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Hyperuniformity in two-dimensional periodic and quasiperiodic point patterns
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We study hyperuniform properties in various two-dimensional periodic and quasiperiodic point patterns. Using
the histogram of the two-point distances, we develop an efficient method to calculate the hyperuniformity order
metric, which quantifies the regularity of the hyperuniform point patterns. The results are compared with those
calculated with the conventional running average method. To discuss how the lattice symmetry affects the order
metric, we treat the trellis and Shastry-Sutherland lattices with the same point density as examples of periodic
lattices, and Stampfli hexagonal and dodecagonal quasiperiodic tilings with the same point density as examples
of quasiperiodic tilings. It is found that the order metric for the Shastry-Sutherland lattice (Stampfli dodecagonal
tilings) is smaller than the other in the periodic (quasiperiodic) tiling, meaning that the order metric is deeply
related to the lattice symmetry. Namely, the point pattern with higher symmetry is characterized by the smaller
order metric when their point densities are identical. Order metrics for several other quasiperiodic tilings are also
calculated.
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I. INTRODUCTION

Quasiperiodic systems have been the subject of extensive
research since the discovery of the Al-Mn quasicrystal [1].
The structures of the quasicrystals do not have the trans-
lational symmetry in the real space and are characterized
by nontrivial rotation symmetries, which are forbidden in
the conventional periodic lattices. Despite the aperiodicity,
a quasiperiodic structure is completely ordered, leading to
electron states distinct from both random and periodic sys-
tems [2–5]. However, aside from the rotational symmetry, it is
not easy to capture the structural order of the quasiperiodic
patterns. Hyperuniformity is a framework to quantify the
degree of the order of such a point distribution in a space
[6,7] and is applicable to periodic, quasiperiodic, and ran-
dom systems. When the variance of the point density at a
large length scale is smaller than a volume law, the system
is called hyperuniform, as described later in detail. Hyperuni-
form point patterns are known to appear in nature, e.g., the
distribution of avian photoreceptors [8] and galaxy clusters
[9]. It has also been studied in applications such as photonic
crystals [10–12], which has stimulated further investigations
on the hyperuniform systems. It is well established that
periodic and quasiperiodic point distributions exhibit hype-
runiformity. The degree of the order of these point patterns
can be quantified by a scalar quantity called the order metric.
Then the hyperuniformity order metrics for some periodic and
quasiperiodic point patterns have been studied [6,7,13–15].
Recently, electronic properties on a quasiperiodic structure
have been discussed in terms of hyperuniformity [16–18].
The hyperuniformity may also be useful for characterizing the
spatial distribution of the order parameter in broken-symmetry
phases [19–33]. Therefore, it is instructive to give the order
metrics for several periodic and quasiperiodic point patterns as
references.

In this paper we study the hyperuniformity in several two-
dimensional periodic and quasiperiodic lattices. We develop
an efficient method to calculate the order metric precisely,
exploiting the histogram of two-point distances and the filter
function. We apply the method to periodic and quasiperiodic
lattices composed of the squares and triangles such as Shastry-
Sutherland, trellis, and hexagonal and dodecagonal Stampfli
lattices [34,35]. We clarify that the point pattern with the
higher rotational symmetry has a smaller order metric when
the point density is identical. Furthermore, we study the effect
of the depletion in the point pattern. Then we find that larger
scale calculations are necessary to precisely obtain the order
metric of the depleted lattices. A similar situation occurs
for quasiperiodic point patterns too. We provide precisely
calculated values of the order metrics for various periodic and
quasiperiodic point patterns.

This paper is organized as follows. In Sec. II we briefly
explain the hyperuniformity and define the order metric to
characterize the regularity of the lattices. We also explain the
detail of our methods to efficiently obtain the order metric. We
demonstrate the benchmark of our method in Sec. III. Numer-
ical results for various periodic and quasiperiodic lattices are
shown in Sec. IV. A summary is given in the last section.

