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Thermodynamic geometry of a system with unified quantum statistics
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We investigate the thermodynamic characteristics of unified quantum statistics, a framework exhibiting a
crossover between Bose-Einstein and Fermi-Dirac statistics by varying a generalization parameter δ. An intrinsic
statistical interaction becomes attractive for δ � 0.5, maintaining positive thermodynamic curvature across
the entire physical range. In the range 0.5 < δ < 1, the system predominantly displays Fermi-like behavior
at high temperatures. Conversely, at low temperatures, the thermodynamic curvature is positive, resembling
bosonic behavior. Further temperature reduction induces a transition into the condensate phase. We introduce
a critical fugacity (z = Z∗) at which the thermodynamic curvature changes sign. Below (z < Z∗) and above
(z > Z∗) this critical point, the statistical behavior mimics fermions and bosons, respectively. We explore the
system’s statistical behavior for various δ values with respect to temperature, determining the critical fugacity
and temperature-dependent condensation. Finally, we analyze specific heat as a function of temperature and
condensation phase transition temperature for different δ values in various dimensions.
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I. INTRODUCTION

Quantum distributions play a crucial role in understand-
ing the statistical behavior of particles in diverse physical
systems. The Bose-Einstein and Fermi-Dirac distributions are
particularly significant and have been extensively researched
[1–6]. These distributions offer valuable insights into the
unique characteristics of bosons and fermions, fundamental
quantum particles. Bosons can occupy quantum levels without
constraints on particle numbers, while fermions adhere to
the Pauli exclusion principle, allowing only one fermion per
quantum level. In quantum field theory, bosons and fermions
are associated with commutative and anticommutative alge-
bras for their creation and annihilation operators, respectively.

The field of generalized statistics has seen various develop-
ments, including proposals for anyons [1], Haldane fractional
exclusion statistics [2], deformed statistics [3,4], and nonex-
tensive statistics [5]. A recent advancement is the introduction
of unified quantum statistics by Yan [6], which seamlessly
interpolates between Bose-Einstein and Fermi-Dirac statistics
based on the intrinsic properties of constituent particles.

The geometric aspects within thermodynamic systems
were initiated by Gibbs [7,8], and further developed by
Ruppeiner and Weinhold [9,10]. Ruppeiner introduced a
formalism grounded in fluctuation theory, establishing a
thermodynamic parameter space with a metric tied to sec-
ond derivatives of entropy concerning intrinsic extensive
thermodynamic parameters [9,11]. The Ruppeiner and Wein-
hold metrics are essentially equivalent, differing primarily
by a conformal factor [12,13]. For different thermodynamic
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systems, alternative metrics can be introduced, as explored by
Diósi et al., Janyszek, and Mrugała [11,14,15].

The thermodynamic curvature, a scalar derived from the
metric, often referred to as the Ricci scalar, plays a pivotal
role in the analysis of thermodynamic systems [12,13].

To date, many thermodynamic systems have been analyzed
by inspecting the corresponding Ricci scalar. For example,
it’s established that the thermodynamic curvature of a single-
component ideal gas is zero [9,16]. Janyszek and Mrugała
delved into the investigation of the thermodynamic curvature
for well-known ideal quantum gases like Bose and Fermi
gases [15,17]. Extensive studies reveal that the thermody-
namic curvature of an ideal Bose gas consistently displays a
positive value across its entire physical range, while for an
ideal Fermi gas, it consistently exhibits a negative value. The
choice of sign convention for thermodynamic curvature is ar-
bitrary, serving as a means of categorizing inherent statistical
interactions among particles within the system.

Information geometry of quantum gases was reconsid-
ered in [18], and some results of [15] about the Fermi gas
calculation were modified. Furthermore, the scalar thermo-
dynamic curvature of ideal quantum gases obeying Gentile’s
statistics has been investigated using information geometric
theory [18]. Recently, the thermodynamic geometry of quan-
tum gases, especially the Bose-Einstein fluid, with a focus on
the strongly degenerate case, has been considered [19,20].

