all species we write∑

[ �f ] and
∏

[ �f ], respectively. We also apply this notation to
componentwise vectors over reactions.

II. SLOWLY DRIVEN CHEMICAL REACTION NETWORKS

We define a physical CRN as follows. We have N
species Xi, interacting with M reactions α, split into the
core and the boundary interactions. We write a general core
reaction as ∑

i

piαXi �
∑

i

qiαXi, (1)

where piα and qiα are the stoichiometric coefficients for the
molecular species as reactant and product, respectively.

The number of moles of all species is collected in a vector
�n. Quantum mechanics requires that if a reaction α occurs
with rate k+

α , then its corresponding backward reaction must
occur, with rate k−

α . As a condition for existence of thermal
equilibrium, these rates are not independent but constrained
in ratio to satisfy

k+
α (�n)

k−
α (�n)

= e−(�G)α/RT , (2)

where (�G)α = (�qα − �pα ) · �G(�n) is the difference in molar
Gibbs free energy between products and reactants. Equation
(2) is known as local detailed balance [13,15,17,18] or mi-
croscopic reversibility [19]. Importantly, it does not require or
imply that the CRN be in thermal equilibrium or close to it. In
a physical CRN, we require that all reactions in the core of the
system satisfy (2). For the boundary interactions, which force
the system, we consider intake and degradation pairs

X C
i � Xi, (3)

with rates εr+
i and εr−

i , respectively, where ε is a dimen-
sionless constant. The C decoration denotes a chemostat.
We explain later how the boundary interactions can be
generalized.

The CRN is slowly driven when ε � 1, meaning that all
reservoir interactions are slow compared to internal reactions.
This condition is quite natural. Indeed, bulk reaction rates are
proportional to the volume of the system, �, while boundary
rates are proportional to the surface area, ∂�. Their ratio
L∗ ≡ �/∂� is a length, on the order of the linear dimension
of the system. To obtain the dimensionless parameter ε, this
must be compared with a microscopic length. For example,
in the case of passive diffusion across a membrane with
similar concentrations on both sides of the membrane, the
microscopic length is δ ≈ D/k0d , where d is the membrane
thickness and D is the diffusion constant.2 Here ε can be
defined as ε = δ/L∗, which for typical values d ∼ 10 nm and
D ∼ 10−9 m2/s gives ε ∼ 10−14 m/L∗, which is small even
for microscopic systems. This example furthermore illustrates
that the slow-driving condition can be avoided if systems
have an anomalously large surface area (as in mitochondria),
if diffusion is active (as in the sodium potassium pump),
if large concentration differences are held across the mem-
brane, or if important bulk reactions are significantly slower
than k0.

As a consequence of slow driving, after an initial relaxation
the system will be close to a thermal equilibrium state of
the core CRN. However, over long timescales it can have a
nontrivial dynamics near evolving equilibria, just as a fluid
that is stirred or poured will transition through a series of
near equilibria, described in that case by the Navier-Stokes
equations. Our main result is an evolution equation for the
slow degrees of freedom, which, as we show, correspond to
conserved quantities, in precise analogy with hydrodynamics.
For a generic large CRN, the conserved quantities are the
number of each element (H, C, O, etc.) and number of free
electrons, if ions are present.

The local detailed balance condition (2) can also be derived
microscopically. Indeed, modern transition rate theory [20]
predicts from first principles

k+
α (�n) = ke−(δG)α (�n)/RT , (4)

where (δG)α (�n) = GAα
− ∑

i piαGi(�n) is the difference in
molar Gibbs free energy between the activated complex and
the reactants, and k = �c◦k0 in terms of k0 = 1/2πβ h̄ ≈ 6 ×
1012 Hz at 300 K. Here � is the system volume, assumed to
be dominated by the solvent, and c◦ is standard concentration
1 mol/l. Equation (4) holds for both forward and backward
reactions, mutatis mutandis, so (2) is satisfied.

For ideal dilute solutions, the free energies (chemical po-
tentials) for each species take the form

Gi(�n) = μ◦
i + RT log(ni/c◦�) = RT log

(
ni/neq

i

)
, (5)

where μ◦
i is the chemical potential in standard conditions and

neq
i = �c◦e−μ◦

i /RT . The forward reaction rates are thus pro-
portional to

∏
i(ni/c◦�)piα , which is the law of mass action.

2From Fick’s law, the diffusion flux at each point is D∂φ/∂x ≈
D�φ/d , where φ is the concentration, and the derivative is approx-
imated by a finite difference, with d the membrane thickness. Inte-
grating over the surface gives a factor ∂� so that εrc◦ ∼ D∂�c◦/d ,
where we assume �φ ∼ c◦. Then ε ∼ (D∂�c◦/d )/k0c◦�.
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The flux of reaction α is

Jα (�n) = k+
α (�n) − k−

α (�n)

= ke−GAα /RT
(∏

[(�n/�neq ) �pα ] −
∏

[(�n/�neq )�qα ]
)
. (6)

We can write the rates of reservoir interactions in the form

r+
i = riz

C
i , r−

i (ni ) = rini/�, (7)

where zC
i is the molar concentration of species i in its reser-

voir; in general, this can be time dependent. The numbers ri

have units of rate per mole times volume, while the factors zC
i

and ni account for the law of mass action.
Note that to precisely distinguish energy from entropy,

and hence to unambiguously identify heat flows, requires a
microscopic Hamiltonian [11]. However, by comparing (2)
to our rate parametrization for reservoir interactions, we can
write

r+
i

r−
i (ni )

= εrizC
i

εrini/�
= e−[Gi (�n)−Wi]/RT , (8)

where Wi is the work done by the reservoir in one intake
reaction. This identifies Wi = μc◦

i + RT log(zC
i /c◦), which is

just the chemical potential of species i at the reservoir concen-
tration, as expected.