II. HYPERUNIFORMITY ORDER METRIC

In this study we focus on the hyperuniformity to character-
ize point patterns in two dimensions [6]. First, we consider the
circular window � in the two-dimensional Euclidean space
whose center and radius are denoted as X and R, respectively.
The number of points inside the domain NX(R) depends on
the coordinate X. When one examines it for sufficiently many
coordinates X, its average 〈NX(R)〉 is proportional to the
density of points ρ, as 〈NX(R)〉 = πρ(R/a)2, where a is the
length scale of the point pattern (e.g., the distance between
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neighboring points). The corresponding variance,

V (R) = 〈
N2

X(R)
〉 − 〈NX(R)〉2, (1)

on the other hand, strongly reflects the spatial structure of
the point pattern. In the large R limit, the variance may be
represented as

V (R) = AR2 + BR + · · · , (2)

with coefficients A and B. It is known that A is finite in the case
of the randomly distributed point pattern [6]. By contrast, for
all periodic and most of quasiperiodic point patterns, A = 0
and B �= 0. In this case the system is called hyperuniform
(class I) and the coefficient B characteristic of the point pattern
is called an order metric. Notably, the condition A = 0 can be
satisfied for not only the above-mentioned ordered point pat-
terns, but also certain disordered point patterns, as have been
discussed in Refs. [6,7]. Here we systematically examine the
order metrics for various periodic and quasiperiodic lattices.

To evaluate the order metric, we define the function �(R)
as

�(R) = V (R)

R
(3)

for two-dimensional hyperuniform point patterns and

B = lim
R→∞

�(R). (4)

In this study, we concentrate on the ordered point patterns
with periodic and quasiperiodic structures, which allows us
to make use of a formula, Eq. (62) in Ref. [6], obtained for
a single-point configuration consisting of a large number of
points in a large system volume. �(R) is then given as

�(R) = 4φ

(
R

a

)⎡
⎣1 − 4φ

(
R

a

)2

+ 1

N

∑
i �= j

α(ri j ; R)

⎤
⎦, (5)

with φ = πρ/4, ri j (= |ri − r j |) the distance between ith and
jth points, and

α(r; R) =
{

2
π

[
cos−1 r

2R − r
2R

(
1 − r2

4R2

)]
(r � 2R)

0 (r > 2R)
. (6)

Note that φ corresponds to the packing factor F when the min-
imal two-point distance equals a. The sum in Eq. (5) is taken
for all two points in the point pattern. This means that one
can evaluate �(R) without performing the samplings of the
circular windows in the two-dimensional space. We note that
�̄(R) = �(R)φ−1/2 is the scale-independent function, which
will be mainly discussed in the following.

In the ordered point pattern, the two-point distance ri j

takes certain discrete values. This allows us to introduce its
histogram as

h(r) = 1

N

∑
i �= j

δr,ri j =
∑

k

ωkδr,rk , (7)

where ωk is the weight of the two-point distance rk . By means
of the histogram, we obtain

�̄(R) = 2
√

πρ

(
R

a

)[
1 − πρ

(
R

a

)2

+
∑

k

ωkα(rk; R)

]
,

(8)

ψ (R) = 1

π

( a

R

)2
[

1 +
∑

k

ωkθ (R − rk )

]
, (9)

where ψ (R) is the average point density in the circular region
centered at a point with radius R. θ is the Heaviside step
function. We note that, for the periodic lattices, we evaluate
the histogram h(r) with a set of {rk, ωk}, focusing on each
inequivalent point in the unit cell and calculating the distances
between it and other points in the entire space.