Thermodynamic curvature exhibits singular behavior at
phase transition points, demonstrated by ideal Bose gas,
nonextensive boson gas, and deformed boson gas [15,21–23].
This singularity phenomenon has been investigated in various
systems, including black holes [24,25], boundary conformal
field theory within gauge/gravity duality [26], nonextensive
and Kanadiakis statistics [27,28], and trapped ideal quantum
gases [29].
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In this paper, we introduce a tailored thermodynamic ge-
ometry approach for unified quantum statistics proposed by
Yan [6]. The investigation extends to ideal gas systems ad-
hering to both conventional quantum statistics and various
generalized statistics [15,17,21,30]. Based on the analysis of
thermodynamic curvature, we demonstrate a rich phase space
for this model, including BE-FD crossover and critical Bose-
Einstein condensation (BEC).

The paper is organized as follows. In Sec. II, we provide
a concise introduction to the recently proposed unified quan-
tum statistics. In Sec. III, we derive expressions for various
thermodynamic quantities, including internal energy and total
particle number, applicable to an ideal gas subject to unified
statistics in arbitrary dimensions. Section IV is dedicated to
an in-depth examination of thermodynamic geometry, along
with a brief discussion on the computation of thermodynamic
curvature. Section V is focused on the construction of the
thermodynamic parameter space for an ideal gas incorporating
quantum unified statistics, along with an investigation into the
thermodynamic curvature. In Sec. VI, we conduct a compre-
hensive exploration of the condensation phenomenon in the
context of quantum statistics. Lastly, in Sec. VII, we present
concluding remarks to summarize the key findings of this
paper.

II. UNIFIED QUANTUM STATISTICS

Over time, both theoretical and experimental evidence have
provided substantial motivation for the emergence of interme-
diate statistics, coinciding with the well-established quantum
statistics of Bose-Einstein and Fermi-Dirac distributions. One
motivation for exploring intermediate statistics arises from
the observation of quantum systems exhibiting mixed proper-
ties, wherein a fermionic system displays certain similarities
with bosonic ones. A notable example is bosonization in
fermionic systems, where pairs of fermions form bound states,
giving rise to a new phase of matter effectively described
by a bosonic system at low energies. Another intriguing in-
stance is bosonization resulting from the Cooper instability
in superconducting systems. Central to this phenomenon is
the attractive interaction between fermions, originating from
electron-phonon interactions and spin fluctuations. These
Cooper pairs display collective behavior, condensing into a
state of superfluidity or superconductivity at low temperatures
[31,32].

On the contrary, BEC occurs in bosonic systems, such
as alkali atoms cooled to extremely low temperatures. In
this scenario, a large number of bosonic particles occupy
the quantum ground state, leading to macroscopic coherence
[33,34]. In a widely accepted framework, the strength of the
attractive interaction between Cooper pairs dictates the nature
of the BEC transition of the effective bosons. The BCS-
BEC crossover phenomenon is associated with this interaction
strength. Specifically, the BCS-BEC crossover involves a
gradual transformation between these two phenomena as the
strength of the attractive interaction varies. During this tran-
sition, the system can shift from a BCS-like superfluid phase
dominated by Cooper pairs to a BEC-like phase where the par-
ticles exhibit BEC behavior [35]. This crossover is frequently
observed in ultracold atomic gases, where interparticle

interactions can be controlled [36]. Although fermions inher-
ently exhibit repulsive statistical interactions, Cooper pairs,
behaving like bosons, result in an intrinsic statistical behavior
that is attractive.

Intermediate statistics offer an intriguing avenue, introduc-
ing a significant perspective to the discourse and emerging as
a promising explanatory framework for bosonization and sub-
sequent BEC. Intermediate statistics delve into the statistical
interactions among particles, with a sign change triggering the
process of bosonization. In fermionic (bosonic) systems, the
statistical interaction is characterized by negativity (positiv-
ity), and this alteration fundamentally transforms the nature
of matter. Analogous to bosonization stemming from the
Cooper instability, the transition in a fermionic system leads
to bosonization, where the “strength” of the bosonic states
is regulated by the deformation parameter associated with
intermediate statistics.