To quantify how far a CRN is from equilibrium, we mea-
sure the entropy production rate

T Ṡ = T R
∑ (

(�k+ − �k−) log
�k+

�k−

)
� 0. (9)

We define the N × M stoichiometric matrix S = [S0 SC ],
where S0

iα = qiα − piα are the stoichiometric coefficients for
the core reactions and SC

iα = +1 when α corresponds to a
reservoir of species i and 0 otherwise. Using local detailed
balance, the entropy production can be rewritten as

T Ṡ = −
∑

[(�k+ − �k−)(ST · �G(�n) − (SC )T · �W )]

= − �G(�n) · S · (�k+ − �k−) + �W · (�r + − �r −), (10)

which will be useful below.
Note that in our setup, each species present in a reser-

voir has two concentrations: its dynamical concentration in
the system, n j/�, and its concentration in the reservoir, de-
noted by zC

j . These only become equal, in general, when
the reservoir rate r j → ∞ (although we will see other sit-
uations below where they equilibrate). Thus having a fully
chemostatted species, as often considered in the literature, is a
strong-driving limit, since the corresponding species must be
added or removed faster than any reaction rate in the system to
maintain its constant concentration. Our setup more naturally
respects real-world constraints.

Our choice of unimolecular reservoirs is simply for con-
venience. The theory trivially extends to the case where the
reservoir supplies a complex Yj , say, written as

∑
i p̃ jiXi in

terms of species, where p̃ ji are positive stoichiometric coef-
ficients. We simply replace n j/� in the external flux for the
reaction with

∏
i(ni/�) p̃ ji .

Besides slow forcing by reservoirs, one may also consider
a subset of slow internal reactions. These will be discussed
below.

III. DETERMINISTIC ANALYSIS

To illustrate our approach, we first consider the rate equa-
tions for our model; later we will generalize our results to
include stochastic effects. The rate equations are

∂t �n = S · �J (�n), (11)

where �J is the vector of reaction fluxes. Separating the reac-
tions into core and boundary, this becomes

∂t �n = S0 · �J 0(�n) + ε[�r(�z C − �n/�)], (12)

where �J 0(�n) is the reaction flux vector for core reactions and
r j = 0 if there is no reservoir for species j. Equation (12)
suggests a perturbative solution in ε : �n = �n0 + ε�n1 + · · · . At
leading order ∂t �n0 = S0 · �J 0(�n0), which describes a closed
system. The system monotonically tends to thermal equi-
librium, described by �J 0(�n0) = 0. The general steady-state
solution is

�n0 = [�neq e��] = �c◦[e−�μ◦/RT e��], (13)

where we must have (S0)T · �� = 0. Such vectors �� are the
conserved quantities of the closed CRN, called moieties [21].
Suppose there are L independent moieties. Let ζ be an N × L
matrix whose columns give a basis of conserved quantities.
Then we can write

�� = ζ · �η, (14)

where �η is a vector in moiety space.
To give this a physical interpretation, let �Y =

(e−, H, C, O, . . .) be a vector of elements that appear in
the CRN and write each species as an abstract sum of
elements

Xj =
∑

e

ζ̃ jeYe, (15)

defining the atomic matrix ζ̃ . The condition for conservation
of element e at reaction α is

0 =
∑

j

q jαζ̃ je −
∑

j

p jαζ̃ je = [(S0)T · ζ̃ ]αe, (16)

showing that �̃ζe is a conserved quantity. In small CRNs, the
moieties can differ from the elements. For example, if carbon
and oxygen only appear in the CRN in multiples of CO,
then their individual concentrations, while both conserved, are
degenerate. However, for large CRNs where we expect our
theory to be of interest, there are often no conserved quantities
besides the elements.

Comparing (14) with (13), we see that nonzero �� is equiv-
alent to shifting chemical potentials by

�μ ◦ → �μ ◦ − RT ζ · �η. (17)

Therefore, RT �η corresponds to a shift in the chemical
potential of moieties. (In our rate parametrization a full trans-
formation would require also shifting activation energies by
GAα

→ GAα
− RT �pα · ζ · �η.) It acts as a tilt in the free-energy

landscape, which fixes the number of each moiety as

�y = ζ T · �n = ζ T · [�neq eζ ·�η] + O(ε). (18)
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Although this gives L equations in L unknowns, they cannot
be explicitly solved for �η.

At the next order we have

∂t �n1 = (S0) · (∂ �J 0/∂�n)|�n0 · �n1 + [�r(�z C − �n/�)]|�n0 . (19)

If we multiply by ζ T we get

∂tζ
T · �n1 = ζ T · [�r(�z C − �n0/�)], (20)

which expresses moiety balance. This equation can be directly
integrated:

ζ T · �n1(t ) =
∫ t

0
dt ′ζ T · [�r(t ′)(�z C (t ′) − �n0(t ′)/�)].

Now �n0(t ) relaxes monotonically to some thermal equilibrium
state �n0(∞). For simplicity we assume that the reservoirs are
independent of time. Then we can write

ζ T · �n1(t ) = tζ T · [�r (�z C − �n0(∞)/�)]

+
∫ t

0
dt ′ζ T · [�r (�n0(∞) − �n0(t ′))/�].