In both periodic and quasiperiodic point patterns, the dis-
tance between neighboring points is of the scale of a, resulting
in oscillation behavior in �̄(R) and ψ (R) in the scale of a.
Nevertheless, ψ (R) well converges to ρ in the limit R → ∞.
This may be useful to confirm the precision of the histogram.
By contrast, �̄(R) always oscillates with respect to R. There-
fore, the running (cumulative moving) average [36]

f1(R) = 1

R − R0

∫ R

R0

f (r) dr, (10)

with f = �̄ or ψ has been used to deduce the average. The
constant R0 is set to zero in this study unless otherwise men-
tioned. Now, we propose another way to evaluate the average
as

f2(R) =
∫ ∞

0 f (r)g(r; R) dr∫ ∞
0 g(r; R) dr

, (11)

where g(r; R) is a filter function. If g(r; R) = θ (R − r), f2(R)
is reduced to f1(R). Practically, we use the Gauss function as
the filter function,

g(r; R) = 1√
πσ

exp

[
−

(
r − R

σ

)2
]
, (12)

where R is the center of the Gaussian and σ is its width.
For a finite system size tractable with a numerical calcula-

tion, the running average f1 is appropriate to roughly evaluate
the order metric, but strongly depends on the endpoints of the
integral since �̄ and ψ always oscillate with respect to R. This
also yields oscillation behavior in f1, and it becomes difficult
to obtain the order metric precisely. On the other hand, the
Gaussian function in the filter method strongly suppresses the
oscillations at the endpoints of the integral, which allows us to
evaluate the order metric precisely. Furthermore, f2(R) with
a finite R little depends on the local structure (R ∼ 0) since
it is evaluated with the integral around R, (R − σ, R + σ ),
in contrast to the running average f1 and the extrapolation
method [14]. Therefore, this filter function method is expected
to suppress oscillations in �̄(R) and ψ (R), giving precise
values of the averages at reasonable numerical costs, as we
shall demonstrate in the following.

III. BENCHMARK OF THE METHOD

Here we perform a benchmark of our method. As a sim-
ple example, we start with a square lattice with a lattice
constant a, which is shown in Fig. 1(a). Figure 1(b) shows
the histogram as a function of the distance R. We see that
ωk is always a multiple of four, i.e., ωk = 4m with integer
m, reflecting the fourfold rotational symmetry. The running
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FIG. 1. (a) Square lattice and (b) its histogram h(R). (c) Running
average �̄1(R) for the square lattice. Left inset: Thin blue curve
shows the result of the running average, while red bold solid and
black dashed curves indicate �̄2(R) obtained by the Gaussians with
σ/a = 0.4 and σ/a = 2.0, respectively. Right inset: Blue solid curve
shows the running average, while white dashed line shows the result
with σ/a = 2.0.

average �̄1(R) is shown in Fig. 1(c). It is seen that the running
average approaches a certain value for R/a � 2, while oscil-
lations remain up to a much larger R, as shown in the insets.
Therefore, careful treatments are necessary to obtain the order
metric precisely. We also show the results �̄2(R) obtained by
means of the Gaussian filter with σ/a = 0.4 and 2.0 as the
bold solid and dashed curves in the left inset of Fig. 1(c).
Small oscillations appear for σ/a = 0.4, while it is negligible
for σ/a = 2.0. The latter result seems almost constant up
to R/a = 200, which is shown in the right inset. This con-
trasts with larger oscillation behavior observed in the running
average �̄1(R). The results for several choices of Gaussian

TABLE I. Normalized order metric �̄2 and density of points ψ2

for the square lattice obtained by means of the Gaussian filters g(r; R)
with R and σ .

R/a σ/a �̄2 ψ2 R/a σ/a �̄2 ψ2

5 0.2 0.512661 0.976985 30 1.0 0.516404 1.000000
10 0.2 0.512530 0.994516 30 5.0 0.516404 1.000000
10 0.5 0.516429 0.999149 50 5.0 0.516402 1.000000
10 1.0 0.516429 1.000000 100 5.0 0.516402 1.000000

parameters are shown in Table I. We find that the obtained
values are well converged to five digits around R/a ∼ 100
and σ/a ∼ 5. The normalized order metric B̄ = Bφ−1/2 is
obtained as B̄ ∼ 0.51640, which is in good agreement with
0.516401 obtained in the pioneering work [6]. We also note
that, even with a smaller σ , reasonable results are obtained,
by taking into account the width of the oscillations in �̄2(R).
This contrasts with the conventional running average method,
whose results are shown in Table II. The less precise result
originates from the fact that the quantities are strongly af-
fected by the ends of the integral interval for the oscillation
function in Eq. (10).