To illustrate this concept, intriguing intermediate statistics
have been proposed by extending the statistical weights as-
sociated with energy levels [37]. Recently, there has been
a growing perspective on understanding the quantum state
of systems comprising multiple particles, conceiving it as a
functional entity defined within the particles’ internal space.
Consequently, a unified framework has emerged, encom-
passing both bosons and fermions under a single exchange
statistics paradigm [6]. Various extensions of the algebra
for creation and annihilation operators have been explored,
such as q and qp-deformed bosons and fermions, f-deformed
fermions, Wignons, and deformed Tamn-Dankoff [21,38–41].
A particularly promising generalization was proposed by Yan
[6], who introduced the following algebra:

[ai, a†
j ]q = 1qδi j, (1)

[a†
i , a†

j ]q = [a†
i , a†

j ]q = 0, (2)

where ai (a†
i ) represents the annihilation (creation) operator.

The unite operator is defined as follows [6]:

1q =
{

1, if all ni = 0 or 1,
1
2 (1 + q̂), otherwise

, (3)

with q̂ as the exchange statistics factor operator [6]. It has been
argued that for completely indistinguishable particles, the ex-
change statistics factor operators are independent of the pairs
of particles and commute with any operator in the system.
They neither change the physical configuration nor mix up
internal states further. Furthermore, it has been demonstrated
that the exchange statistics factor operator must be Hermitian
and unitary. The Hamiltonian of an ideal gas of such particles
is given by H (q̂) = ∑

i εin̂i, in which εi denotes the single
particle energy levels and n̂i is the number operator of levels.
The grand partition function of the system has been derived as
follows:

�̂(q̂) =
∏

i

1 − 1−q̂
2 e2β(μ−εi )

1 − eβ(μ−εi )
, (4)

with β = 1/kBT, and μ is the chemical potential. When the
particle’s internal state is an eigenstate of the operator q̂, it
manifests itself either as bosonic or fermionic characteristics.
Typically, the internal state of such a particle embodies an
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admixture of attributes akin to both bosons and fermions.
Within this composite state, we can derive the grand partition
function as follows:

�(δ) =
∏

i

1 − δz2e−2βεi

1 − ze−βεi
, (5)

where z = eβμ denotes the fugacity and δ is a constant value
between zero and one. It is evident that when δ = 0 (1),
the equation above simplifies to the partition function of an
ideal gas of bosons (fermions). Within this scenario, the mean
occupation number of a single particle state of energy εi is
expressed as

ni = 1

exp(β(εi − μ)) − 1
− 2δ

exp(2β(εi − μ)) − δ
. (6)

In the limit of δ=0 and 1, the well-known Bose-Einstein
and Fermi-Dirac distribution function would be recovered,
respectively.

III. THERMODYNAMIC QUANTITIES

Utilizing the distribution function of unified quantum
statistics, as briefly discussed in the preceding section, several
thermodynamic quantities can be driven. We consider a D-
dimensional ideal gas with the following energy-momentum
dispersion relation:

ε = αpσ , (7)

in which p, σ, and α are particle’s momentum, dispersion
exponent, and the proportionality constant, respectively. In the
nonrelativistic limit (ε = p2/2m), it is obvious that α = 1/2m
(m denotes the particle’s mass), and σ = 2. In contrast, in
the ultrarelativistic limit (ε = pc), one can easily show that
α = c and σ = 1. In D dimensions, the single particle density
of states �(ε) is

�(ε) = AD

	( D
σ

)
ε

D
σ

−1, A = L
√

π

(a
1
σ h)

, (8)

wherein A is a constant set to unity for the sake of simplicity.
Moreover, LD represents the volume of a D-dimensional box.
Using Eq. (6), the internal energy is given by

U =
∫ ∞

0
εn(ε)�(ε)dε

=D

σ
β−( D

σ
+1)

[
ḡ D

σ
+1(z) − 2− D

σ ḡ D
σ

+1(z′)
]

=νβ−(ν+1)[G(δ, ν + 1; z)], (9)

where D
σ

≡ ν, z′ ≡ δz2, and

G(δ, ν; z) ≡ [ḡν (z) − 2(1−ν)ḡν (z′)]. (10)

In this formula, ḡν (z) denotes the standard Bose-Einstein in-
tegrals defined by

ḡν (z) = 1

	(ν)

∫ ∞

0

xν−1

z−1 exp(x) − 1
dx. (11)