The integrand in the second term goes to zero at large time,
so this term will be sublinear in t at large time. Moreover,
there is no opportunity for special cancellations with �z C in the
first term, since �n0 is completely independent of the reservoirs.
Thus, asymptotically,

ζ T · �n1(t ) ∼ tζ T · [�r (�z C − �n0(∞)/�)], (21)

which diverges at large t . After a time t ∼ 1/ε we will have
ε�n1 ∼ �n0 and the perturbation series breaks down. Thus the
slow-driving limit ε → 0 is singular. This is not specific to
our boundary conditions or simplifying assumptions, but is
completely generic.

This mathematical singularity has a simple physical inter-
pretation: When the system is open to reservoirs, elements can
be exchanged with the environment. Over a long timescale t ∼
1/ε, the relevant thermal equilibrium state can be completely
different from its initial value. Fortunately, this suggests a
cure to the long-time divergence: We need to consider a
multiple-scale asymptotic analysis [22,23]. We introduce the
slow time τ = tε, so-named because τ ∼ O(1) when t ∼ 1/ε,
and replace the time derivative by

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
.

The leading-order solution remains the same, except that the
coefficients �η get promoted to functions of the slow time,
capturing their evolution on long timescales. The O(ε) equa-
tion becomes

∂τ �n0 + ∂t �n1 = (S0) · (∂ �J 0/∂�n)|�n0 · �n1 + [�r(�z C − �n0/�)].

Multiplying by ζ T , we have

ζ T · ∂τ �n0 + ζ T · ∂t �n1 = ζ T · [�r(�z C − �n0/�)]. (22)

At this order, the divergences are cured if we impose

ζ T · ∂τ �n0 = ζ T · [�r(�z C − �n0/�)], (23)

which are the slow-dynamics equations. As shown below,
these same equations will remain valid for stochastic dynam-
ics. We have L equations in L degrees of freedom (DOF).

More explicitly,

∑
j,e′

ζ jeneq
j exp

(∑
e

ζ jeηe

)
ζ je′∂τηe′

=
∑

j

ζ jer j

[
zC

j − neq
j

�
exp

(∑
e

ζ jeηe

)]
. (24)

Defining the matrix M(�η) = ζ T · [[�neq eζ ·�η]] · ζ and the exter-
nal flux �J C (�η) = [�r(�z C − �neq eζ ·�η/�)], we can write this as

M · ∂τ �η = ζ T · �J C , (25)

which is our main result. Equation (25) is a strongly
nonlinear system of equations governing the evolution of near-
equilibrium states in a slowly driven CRN. The core CRN can
be completely arbitrary, as long as it is detailed balanced and
closed; open cases will be treated below. The reservoirs can
be forced arbitrarily on the slow timescale, that is, �r and �z C

can be arbitrary functions of τ . In particular, one can consider
discontinuous stepwise forcings if needed.

Note that ζ T · �n is simply the number of moles of each
moiety; thus from (23) the slow-dynamics equation is simply
the conservation law for moieties, which under slowly driven
conditions gives a closed set of equations. Remarkably, the
number of degrees of freedom is reduced from N down to
L. Moreover, for the usual case where moieties correspond
to elements, these slow DOF are not arbitrary but are easily
interpretable and universal across different CRNs.

If some moieties appear in the CRN but not in any reser-
voirs, then their concentrations are clearly conserved at their
initial values. In this case the corresponding entries of the
slow-dynamics equations can be immediately solved, leading
to a further reduction in the number of evolving DOF.

Equation (25) is also remarkably universal in form: It does
not depend on any activation energies in the core, and steady
states are also independent of core chemical potentials. It can
thus be applied to poorly characterized CRNs where only the
stoichiometry, chemical potentials, and reservoir interactions
are known.

The slow-dynamics equation describes the dissipative dy-
namics through near-equilibrium states. In the Supplemental
Material [24] we show that at leading order the dissipation
depends only on the slow dynamics and not also on �n1 as
might naively be expected. In particular, it takes a simple form

T Ṡ = �W · (�r + − �r −) + O(ε2), (26)

which can be evaluated on the solution of (25).
It is important to emphasize that although the system is

always close to a thermal equilibrium state of the closed
CRN and although �n0 takes precisely the form of a thermal
equilibrium state, the system is nevertheless open, exchanging
matter and energy with its surroundings. Therefore, general
results for detailed-balanced systems do not apply to �n0, once
�η is allowed to vary on the slow timescale.

There is a fundamental relationship between the number of
reservoirs and internal properties of the CRN [17]. Here we
adapt the arguments of [17] to our setup, to be used later in
analysis of nonequilibrium steady states. We define a cycle
as a vector �c in reaction space in the kernel of S: S · �c = 0.
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This is a combination of reaction fluxes that do not affect the
concentration of any species. Explicitly, this condition can
be written 0 = ∑

α∈core S0
jαcα + c jδ j∈C , where δ j∈C is 1 if

there is a reservoir of species j and 0 otherwise. Let C be
the number of linearly independent cycles. A subset of cycles
will be spanned by the core reactions alone, with dimension
C0; the remainder will necessarily involve a reservoir, giving
an additional CC .

By the rank-nullity theorem of linear algebra, we have
N − Lr = M − C, where (in full generality) Lr is the num-
ber of conserved moieties in the open system. We can write
Lr = L − Lbr, where L is the number of conserved moieties
in the closed system and Lbr is the number of conservation
laws that are broken by the reservoirs. Likewise we can write
M = M0 + MC , where M0 is the number of reactions in the
core and MC is the number of reservoirs.