The quasiperiodic point pattern has unique properties dis-
tinct from the periodic and disordered patterns. One of them
is the nonperiodic repeated structure in the tiling, which is
known as Conway’s theorem for the Penrose tiling [37,38].
In generic quasiperiodic patterns, any finite part of the point
pattern repeats itself within a finite distance proportional to
its diameter. Therefore, in the thermodynamic limit, the circu-
lar region with a radius R appears ubiquitously at a density
∼O(R−2). For a circular window of radius R centered at a
point, there are only a finite number of the possible point
patterns inside the window, while the number increases with
increasing R. Since it is hard to evaluate analytically {rk, ωk}
for the large R, we here deduce the histogram by means of
random sampling.

We briefly explain the details of our sampling. As dis-
cussed above, a large number of samples are necessary to
deduce the order metric for the quasiperiodic tilings (while
such a sampling is unnecessary for periodic point patterns). To
this end, we use the inflation-deflation rule to systematically
generate the point patterns around an arbitrary coordinate. In
each sampling, we first choose a coordinate X in the squared
area L × L. Then we randomly choose a point xi in the circular

TABLE II. Normalized order metric �̄1 and density of points ψ1

for the square lattice obtained by means of the running average. The
data are estimated by taking into account the width of the oscillation
in the range [R − R, R + R] with R = 1. We have used R0 = 4
in the calculation of ψ to avoid the divergence at R = 0.

R/a �̄1 ψ1

5 0.516(5) 0.98(4)
10 0.516(2) 1.0002(7)
30 0.51645(8) 1.00000(2)
50 0.51643(5) 1.000001(7)
100 0.51641(2) 0.999998(1)
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FIG. 2. (a) Penrose tiling and (b) its histogram h(R). (c) The
normalized running averages �̄1(R) for the Penrose tiling. Red bold
solid and black dashed lines in the inset represent the results �̄2(R)
obtained from the Gaussian filters with σ/a = 2 and σ/a = 5.

region centered at X with a large radius Rsamp. Finally, we
obtain the vertices x j in the circular window centered at xi

and calculate the set {r j, ω j} with r j = |xi − x j |. Sampling
many times Nsamp, we obtain the histogram h(r). We note that
the large number of samples is necessary to evaluate �̄(R) for
large R since the number of different distances, |xi − x j |, is
large and the fraction of each distance is tiny. Moreover, the
convergence against R strongly depends on the quasiperiodic
tilings. In the following we set L = 108a, Rsamp/a = 4000,
and Nsamp > 109.

Here we demonstrate the results for the Penrose tiling
as an example of the quasiperiodic tilings, which is shown
in Fig. 2(a). This tiling is composed of the skinny and
fat rhombuses with edge length a. Figure 2(b) shows the
histogram of Penrose tiling. This is in good agreement

TABLE III. Normalized order metric �̄2 and the point density
ψ2 of the Penrose tiling, obtained by means of the Gaussian filters
g(r; R) with the listed R/a and σ/a.

R/a σ/a �̄2 ψ2 R/a σ/a �̄2 ψ2

5 0.2 0.57962 1.23405 30 1.0 0.59156 1.23107
10 0.2 0.60501 1.23554 30 5.0 0.59145 1.23107
10 0.5 0.59341 1.23166 50 5.0 0.59145 1.23107
10 1.0 0.59162 1.23109 100 5.0 0.59144 1.23107