In addition, the total particles number is given by

N =
∫ ∞

0
n(ε)�(ε)dε = β−ν[G(δ, ν; z)]. (12)

Combining Eqs. (5) and (9) with P = (− ∂F
∂V )N,T (F rep-

resenting Helmholtz free energy) demonstrates that, akin to
conventional statistics, there exists a standard relationship
between pressure (P), volume (V), and internal energy as
follows:

PV = U

ν
. (13)

IV. THERMODYNAMIC GEOMETRY

Ruppeiner and Weinhold introduced thermodynamic ge-
ometry as an innovative approach to the study of ther-
modynamic systems [9,10]. The thermodynamic parameter
space can be conceptualized as a Riemannian space, and
gives rise to establishment of a suitable metric within this
space. The Ruppeiner metric is constructed by calculating the
second-order derivatives of entropy concerning the relevant
extensive thermodynamic parameters, encompassing internal
energy, volume, and the total number of particles. Further-
more, Weinhold introduced an alternative metric in the energy
representation, which is defined by evaluating the second-
order derivatives of internal energy concerning the pertinent
extensive thermodynamic parameters. It has been noted that
these metrics exhibit conformal equivalence [13].

Performing a Legendre transformation on either entropy
or internal energy with respect to the extensive parameters
results in the derivation of various thermodynamic potentials,
such as Helmholtz and Gibbs free energy. The Fisher-Rao
metric is defined by the second derivatives of the logarithm
of the partition function concerning the nonextensive thermo-
dynamic parameters [11,15,42–46], as shown below:

gi j = ∂i∂ j lnZ. (14)

Here, ∂i is a shorthand notation for the derivative with respect
to the nonextensive thermodynamic parameter i, and Z de-
notes the partition function.

The logarithm of the partition function for an ideal classical
or quantum gas is a multivariable function that depends on the
system’s volume, β = 1/kBT and γ = −μ/kBT . Typically,
the volume is treated as a fixed thermodynamic parameter.
Consequently, the thermodynamic parameter space of the sys-
tem becomes a two-dimensional space.

The connection coefficient (Christoffel symbols) is defined
using the components of the metric tensor

	i
jk = 1

2 gim(gm j,k + gmk, j − g jk,m), (15)

in which gmn represents the elements of the inverse metric
tensor and gi j,k = ∂kgi j . The elements of the Riemann tensor
are obtained by

Ri
jkl = ∂k	

i
l j − ∂l	

i
k j + 	i

km	m
l j − 	i

lm	m
k j . (16)

The Riemann tensor provides insights into the curvature of
the thermodynamic space. Furthermore, the second rank Ricci
tensor is defined as follows:

Ri j = Rm
im j . (17)

Consequently, the Ricci scalar is given by

R = gi jRi j, (18)
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which is also known as the thermodynamic curvature. In
a two-dimensional parameter space, the Ricci scalar is
simplified to

R = −
2

∣∣∣∣∣∣
gββ gβγ gγ γ

gββ,β gβγ ,β gγ γ ,β

gββ,γ gβγ ,γ gγ γ ,γ

∣∣∣∣∣∣∣∣∣∣gββ gβγ

gβγ gγ γ

∣∣∣∣
2 . (19)

V. THERMODYNAMIC PARAMETERS SPACE OF
QUANTUM UNIFIED STATISTICS

In the preceding sections, we have laid the groundwork
for constructing the parameter space governing the thermo-
dynamic properties of an ideal gas consisting of particles
following a unified quantum statistics. We will operate as-
suming that the volume of the system remains constant
throughout the analysis. Consequently, the thermodynamic

parameters under consideration are β and γ , resulting in a
two-dimensional parameter space. Moreover, by introducing
z = e−γ , z′ = δz2 = δe−2γ , and using the chain derivative rule
and the definition of the Bose-Einstein integrals, one can find

∂

∂γ
ḡν (z) = ∂z

∂γ

∂

∂z
ḡν (z) = −z

∂

∂z
ḡν (z) = −ḡν−1(z),

∂

∂γ
ḡν (z′) =∂z′

∂γ

∂

∂z′ ḡν (z′) = −2z′ ∂

∂z′ ḡν (z′) = −2ḡν−1(z′).