In the closed system, we have N − L = M0 − C0. It follows
then that [17,18]

MC = Lbr + CC , (27)

where the number of reservoirs equals the number of broken
conservation laws plus the number of cycles involving the
reservoirs; the latter are called emergent cycles and corre-
spond to effective reactions performed by the CRN. Existence
of an emergent cycle is a necessary condition for a CRN
to reach a nonequilibrium steady state (NESS). Moreover,
many biologically important NESSs have only a few emergent
cycles [15].

As universal and general as Eq. (25) is, it relies on the
assumption of slow driving. General CRNs may be bistable;
the dynamics can end up in different equilibria, depending
upon initial conditions. However, model systems for this phe-
nomenon all correspond to strongly driven CRNs, typically
with many chemostats [25–27]. Thus it is not obvious a priori
whether such phenomena are captured by (25). In fact, as
shown in Supplemental Material Eq. (25) has no unstable
equilibria if the kernel of ζ is trivial, which is expected when
N  L. Since an unstable equilibrium must exist in between
stable equilibria, this implies that the slow dynamics does
not have multiple equilibria. Instead, there is one equilibrium,
which can vary over the τ timescale as external conditions
evolve.

Finally, let us discuss the trivial extension when a subset of
internal reactions are slow, of relative order ε compared to the
bulk. We simply add the corresponding projected reaction flux
to the right-hand sides of Eqs. (23)–(25). If these reactions
respect all conserved quantities, then they disappear identi-
cally at leading order. If instead some conserved quantities are
broken, then they will act in a similar way to external fluxes.

IV. STOCHASTIC ANALYSIS

We now extend our results to include stochastic effects; in
a first reading, this section can be omitted. We begin from the
Doi-Peliti path-integral formulation [28,29], which is an exact
rewriting of the chemical master equation for the full counting
statistics P (�n, t ). For a self-contained review see [30]. The

CRN is specified by the quasi-Hamiltonian (or Liouvillian)
H = H0 + εHC , with

H0(�n, �ν ) =
∑

α

kα

{
(e�ν·(�qα−�pα ) − 1)

∏ [( �n
�neq

) �pα

]

+ (e−�ν·(�qα−�pα ) − 1)
∏ [( �n

�neq

)�qα

]}
, (28)

HC (�n, �ν ) =
∑

[�r(e−�ν − 1)�n/� + �r(e�ν − 1)�z C ]. (29)

The �ν variables act as a per-species bias. As explained in the
Supplemental Material [24], in the macroscopic regime where
particle numbers are large the leading behavior of ρ ≡ logP
satisfies a Hamilton-Jacobi equation [31–34]

∂ρ(�n, t )

∂t
= H (�n,−�∇�nρ(�n, t )). (30)

Equation (30) goes beyond the Gaussian approximation as it
includes rare trajectories between different attractors, if they
exist. In the slowly driven case, we require that �c◦ε  1,
which ensures that the slow driving is more relevant than
finite-size fluctuations from the bulk of the system.

Let {��x}L
x=1 be a basis of the left kernel (or cokernel) of the

stoichiometric matrix K = coker S, i.e., this system has L
conserved quantities. We solve (30) under the initial condition

ρ(�n, t = 0) =
∑ (

�n log �λ(0) − �λ(0) − �n log
�n
e

)
, (31)

�λ(0) = [
�neq e��(0)]

, (32)

where ��(0) is an arbitrary vector in K . This is a large deviation
function of a Poisson distribution in the limit ni → ∞,

P (�n, 0) =
∏(

(�λ(0) )�ne−�λ(0)

(�n/e)�n

)
∼

∏(
(�λ(0) )�ne−�λ(0)

�n!

)

with mean �λ(0).
Introducing the two time variables t and τ = εt as in the

preceding section, Eq. (30) is rewritten as(
∂

∂t
+ ε

∂

∂τ

)
ρ(�n, t, τ ) = H (�n,−�∇�nρ(�n, t, τ )),

with

ρ(�n, t = 0, τ = 0) =
∑

i

(
ni log λ

(0)
i − λ

(0)
i − ni log

ni

e

)
.

We expand the solution of this equation as ρ(�n, t, τ ) =
ρ0(�n, t, τ ) + ερ1(�n, t, τ ) + · · · . The leading equation is

∂

∂t
ρ0(�n, t, τ ) = H0(�n,−�∇�nρ0(�n, t, τ )),

which is already solved by the initial condition. We cannot
determine the τ dependence of the vector ��(τ ) ∈ K at this
order.

At the next order we have

∂

∂t
ρ1 + ∂

∂τ
ρ0 = −�∇nρ1 · �∇νH0(�n,−�∇nρ0) + HC (�n,−�∇nρ0),
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which can be written

∂

∂ρ1
t+�∇nρ1 · �∇νH0(�n,−�∇nρ0)=

∑
[(1 − �n/�λ)(∂τ �λ − �J C )].

(33)

Now we note that, deterministically, the system is always
close to some equilibrium state, i.e., |�n − �neq| ∼ ε, where �neq

is of the form (13). Further deviations are exponentially sup-
pressed in probability when �c◦ε  1, as assumed. Consider
a general equilibrium �n = [�neq eζ ·�η′

] where �η ′ �= �η. On any
such state, we have �∇νH0 = 0, so this equation can be directly
integrated

ρ1|�n=[�neq eζ ·�η′ ] =
∫ t

dt ′ ∑[(1 − eζ ·(�η ′−�η ) )(∂τ �λ − �J C )],

(34)

which may lead to secular divergences. We demand that for all
nearby equilibria |�η ′ − �η | � 1, the right-hand side vanishes.
We thus expand eζ ·(�η ′−�η ) ≈ 1 + ζ · (�η ′ − �η ) and impose

0 = ζ T · (∂τ �λ − �J C ), (35)

which is equivalent to (23), with �n(0) replaced by �λ. We
thus recover the slow-dynamics equation in the stochastic ap-
proach, as the leading equation necessary to prevent long-time
divergences in the singular perturbation expansion.