with the analytical results for small R, (Rk/a, ωk ) =
(1/τ, 2/τ 2), (1, 4), (

√
3 − τ , 4/τ 2), (

√
3 − 1/τ , 4/τ 3),

(τ, 2 + 4/τ 2), (
√

τ + 2, 4 + 2/τ 6), (2, 2/τ 4) with the golden
ratio τ [= (1 + √

5)/2]. We find that the number of peaks
in the histogram is much larger than that for the square
lattice, as discussed before. The running average approaches
a certain value around R/a ∼ 2, while it oscillates around
�̄1(R) ∼ 0.6, as shown in Fig. 2(c). The results obtained
by means of the Gaussian filters with σ/a = 2 and 5 are
shown as the solid and dashed curves in the inset. Invisible
oscillations appear in the results with σ/a = 5. The numerical
results for some sets of {R, σ } are shown in Table III. We
find that the obtained values are well converged to five digits
around R/a ∼ 100 and σ/a ∼ 5, and are better than the
results obtained by the running average shown in Table IV,
similarly to the case of the square lattice. We obtain the
order metric B̄ ∼ 0.59145. This is smaller than the result
B̄ = 0.60052 in Ref. [13], but is consistent with the recent
result [14].

IV. NUMERICAL RESULTS

A. Periodic point patterns

We first show the order metrics for the square, triangular,
honeycomb, and kagome lattices as simple periodic lattices.
Combining the histogram and filter function methods, we
obtain the results shown in Table V. Here we have set a as
a distance between the nearest neighbor point pairs. These are
in a good agreement with those in the pioneering works [6,13],
except for that for the honeycomb lattice.

Next, we discuss how the order metric is affected by the
rotational symmetry. To this end we consider the trellis and
Shastry-Sutherland lattices, which are both composed of the

TABLE IV. Normalized order metric �̄1 and density of points ψ1

for the Penrose tiling obtained by means of the running average. The
data are estimated by taking into account the width of the oscillation
in the range [R − R, R + R] with R = 1. We have used R0 = 4
in the calculation of ψ to avoid the divergence at R = 0.

R/a �̄1 ψ1

5 0.592(3) 1.19(7)
10 0.592(2) 1.2323(5)
30 0.5916(6) 1.23139(2)
50 0.5914(2) 1.231250(6)
100 0.5914(1) 1.231159(1)
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TABLE V. Densities of points ρ, φ(= πρ/4), and normalized
order metrics B̄ for various periodic point patterns.

Pattern ρ φ B̄

Triangular 2/
√

3 1.154701 0.906900 0.50835
Square 1 1.000000 0.785398 0.51640
Honeycomb 4/(3

√
3) 0.769800 0.604600 0.56699

Kagome
√

3/2 0.866025 0.680175 0.58699
1/5-depleted square 4/5 0.800000 0.628319 0.60462
Shastry-Sutherland 8 − 4

√
3 1.071797 0.841787 0.51664

Trellis 8 − 4
√

3 1.071797 0.841787 0.51877

triangles and squares with the edge length a. The latter is also
known as the σ phase in metallurgy. The lattice structures are
schematically shown in Figs. 3(a) and 3(b). The quantum
spin systems on these lattices are known as geometrically frus-
trated systems, and theoretical and experimental studies have
been done [39–45] in which distinct magnetic properties are
discussed. From the structural point of view, in both lattices
the volumes V of a Voronoi cell, atomic packing factor F ,
and densities of triangles and squares are identical: V/a2 =
1/ρ = (2 + √

3)/4, f = π/(2 + √
3), ρ	 = 2/3, and ρ� =

1/3. This allows us to discuss how the symmetry of the point
pattern affects the order metric in the absence of a trivial
contribution from a change of V , F , and ρ. Namely, the point
pattern of the trellis lattice belongs to the D2 point group,
while that of the Shastry-Sutherland lattice belongs to the C4

point group.
As shown in Figs. 3(a) and 3(b), each point is shared

by two squares and three triangles. Therefore, no difference
appears in the histogram for R/a <