(20)

Therefore, the following relation is obtained for G(δ, ν; z) :

∂

∂γ
G(δ, ν; z) = −G(δ, ν − 1; z). (21)

Using Eqs. (14), (9), (12), and (21) the metric elements cor-
responding to the aforementioned two-dimensional parameter
space are given by

gββ =∂2 lnZ
∂β2

= −
(

∂U

∂β

)
γ

= − ∂

∂β
[β−(ν+1)ν(G(δ, ν + 1; z))] = β−(ν+2)

	(ν)
	(ν + 2)G(δ, ν + 1; z),

gβγ =gγ β = ∂2 lnZ
∂β∂γ

= −
(

∂N

∂β

)
γ

= − ∂

∂β
[β−νG(δ, ν; z)] = β−(ν+1)

	(ν)
	(ν + 1)G(δ, ν; z),

gγ γ =∂2 lnZ
∂γ 2

= −
(

∂N

∂γ

)
β

= − ∂

∂γ
[β−νG(δ, ν; z)] = β−νG(δ, ν − 1; z). (22)

By employing Eqs. (21) and (22), we can express the derivatives of the metric elements as follows:

gββ,β = ∂

∂β
gββ = −β−(ν+3)

	(ν)
	(ν + 3)G(δ, ν + 1; z),

gββ,γ = gβγ ,β = gγ β,β = ∂

∂γ
gββ = −β−(ν+2)

	(ν)
	(ν + 2)G(δ, ν; z),

gβγ ,γ = gγ β,γ = gγ γ ,β = ∂

∂β
gγ γ = −β−(ν+1)

	(ν)
	(ν + 1)G(δ, ν − 1; z),

gγ γ ,γ = ∂

∂γ
gγ γ = −β−νG(δ, ν − 2; z). (23)

In general, using the matrix elements defined in Eqs. (22) and (23), the thermodynamic curvature given by Eq. (19) can be
evaluated as

R = 2(ν + 1)βν (−2G(δ, ν + 1; z)G(δ, ν − 1; z)2 + G(δ, ν; z)2G(δ, ν − 1; z) + G(δ, ν − 2; z)G(δ, ν; z)G(δ, ν + 1; z))

(νG(δ, ν; z)2 − (ν + 1)G(δ, ν − 1; z)G(δ, ν + 1; z))2
. (24)

For δ = 0, this equation is reduced to the thermodynamic curvature of Bose gas, which has been already given in [18].

Figure 1 depicts the thermodynamic curvature in a three-
dimensional system of nonrelativistic particles under unified
quantum statistics, as a function of fugacity. A notable obser-
vation is the distinct behavior of thermodynamic curvatures
in specific cases: for δ = 0 (bosons), they consistently ex-
hibit positive values, while for δ = 1 (fermions), negative
values are consistently displayed throughout the entire physi-
cal range.

For all values δ � 0.5, the thermodynamic curvature
remains positive, indicating an attractive statistical interac-
tion among particles—a defining characteristic in a bosonic

system. However, for 0.5 < δ < 1, we observe that, depend-
ing on the specific value of δ, a corresponding fugacity value
denoted as z = Z can be identified, where the sign of the
thermodynamic curvature changes. This implies that when
z < Z (z > Z∗), the intrinsic statistical interaction becomes
repulsive (attractive). Figure 2 demonstrates the consistency
of these principles across different dimensions and dispersion
relations.

We note that the thermodynamic curvature exhibits sin-
gularity for all values of δ except for δ = 1 when z = 1.
It is widely acknowledged that, similar to the singularity
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FIG. 1. Thermodynamic curvature of an ideal three dimen-
sional (D = 3) gas of particles obeying unified quantum statistics
as a function of fugacity for isothermal processes (β = 1). The
particles are supposed to have nonrelativistic dispersion (σ = 2).
The solid (brown) line corresponds to δ = 0 (ideal boson gas)
and the lower solid line (blue) represents curvature of δ = 1
(ideal fermion gas). Dashed lines correspond to the values δ =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 from top to bottom (at z =
0), respectively.