In this approximation, the particle distribution remains
Poissonian at leading order, with mean �λ that corresponds
to �n0 in the rate equations. Note that the first correction to
Poissonian distributions is given by the solution to (33). Since
this is a linear partial differential equation for ρ1, it can be
solved by the method of characteristics. This solution will
depend on a trajectory of the closed system.

It is clear that (35) only prevents the leading divergences,
and there are not enough DOF in �λ(τ ) to prevent further ones;
this implies that the full distribution must be non-Poissonian.
To go beyond (35), it is easiest to use a cumulant generating
function representation, as discussed in [24]. This analysis
shows that, once (35) is solved, all higher-order divergences
are tamed by solving a series of linear tensorial ordinary
differential equations (ODEs). These ODEs all involve the
same matrix M that appears in (25), indicating its central role
for slow dynamics in CRNs.

V. NUMERICAL VALIDATION

We illustrate our theory with a series of models of in-
creasing complexity. In realistic CRNs at room temperature,
the reaction rates span a wide range of scales. This presents
challenges both for numerical simulations and for the basis
of our theory, which requires a timescale separation between
the bulk and the reservoir interactions. Nevertheless, at high
enough temperature such a separation can be found and the
theory applied. Initially we consider models for which the
logarithmic reaction rates span a modest range, corresponding
to physical systems at high temperature. For such models
the slow-driving condition is easily specified. Later we will
consider CRNs with a wider range of rates.

A. ABC model

The first model, which we dub the ABC model, has three
internal reactions

A
k1−⇀↽− B, (36)

A + B
k2−⇀↽− 2B, (37)

B
k3−⇀↽− C (38)

and two reservoirs

A
rA−⇀↽− AC , (39)

C
rC−⇀↽− CC . (40)

It is stoichiometrically trivial, but simple enough that the
slow-dynamics equation can be analytically solved, as de-
tailed in [24]. This solution, giving �n0(τ ), is compared with
illustrative numerical results from the full rate equations,
shown in Fig. 1(a). The leading-order analytical solution �n0(τ )
differs from numerical results by an amount of order ε, as
expected.

The slow dynamics of the ABC model can also be solved at
the stochastic level. As shown in [24], the probability remains
Poissonian with computable mean. The solution agrees with
direct numerical simulation of the master equation with the
Gillespie algorithm [35], as shown in Figs. 1(b) and 1(c).

B. Methane combustion

We now consider a version of methane combustion (see
Sec. VIII):

CH4 + 3CO2
k1−⇀↽− 2H2O + 4CO, (41)

O2 + 2CO
k2−⇀↽− 2CO2, (42)

H2 + CO2
k3−⇀↽− H2O + CO, (43)

H2O
r3−⇀↽− H2OC , (44)

O2
r5−⇀↽− OC

2 , (45)

H2
r6−⇀↽− HC

2 . (46)

Although small, this CRN has features typical of large
physical networks: The stoichiometric analysis (see the Sup-
plemental Material [24]) shows that there are three conserved
quantities, corresponding to the concentrations of C, H, and
O, as expected. We consider it in the high-temperature limit
T → ∞ where all bulk rates are equal ki → 1 (in appro-
priate units), and we furthermore set neq

i = 1, ri = 1, and
nC

i = 2 for simplicity. Example numerical time evolutions
are shown in Fig. 2(a) (colored lines) and compared with the
result from the slow-dynamics equation (black solid lines).
At ε = 0.01 the results are indistinguishable, while even at
ε = 0.3 (dashed lines) the slow-dynamics result captures all
qualitative features of the dynamics and provides a quantita-
tive approximation with relative errors smaller than ε.
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FIG. 1. The slow-dynamics equation tracks solutions to the full rate equations, even through nonequilibrium processes. (a) The ABC
model with numerical solutions (dashed lines) and the slow-dynamics equation (solid line) for a range of ε with the parameters k1 = k2 =
k3 = rA = rC = 1, nA(t = 0) = neq

A = 1, nB(t = 0) = neq
B = 2, nC (t = 0) = neq

C = 3, nC
A = 2, and nC

C = 4. The ABC model is solved at the
full stochastic level, showing the probability distribution function (PDF) of species A on (b) linear and (c) logarithmic axes with the parameters
rA = 1, rC = 1/3, nA(t = 0) = nB(t = 0) = nC (t = 0) = 0, neq

A /� = 1, neq
B /� = 2, neq

C /� = 3, zC
A = 2, zC

C = 4, and � = 3.

The entropy production rate is shown in Fig. 2(b) (orange
lines). As predicted by our analysis, the entropy production is
well captured by the contribution from slow dynamics (black
solid line). Thus, even though the system is always close
to some thermal equilibrium state, it is nevertheless out of
equilibrium and constantly producing entropy.

Moreover, for this choice of reservoirs, the final state of the
system is a nonequilibrium steady state, with small but finite
entropy production. It can be found by looking for steady
states of the slow dynamics. This gives two equations for eηH

and eηO , which do not depend at all on the bulk dynamics.
These are easily reduced to a cubic equation for eηO , with
strong positivity constraints on the coefficients, since rates
and concentrations cannot be negative. This situation, that is,
reduction to a polynomial in an activity eηe , is typical. An
explicit example will be given below.