√
3: (R/a, ω) = (1, 5)

and (
√

2, 2), as shown in Fig. 3(c). On the other hand, the
difference appears in the coordination number for the third
nearest neighbor with a distance R/a = √

3, namely, ω = 1
for the Shastry-Sutherland lattice, while ω = 2 for the trellis
lattice. Beyond R/a = √

3, a finite weight appears at a fewer
values of R in the Shastry-Sutherland lattice, which reflects
the higher rotational symmetry. Then �̄(R) and its running
average for both lattices are identical for R/a <

√
3/2 and

move apart beyond it, as seen in Fig. 3(c). Finally, we clearly
find that �̄1(R) takes distinct values around R/a = 100. The
results obtained by the filter function method with σ/a = 5
are shown as the dashed lines in the inset of Fig. 3(c). The
invisible oscillations appear, and we obtain B̄ = 0.51664 for
the Shastry-Sutherland lattice and B̄ = 0.51877 for the trellis
lattice (see Table V). This result may be explained by the
difference of the rotational symmetry of the point patterns,
namely, the rotational symmetry for the Shastry-Sutherland
lattice is higher than the other, resulting in the smaller order
metric, i.e., higher regularity.

We also discuss how the order metric is affected by the
depletion in the lattice. To this end we deal with the triangular
and square lattices, and consider their depleted lattices. The
honeycomb and kagome lattices can be regarded as the 1/3-
and 1/4-depleted triangular lattices, respectively. The kagome
and 1/5-depleted square lattices are schematically shown in
Figs. 4(a) and 4(b), respectively. The running averages for

FIG. 3. (a) Trellis and (b) Shastry-Sutherland lattices and
(c) their histograms. (d) Solid (dashed) lines represent the running
average �̄1(R) for the trellis (Shastry-Sutherland) lattice. In the inset
we compare the running averages �̄1(R) (solid lines) and �̄2(R)
(dashed lines) with σ/a = 5.

R/a < 6 are shown in Figs. 4(c) and 4(d). We find that the
running averages for triangular and square lattices increase
rapidly for R/a � 0.5 and tend to converge to certain values
with decaying oscillation. By contrast, the running averages
for the depleted lattices tend to slowly increase with oscilla-
tion even for a larger R. The amplitude of the oscillation looks
larger for the depleted lattices. Thus, introducing the depletion
(space) into the lattice, the running average slowly increases
with R, and it becomes more difficult to precisely evaluate the
order metric. This observation is important for considering
the results for quasiperiodic tilings since they are composed
of multiple tiles with distinct areas. By means of the filter
functions with σ/a = 1.0, we obtain the smooth curves shown
as the dashed lines in Figs. 4(c) and 4(d). The order metrics
for the above depleted lattices are shown as the diamonds and
in Table V.
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FIG. 4. (a) Kagome and (b) 1/5-depleted square lattices. (c) [(d)]
Solid lines represent the running averages �̄1(R) for the kagome,
honeycomb, and triangular lattices (1/5-depleted square and square
lattices) for R/a � 6. Dashes lines represent �̄2(R) with σ/a = 1.0,
and diamonds represent the normalized order metrics B̄ shown in
Table V.

B. Quasiperiodic point patterns

We next consider several quasiperiodic point patterns.
First, we deal with the Stampfli hexagonal and dodecagonal
tilings [34,35] composed of the triangles and squares with
edge length a, which are shown in Figs. 5(a) and 5(b). These
tilings are similar to each other, but a difference appears in the
hexagonal structure composed of six adjacent triangles, which
are shown as shaded areas in Figs. 5(a) and 5(b). Namely, two
edges of each hexagon are always parallel to the y axis for the
Stampfli hexagonal tilings, but the other equally includes two
hexagonal structures with distinct directions. This difference
hardly affects local properties but leads to the difference in
the global rotational symmetry. In fact, no difference appears
in the histogram for R/a <