(a) (b)

(c) (d)

FIG. 2. Thermodynamic curvature of an ideal gas with parti-
cles obeying generalized unified quantum statistics as a function
of fugacity for isothermal processes (β = 1). The solid (brown)
line corresponds to δ = 0 (ideal boson gas) and the dash dotted
line (blue) represents curvature of δ = 0.5. Dashed lines correspond
to the values δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. (a):
(D = 2, σ = 1), (b): (D = 2, σ = 2), (c): (D = 3, σ = 2) and (d):
(D = 1, σ = 2).

0

1

2

3

R

0 5 10
T/Tc

0

1

2

3

R

0 5 10
T/Tc

5.4

0.00

0.05

3.5

0.0

0.1

(a) (b)

(c) (d)

δ = 0 δ = 0.2

δ = 0.7 δ = 0.85

FIG. 3. Thermodynamic curvature of an ideal gas with particles
obeying generalized quantum statistics as a function of T/Tc. For
D = 3 and σ = 2 and (a) δ = 0, (b) δ = 0.2, (c) δ = 0.7, and (d) δ =
0.85.

observed in the thermodynamic curvature of an ideal Bose
gas at the critical fugacity, the highest permissible value for
the fugacity allowing for a nonnegative Bose-Einstein distri-
bution function is z = 1—corresponding to the critical value
of the fugacity at the condensation temperature [47]. Previous
studies have underscored that the thermodynamic curvature
of a conventional Bose gas displays singularity at the critical
fugacity value. Interestingly, the thermodynamic curvature of
a unified quantum gas, for any given δ, appears to possess
a unique characteristic at z = 1. It is well known that for an
ideal gas in the condensate phase, the fugacity of the system
is fixed at z = 1. We postulate that the same behavior for
the unified quantum gas occurs at z = 1. Hence, the only
remaining variable subject to fluctuations in the system is
β. Consequently, the thermodynamic parameter space at the
condensate phase reduces to a one-dimensional space, which,
by definition, is flat. The thermodynamic parameter space
for the normal phase is determined by the fugacity and tem-
perature variables. All the quantities examined in this study
exhibit this behavior, including the thermodynamic curvature,
which can be expressed by βαF (z) as functions of β and z.
The exponent α and the function F (z) vary across different
quantities within distinct dimensions and dispersion relations.
Using Eqs. (12) and (18) the thermodynamic curvature of a
system can be given at a specific particle number as a function
of temperature. Figure 3 reveals that the thermodynamic cur-
vature undergoes a discontinuity at the transition temperature.
In the next section, we will consider the condensation tem-
perature in more details. From Figs. 1–3, it is evident that the
thermodynamic curvature remains positive across the entire
physical range for δ � 0.5. However, for δ > 0.5, two distinct
regimes with both positive and negative curvature can be
identified.
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VI. TRANSITION TEMPERATURES

In this section, we illustrate that the fugacity in unified
quantum statistics must be constrained to ensure a positive
distribution function for all values of δ, akin to the behavior
seen in ordinary Bose statistics. The fugacity is confined to the
interval 0 � z � 1, and the behavior of the thermodynamic
curvature exhibits singularity at the upper bound, zmax = 1.

The thermodynamic curvature exhibits a discontinuity at
T = Tc. The singular behavior of the thermodynamic curva-
ture of an ideal Bose gas, occurring at zmax = 1, is widely
recognized and is associated with the BEC transition.

We anticipate the occurrence of a similar transition for
arbitrary values of δ. We determine the phase transition
temperature for a constant particle density. Using Eq. (12),
we deduce the phase transition temperature for generalized
statistics as

KBTc =
(

N

A[ζ (D/σ ) − 2(1−D/σ )gD/σ (δ)]

)σ/D

. (25)

Since gD/σ (0) = 0, the BEC temperature for special case
(δ = 0) can be expressed as

KBT B
c =

(
N

Aζ (D/σ )

)σ/D

, (26)

where T B
c denotes the condensation critical temperature of an

ideal Bose gas. We establish a straightforward relationship
relating the condensation temperature of generalized unified
quantum statistics to the conventional BEC temperature as
follows:

Tc

T B
c

=
(

ζ (D/σ )

ζ (D/σ ) − 2(1−D/σ )gD/σ (δ)

)σ/D

. (27)

Therefore, we calculate the condensation phase transition
temperature for unified quantum statistics, regardless of the
specific value of δ.