C. Broad spectrum of reaction rates

Here we consider an early Earth CRN modeling a
submarine hydrothermal system containing formaldehyde,

FIG. 2. Methane combustion model for (a) numerical solutions
with ε = 0.3 (colored dashed lines) and ε = 0.01 (colored solid
lines) and compared to the result from the slow-dynamics equa-
tion (black solid line lines). From top to bottom on the right side,
concentrations are shown for H2O, O2, H2, CH4, CO2, and CO.
(b) The entropy production rate is extremely well captured by the
slow dynamics, even at ε = 0.3. These results use the parameters
ki → 1, neq

i = 1, ri = 1, and nC
i = 2.

ammonia, and water, of interest for the origin of life as sub-
marine hydrothermal systems are a potential source of abiotic
amino acids [36,37]. Using Reaction Mechanism Generator
(see Sec. VIII), we obtain species that can be obtained from
the initial pool, along with the corresponding reactions, in-
cluding their rates; the full list of 13 species and 40 reactions is
in [24]. The histogram of reaction rates is shown in Fig. 3(a);
it spans 30 orders of magnitude. This CRN conserves the
concentrations of C, H, O, and N, so its slow dynamics is
governed by only 4 DOF, a large reduction from the initial
13 DOF.

We solve the rate equations with reservoirs of CH2O, H,
CH4O, and C2H6O2 at T = 1000 K. For this choice of reser-
voirs, N is still conserved, as is the difference of C and O
concentrations (since all reservoirs have an equal number of
C and O atoms). Thus only two nontrivial DOF are needed to
understand its slow dynamics. As shown in Fig. 3, despite the
range of reaction rates spanning 30 orders of magnitude and
initial concentrations spanning more than five orders of mag-
nitude, the slow-dynamics equation quantitatively predicts the
evolution of all species and the entropy production.

D. Long-timescale dynamics

The slow-dynamics equation is not limited to a description
of mild transients between equilibrium states; the theory also
applies when the concentrations are dynamic over very long
timescales or when a steady state is not reached due to varying
reservoir parameters. With the early Earth CRN, if coupled to
reservoirs of CH2O, NH3, H, CHO, and H2N, then the sys-
tem has a very slow dynamics. Figure 4 shows the dynamics
at both T = ∞ [Fig. 4(a)] and T = 1000 K [Fig. 4(b)]. In
both cases, solutions of Eq. (25) track solutions to the rate
equations over many orders of magnitude in τ . Figure 4(a)
shows convergence to a steady state; in Fig. 4(b) a steady
state has not yet been reached, but the dynamics appears to
be approaching a nonequilibrium steady state of Eq. (25), as
shown in Fig. 4(c). These examples show that the final state of
the CRN need not be close at all to the initial state for Eq. (25)
to capture the dynamics.
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FIG. 3. The slow-dynamics equation can be applied to CRNs with a broad range of reaction rates. (a) Histogram of reaction rates (including
both forward and reverse reactions), along with the chosen value of ε in simulations. (b) Numerical integration of the rate equations (colored
dashed lines), along with the prediction from slow dynamics (thin black solid lines). (c) The entropy production (orange dashed line) is well
predicted by the slow-dynamics contribution (thin black solid line).

E. Autotrophic core

As a final example, we consider a very large reaction
network of 404 reactions and 375 species, proposed in [38]
as a minimal CRN from which to construct the amino acids
and nucleic acid monomers necessary for life, along with
cofactors needed for their synthesis, from primitive building
blocks, namely, H2, CO2, and NH3; the authors have in mind
an aqueous environment like a serpentizing hydrothermal vent
[37]. Here we show how our theory can be used with such a
CRN. More details on the CRN appear in [24].

Consider first reservoirs of H2O, H2, CO2, and NH3, as
suggested in [38]. These reservoirs break conservation of H,
O, N, and C and do not create any emergent cycles. Therefore,
the system cannot evolve to a NESS, but must relax eventually
to an equilibrium state. The slow dynamics is four dimen-
sional and easily solved numerically. Since the left-hand side
of the slow-dynamics equation involves the M matrix, which
has contributions from the equilibrium concentrations of all
species, one needs to know the chemical potentials of all bulk
species.

Consider now a scenario with more reservoirs. A minimal
way to create a NESS is to add one emergent cycle. For exam-
ple, if we add carbon monoxide then we create one emergent
cycle

CO2 + H2 −⇀↽− CO + H2O. (47)

Then when coupled to these reservoirs, the CRN can either
grow indefinitely or evolve to a NESS, performing some of
the effective reactions. A NESS can be sought by looking
for steady states of the slow dynamics. In terms of the net
fluxes into the system from the reservoirs Ji = ri(zC

i − n0
i /�)

these are

0 = JCO2 + JCO, (48)

0 = 2JH2O + 2JH2 + 3JNH3 , (49)

0 = 2JCO2 + JCO + JH2O, (50)

0 = JNH3 (51)

FIG. 4. The slow-dynamics equation captures extremely slow relaxations to steady states. For the early Earth CRN with 13 species and 40
reactions, reservoirs of CH2O, NH3, H, CHO, H2N lead to very slow dynamics. (a) Particle number versus τ at T = ∞, where all bulk rates
kα = 1 in appropriate units. Here ε = 10−2. Solutions of Eq. (25) (thin black solid line) track solutions to the rate equations (colored dashed
lines), even over the six decades in τ needed to reach a steady state. (b) The same CRN is simulated at T = 1000 K, where the relaxation is
slower and the numerical equations are very stiff. Over the simulated time, solutions to Eq. (25) (thin black solid line) track solutions to the
rate equations (colored dashed lines). As shown in (c), this solution appears to be converging towards a nonequilibrium steady state, found
from Eq. (25) by looking for steady states. Species are labeled in the same order as in the legends of (a) and (b). For each species, three bars are
shown (from left to right): the solution to the rate equations after τ = 105, the solution to the rate equations after τ = 106, and the steady-state
solution of Eq. (25).
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for C, H, O, and N, respectively. Equation (51) means that the
system must equilibrate to be at the reservoir concentration of
methane. Explicitly,

0 = rNH3

(
zC

NH3
− neq

NH3
eηN e3ηH/�

)
implies eηN = e−3ηH zC

NH3
�/neq

NH3
. Note that eηN depends on

eηH , so it is still nontrivial, but since JNH3 = 0, it drops out
of the remaining equations for the NESS.