√
3: (R/a, ω) = (1, 5 + 1/τ 2

D)
and (

√
2, 4 − 8/τD) where τD(= 2 + √

3) is the characteris-
tic ratio of these tilings. On the other hand, the difference
appears in the weights for the third nearest neighbor with a
distance R/a = √

3, namely, ω = 58/τD − 14 ∼ 1.54105 for
the hexagonal tiling, while ω = 33/τD − 3 ∼ 1.42116 for the
dodecagonal tiling. This difference is relatively smaller than
that between the Shastry-Sutherland and trellis lattices dis-
cussed above. In addition, even for R/a �

√
3, the locations

of the peaks are almost the same and their weights take similar
values, as shown in Fig. 5(c). This should lead to only a slight
difference in their order metrics. Figure 5(d) shows the run-
ning averages for both tilings. When R/a <

√
3/2, the curves

FIG. 5. (a) Stampfli hexagonal and (b) dodecagonal tilings and
(c) their histograms. (d) Solid (dashed) lines represent the running
average �̄1(R) for the Stampfli hexagonal (dodecagonal) tiling. In
the inset we compare the running averages �̄1(R) (solid lines) and
�̄2(R) (dashed lines) with σ/a = 5.

of the running average are identical. Furthermore, a difference
in these curves is invisible for R/a < 10. On the other hand,
around R/a = 100, we find that the running average for the
dodecagonal tiling is smaller than the other. By means of the
filter function with σ/a = 5, we obtain �̄2(R) for both tilings,
which are shown as the dashed lines in the inset of Fig. 5(d).
We hardly find oscillation behavior in �̄2(R) for both tilings,
and obtain the order metrics B̄ = 0.51785 for the hexagonal
tiling and B̄ = 0.51764 for the dodecagonal tiling (also see
Table VI). The quasiperiodic point pattern with the higher
rotational symmetry has a smaller order metric, similar to the
results for the periodic point patterns discussed in the previous
section.

Next, we consider the Niizeki-Gähler [46,47] and Soco-
lar [48] tilings, as examples of dodecagonal tilings. These
are shown in Figs. 6(a) and 6(b). The former is composed
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TABLE VI. Densities of points ρ, packing factor F , and normalized order metric B̄ for various quasiperiodic point patterns with n-fold
rotational symmetry. τ [= (1 + √

5)/2] is the golden ratio, τs(= 1 + √
2) is the silver ratio, and τD(= 2 + √

3) is the ratio characteristic of the
dodecagonal tilings.

Point pattern n ρ F B̄

Square Fibonacci tiling 4 τ 2/5 0.52361 πτ 2/20 0.41124 0.835(5)
Hexagonal three-tile tiling 6 8τ/(15

√
3) 0.49823 2πτ/(15

√
3) 0.39131 1.39(3)

Stampfli hexagonal tiling 6 τD/(2
√

3) 1.07735 πτD/(8
√

3) 0.84615 0.51785
Ammann-Beenker tiling 8 τs/2 1.20711 π/(4

√
2) 0.55536 0.590(1)

Penrose tiling 10 2 × 5−3/4τ 3/2 1.23107 5−3/4π/(2τ 1/2) 0.36932 0.59145
Stampfli dodecagonal tiling 12 τD/(2

√
3) 1.07735 πτD/(8

√
3) 0.84615 0.51764

Niizeki-Gähler tiling 12 2/
√

3 1.15470 π/(2
√

3τD ) 0.24300 0.599(2)
Socolar dodecagonal tiling 12 2(3 + √

3)/9 1.05157 (3 − √
3)π/18 0.22130 0.88(1)

FIG. 6. (a) Niizeki-Gähler and (b) Socolar tilings and (c) their
histograms. (d) Solid (dashed) lines represent the running average
�̄1(R) for the Niizeki-Gähler (Socolar) dodecagonal tiling. Left and
right insets show the results for Niizeki-Gähler and Socolar tilings
in the larger R case. Thin solid line represents the running average
�̄1(R), and black bold solid (dashed) line represents �̄2(R) with
σ/a = 3 (σ/a = 5).