Now, we investigate the temperature at which the thermo-
dynamic curvature undergoes a change in sign.

For a specific parameter value δ, we extract the correspond-
ing value of Z∗ using Eq. (12). This allows us to determine
the temperature at which the sign change in thermodynamic
curvature occurs while maintaining a constant particle density.

In Fig. 4, we observe that the value of Z∗ is dependent on
the parameters δ and D/σ .

When δ < 0.5, the thermodynamic curvature remains pos-
itive across the entire physical range. Conversely, for δ >

0.5, the thermodynamic curvature is positive only for z > z,
indicating behavior akin to bosons. For z < z, the intrinsic
statistical interaction within the system becomes repulsive,
resembling behavior characteristic of fermions.

We identify the temperature at which the sign change in
curvature occurs, considering a fixed density.

The condensation temperature and the temperature at
which the sign change occurs are illustrated in Fig. 5.

It is a widely recognized fact that thermodynamic response
functions exhibit divergence, discontinuity, or nondifferentia-
bility at phase transition points. Specifically, the heat capacity
of an ideal Bose gas displays nondifferentiability at the phase

0.4 0.6 0.8 1.0

δ

0.0

0.2

0.4

0.6

Z
∗

D = 3 , σ = 2
D = 2 , σ = 2
D = 2 , σ = 1
D = 1 , σ = 2

FIG. 4. Z∗ in terms at δ for various D and σ values Z > Z∗(Z <

Z∗) shows Boson (Fermion) like behavior [dashed line(D = 2, σ =
1), solid line(D = 3, σ = 2), dash dotted line(D = 2, σ = 2), and
dotted line(D = 1, σ = 2)].
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δ
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10

12(a)

(b)

T
/T

β c
F ermion Like
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Condensate Phase

0.0 0.2 0.4 0.6 0.8 1.0

δ

0

2

4

6

8

10

12

T
/T

β c

Fermion Like

Boson Like

Condensate Phase

FIG. 5. The T -δ phase diagram of the system for (a) D = 3, σ =
2 and (b) D = 2 and σ = 1. In both figures the dash dotted line
separates the fermionic regime from the bosonic one, while the lower
solid line denotes the BEC transition. The vertical dotted line exhibits
the asymptotic fermion-boson transition line given by δ = 0.5, so
that we do not have a fermionic phase for δ < 0.5.
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FIG. 6. Heat capacity at fixed volume as a function of tempera-
ture. (a) δ = 0.2, (b) δ = 0.4, (c) δ = 0.6, and (d) δ = 0.8.

transition temperature. Using Eqs. (9) and (12), the heat ca-
pacity of an ideal unified quantum statistics with an arbitrary
value of δ are given by

CV =
(

∂U

∂T

)
V

= 15
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ḡ 5
2

(z) − 2
−3
2 ḡ 5
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(δz2)

ḡ 3
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− 9
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2 ḡ 3

2
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ḡ 1
2

(z) − 2
1
2 ḡ 1

2

(δz2)
. (28)

Figure 6 shows the behavior of heat capacity with respect to
temperature for different values of δ. First, we observe that the
heat capacity exhibits nondifferentiability at T = Tc. Further-
more, at extremely high temperatures, it converges to the heat
capacity of an ideal classical gas, denoted by CV = 3NK/2.
When δ � 0.5, the heat capacity exceeds that of an ideal clas-
sical gas for temperatures exceeding Tc. As the temperature
rises, the heat capacity of the quantum unified gas gradually
converges toward the heat capacity of the ideal classical gas
in an asymptotic manner. Nevertheless, when δ > 0.5, there
exists a finite temperature at which the heat capacity matches
that of an ideal classical gas. This temperature coincides with
the thermodynamic curvature’s sign-change temperature. In
fact, there are two distinct regimes: one resembling Bose-like
behavior and the other Fermi-like behavior, separated by the
curve CV = 3NK/2.