To solve the remaining equations it is convenient to absorb
equilibrium concentrations into the rates and reservoir con-
centrations, viz.,

Ji = ri

[
zC

i − neq
i exp

(∑
e

ζieηe

)/
�

]

≡ r̃i

[
z̃i − exp

(∑
e

ζieηe

)]
. (52)

Then labeling the reservoirs in the order H2O, H2, CO2, NH3,
and CO, the remaining equations reduce to

0 = r̃3(z̃3 − eηC+2ηO ) + r̃5(z̃5 − eηC+ηO ), (53)

0 = r̃1(z̃1 − e2ηH+ηO ) + r̃2(z̃2 − e2ηH ), (54)

0 = r̃3(z̃3 − eηC+2ηO ) + r̃1(z̃1 − e2ηH+ηO ). (55)

Solving Eqs. (53) and (54) as

eηC = e−ηO
r̃3z̃3 + r̃5z̃5

r̃3eηO + r̃5
, (56)

e2ηH = r̃1z̃1 + r̃2z̃2

r̃1eηO + r̃2
, (57)

we reduce the problem to

0 = r̃3z̃3 + r̃1z̃1 − r̃3
r̃3z̃3 + r̃5z̃5

r̃3eηO + r̃5
eηO − r̃1

r̃1z̃1 + r̃2z̃2

r̃1eηO + r̃2
eηO ,

(58)

which becomes a quadratic equation for eηO . Thus the NESS
can easily be found. Now, for given reservoir rates and con-
centrations, we must check that each eηe is positive; otherwise
the solution is not physical.

Physical solutions can further be divided into two classes.
If all the ηe are negative, then the equilibrium concentrations
of molecules at infinite temperature decrease with increasing
atomic number; larger molecules are less abundant. If instead
some ηe > 0, then that element leads to an increasing concen-
tration with increasing atomic number; large molecules can
become exponentially more abundant in the NESS. This opens
the possibility for a phase transition separating such regimes,
which can be probed with the slow-dynamics equation, with
further subtleties at finite T depending on the behavior of
chemical potentials with atomic composition. We leave the
detailed study of this effect to the future. Here we simply solve
(58) for a variety of reservoir rates and concentrations, find
solutions with all ηe < 0, and then compare the result with
that of the full rate equations. They agree, showing that the
general structure of a potential NESS can be probed without
knowledge of the CRN bulk, even for very large CRNs, in the
slow-driving limit.

For this CRN, we also look at examples with numerous
reservoirs. In such cases, without fine-tuning of parameters,
we find that the system grows over a range of τ ; this behav-
ior is then confirmed by solution of the full rate equations.
Examples are shown in the Supplemental Material [24].

VI. EXTENSION TO FAR-FROM-EQUILIBRIUM STATES

Although above we considered initial states that were near
equilibrium before coupling to external reservoirs, this is
not essential to obtain a reduction to conserved quantities.
Suppose instead that there is a leading-order coupling to reser-
voirs, which we assume is stationary. We write �r → 1

ε �r 0 + �r
so that the rate equation, in the two-time ansatz, is

∂t �n + ε∂τ �n = (S0) · �J 0(�n) + [�r 0(�nC − �n)]︸ ︷︷ ︸
S̃· �̃J 0(�n)

+ε[�r(�nC − �n)].

Expanding �n = �n0 + ε�n1 + · · · , at leading order ∂t �n0 = S̃ ·
�̃J 0(�n0). With time-independent coupling to reservoirs, this
will either describe relaxation to a NESS or blow up. Assume
that we reach a NESS. Then at the next order we have an
equation of the form (22), with S replaced by S̃. This will
generally have long-time divergences unless �n0 depends on
the slow time τ . Let ζ be a basis of the conserved quantities of
S̃, i.e., S̃T · ζ = 0. Then the slow-dynamics equation is again
(23). The differences from the previous analysis are that now
(i) the conserved quantities do not necessarily correspond to
elements, since the leading-order reservoirs will break some
conservation laws, and (ii) �n0 is not a known function of
the slow DOF �η. This latter fact means that although true,
Eq. (23) cannot be solved without constitutive information on
the �n0(�η) relationship. Moreover, this unknown relationship
�n0(�η) will in general involve the bulk reaction rates, unlike the
detailed-balanced case. The main result here is that we know
the dimension of the reduced dynamics, equal to the number
of conserved quantities of the NESS.