In summary, it is crucial to emphasize that the heat capacity
of a quantum unified gas becomes nondifferentiable at T = Tc

for any values within the range 0 � δ < 1, marking the transi-
tion to the condensate phase. Furthermore, when 0.5 < δ < 1,
the heat capacity at a specific temperature corresponds to
that of a classical gas. This temperature, at which the heat
capacity behaves as an analytic function, coincides with the
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FIG. 7. Heat capacity at fixed volume as a function of tempera-
ture for (δ = 1) (fermions).

point where the thermodynamic curvature changes sign (zero
thermodynamic curvature). The transition from a repulsive
intrinsic statistical interaction at higher temperatures (nega-
tive thermodynamic curvature) to an attractive one (positive
thermodynamic curvature) at lower temperatures occurs due
to the change in the sign of the thermodynamic curvature,
reminiscent of the BCS transition. However, it is crucial to
clarify that we are not suggesting a process analogous to the
formation of Cooper pairs.

Using the following relation [47]

ḡν (z) − 21−ν ḡν (z2) = −ḡν (−z) = fν (z), (29)

we recover the heat capacity of ideal fermion gas for δ = 1 as
follows and it is depicted in Fig. 7:
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2 ḡ 3

2

(z2)

− 9

4
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2

(z)

f 1
2

(z)
, (30)

where fn(x) denotes the well-known Fermi-Dirac function
which is defined as

fv (z) = 1

	(v)

∫ ∞

0

xv−1

z−1 exp(x) + 1
dx. (31)

We investigate the phase transition temperature across dif-
ferent spatial dimensions and diverse dispersion relations. It’s
worth noting that as limx→1 ζ (x) −→ ∞, for D/σ � 1, the
transition temperature approaches absolute zero. This implies
that finite-temperature condensation in quantum unified statis-
tics only occurs when D/σ > 1 similar to ordinary bosons.
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VII. CONCLUSION

We conducted an in-depth exploration of thermodynamic
geometry within the context of a newly proposed generalized
unified quantum statistics. This generalization builds on the
premise that the quantum state of a multiparticle system can
be expressed as a functional on the internal space of the par-
ticles, facilitating a smooth transition between Bose-Einstein
and Fermi-Dirac statistics.

We defined the thermodynamic parameter space for an
ideal gas composed of particles following unified quantum
statistics. Within this framework, we determined the metric
elements for the parameter space and subsequently derived the
affine connections and the Ricci scalar for this thermodynamic
parameter space.

The thermodynamic curvature holds a distinct interpreta-
tion closely tied to statistical interactions. The sign of the
thermodynamic curvature is directly indicative of intrinsic
statistical interactions within the thermodynamic system. The
generalization parameter δ in unified quantum statistics, as
argued in our study, plays a crucial role in shaping these
statistical interactions.

For cases where δ � 0.5, the thermodynamic curvature
remains positive, indicating an attractive statistical interac-
tion, resembling bosonic behavior across the entire physical
range. Conversely, for δ > 0.5, the thermodynamic curvature
can be either positive or negative, contingent on the system
temperature.

We demonstrated that in the high-temperature limit,
the dominant statistical interaction aligns with fermionic

behavior when δ > 0. As temperature decreases, the repulsive
interaction gradually diminishes, vanishing at a specific fu-
gacity value, z = Z∗, or equivalently, at a certain temperature
threshold. Below this threshold, the thermodynamic curva-
ture remains positive, signifying statistical behavior akin to
bosonic statistics.

Singular points in the thermodynamic curvature act as
indicators of phase transitions. Notably, the thermodynamic
curvature becomes singular at a critical fugacity (zc = 1),
indicative of a BEC occurring for quantum unified statistics
across all δ values, except when δ = 1 (corresponding to an
ordinary fermion gas). Calculating the condensation temper-
ature for a fixed particle density, we observed that the BEC
phase transition temperature exceeds the BEC temperature for
any arbitrary δ.

Finally, we investigated the heat capacity as a function
of temperature, revealing a singular behavior at the criti-
cal condensation temperature. Our exploration extended to
condensation phenomena in different spatial dimensions and
under various dispersion relations. Specifically, for D/σ � 1,
the phase transition temperature was determined to be zero,
akin to an ordinary ideal Bose gas, indicating the absence of
finite-temperature condensation in low dimensions [48].
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