A special case that can be fully analyzed is that of an
open system with no emergent cycles. In this case the system
will settle to a detailed-balanced equilibrium, in which all
reservoirs are equilibrated. For example, consider reservoirs
of H2O, H2, CO2, and NH3. The solution (13) will hold if
the reservoir fluxes all vanish: 0 = Jk for the four reservoir
species. Labeling these species as 1, 2, 3, and 4 and absorbing
equilibrium concentrations into the reservoir concentrations
as in Sec. V E, these become

0 = z̃1 − e2ηH eηO , (59)

0 = z̃2 − eηH , (60)

0 = z̃3 − eηC e2ηO , (61)

0 = z̃4 − eηN e3ηH , (62)

which are trivially solved for the η. This case then reduces to
that of closed detailed-balanced systems.
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VII. DISCUSSION AND CONCLUSIONS

We have shown that slowly driven CRNs are governed by
the conserved quantities of the corresponding closed system.
The latter are generally the element concentrations, giving a
huge reduction in DOF in large CRNs. The natural dynamical
variables of the slow dynamics are chemical potentials �η,
which evolve according to (25). From the solution of this
equation, which does not involve the bulk reaction rates, one
can obtain the full dynamics, at leading order in driving.
Moreover, in this limit one can easily probe the structure of
the NESS for large realistic CRNs.

This framework may be useful to understand free-energy
transduction in open CRNs [15]. Indeed, open CRNs can be
considered as chemical machines that interconvert species
between the reservoirs. For example, the early Earth CRN
considered above, when coupled to reservoirs of CH2O, H,
CH4O, and C2H6O2, has effective reactions (emergent cycles)

CH2O + 2H −⇀↽− CH4O, (63)

CH2O + CH4O −⇀↽− C2H6O2. (64)

The free-energy change in an emergent cycle is obtained
straightforwardly from the chemical potentials of the species,
but to understand the efficiency of the chemical machine, one
requires the flux through the cycle, except in special cases
[15]. Generally, this necessitates the entire suite of reaction
rates and a numerical solution of the rate equations. A limiting
factor in the analysis is then that many rates are not known for
biochemical networks of interest.

Our analysis provides an alternative. For any given forcing,
one can solve the slow-dynamics equation, without knowl-
edge of any bulk reaction rates. With this solution in hand, one
can evaluate the reaction fluxes and then the efficiency. This
solution is guaranteed to work in the limit of slow driving and
can provide a benchmark value at finite-rate driving.

For similar reasons, our theory may be useful in conjunc-
tion with a circuit theory for CRNs [16]. In the latter, a CRN
is coarse grained by treating subsets of CRNs as chemical
modules, connected to each other by particular species. For
each module, the theory requires the relationship between
the flux through emergent cycles and the concentrations of
chemostatted species. If a module is treated as fast compared
to its external connections, then our theory can be used to find
the current-concentration relations, as shown in [24] for an
example from [16]. This is particularly useful for large, poorly
characterized modules where our method does not require the
bulk reaction rates.

How does one know when a CRN is slowly driven? First,
it follows immediately from (13) that ratios of concentrations
that are stoichiometrically equivalent, for example, products
and reactants of any bulk reaction, will be constant, to lead-
ing order in ε. This is useful if many concentrations can
be tracked. More generally, one can attempt to estimate the
underlying dimension of the CRN [39]. If small, it is a strong
indication that the dynamics is occurring on a slow manifold
due to timescale separation.

Independence of the slow dynamics with respect to bulk
activation energies is a strong generic form of robustness

applicable to all chemical machines whose core is detailed
balanced. Moreover, dissipation is minimized, since the sys-
tem is always close to some equilibrium state. The price of
this robustness is that the system responds slowly to outside
forcing. Whether this slow dynamics is relevant for real-world
chemical machines then depends on system-specific tradeoffs
between robustness and speed.

We note that an alternative weak-driving theory has been
obtained in [40], also using the Hamilton-Jacobi equation.
This theory is based upon the log-probability correction ρ1,
but without the multiple-timescale analysis. This is sufficient
for nonequilibrium steady states as considered in [40], but in
dynamical problems it will generally suffer from long-time
divergences.

Our reduction of complex dynamics to that of the con-
served quantities is reminiscent of hydrodynamics. There are
however some differences. First, in hydrodynamics one as-
sumes that the system is coupled to other systems that differ
only weakly from it. Here instead we do not assume that the
reservoirs are near the system; their concentrations can be
arbitrarily far from the corresponding concentration in the sys-
tem. We only assume that they react slowly with the system.
Second, in hydrodynamics one considers systems that interact
spatially, whereas our system is well mixed and interacts with
external reservoirs without any explicit spatial coupling. The
extension of our results to include spatial effects is left for
future work.

VIII. METHODS

For constructing the methane combustion model, the tool-
box Stoichiometry Tools in MATLAB was used [41]. The input
{CH4, CO2, H2O, CO, O2, H2} led to the reactions (41).

For larger models, we used Reaction Mechanism Generator
(RMG) [42,43]. Given an input pool of species, RMG itera-
tively finds possible reactions between the species and new
species that can be produced. Rates, enthalpies, and entropies
are either looked up in a database or estimated using additivity
methods. For the early Earth model, we used the input set
{CH2O, NH3, H2O}, with H2O as a solvent, into RMG. It
results in the 40 reactions and 10 new species shown in [24].

We note that RMG is not guaranteed to find all possible
reactions among species. In testing against known CRNs rele-
vant to the origin of life, we found that RMG sometimes failed
to find reactions known to be possible. Thus we used it as a
method to benchmark our framework against CRNs with valid
stoichiometry and a broad range of realistic rates.

For the autotrophic core CRN, we worked only at T →
∞ so that no bulk reaction rates or chemical potentials were
needed.

All ordinary differential equations were integrated in MAT-
LAB using the ode15s solver.

In the Supplemental Material [24] the autotrophic core
reservoirs are listed along with their KEGG IDs [44].
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