of squares, triangles, and rhombuses. It is known that this
tiling is a key structure for the two-dimensional oxide qua-
sicrystals derived from BaTiO3 and SrTiO3 on a Pt(111)
substrate [49,50], and structural properties have been dis-
cussed [51]. The Socolar dodecagonal tiling is composed of
squares, rhombuses, and hexagons, and thereby the vertex sys-
tem is bipartite. Its magnetic properties have been discussed
[30,52]. As shown in Figs. 6(a) and 6(b), the vertices in the
Niizeki-Gähler tiling look densely distributed, compared with
the vertices in the Socolar tiling. Therefore, the weights in
the histogram for the Niizeki-Gähler tiling are significantly
higher than the others at particular distances, as shown in
Fig. 6(c). This should affect the convergence of the running
averages �̄1(R). Figure 6(d) shows the running averages for
both tilings. The running average for the Niizeki-Gähler tiling
oscillates around 0.6 for R/a > 2. By means of the filter
function method with σ/a = 5, we obtain �̄2(R), which are
shown as the dashed lines in the insets. In contrast to the
cases of Penrose and Stampfli tilings, we find larger oscil-
lations in �̄2(R). This means that the Gaussian filter with
a larger σ will be necessary to precisely evaluate the order
metric although it is hard to obtain the histogram for large
R due to its large computational cost. A less accurate order
metric is obtained as B̄ ∼ 0.599(2), by taking into account the
width of the oscillation in �̄2(R). Figure 6(d) shows that the
running average for the Socolar tiling slowly increases even
when R/a � 5. In the right inset of Fig. 6(d), a fairly large
oscillation appears in �̄2(R), and �̄2(R) is larger than �̄1(R)
in most of the range (R/a < 40). This should be explained
by the following. In the tiling, there is the wide space in
each hexagon and points are unevenly concentrated around
rhombuses. This short-range uneven distribution leads to the
slow increase in �̄(R) for small R, which strongly affects the
running average with larger R. We then obtain the less accu-
rate order metric B̄ ∼ 0.88(1), taking into account oscillation
behavior in �̄2(R).

Here we have examined the hyperuniformity for three do-
decagonal tilings and have found the Stampfli, Niizeki-Gähler,
and Socolar dodecagonal tilings in descending order of order
metric. This result suggests that the order metric is correlated
with the packing factor rather than the density of points since
the Niizeki-Gähler and Socolar tilings include the rhombuses
with acute angles of π/6 and their packing factors are less
than that of the Stampfli tiling. The density of points ρ,
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FIG. 7. (a) Ammann-Beenker tiling. (b) Thin solid line repre-
sents the running average �̄1(R), and the bold solid (dashed) line
represents �̄2(R) obtained by the Gaussian with σ/a = 3 (σ/a = 5).

packing factor F , and normalized order metric B̄ for several
quasiperiodic tilings are explicitly shown in Table VI.

We also study the Ammann-Beenker tiling [48,53], as
shown in Fig. 7(a). This tiling is composed of the squares
and rhombuses and is invariant under eightfold rotation op-
erations. Figure 7(b) shows the running average as a function
of R/a, where a is the edge length of the tiles. We find that
the running average seems to converge for R/a ∼ 3 while the
sampling number dependence appears in the large R region
(not shown), which is similar to that for the Niizeki-Gähler
and Socolar tilings discussed above. It is not so clear why
the convergence of the histogram strongly depends on the
tilings. By means of the filter functions, we obtain the order
metrics B̄ = 0.590(1) for the Ammann-Beenker tiling, which
is smaller than that in previous work [13].

Finally, we consider the quasiperiodic tilings with two
length scales and examine the order metrics for the point
patterns. One of the simplest tilings is the squared Fibonacci
tiling [54], where the one-dimensional Fibonacci sequences
are loaded into the edges of the square lattice in both horizon-
tal and vertical directions, as shown in Fig. 8(a). The tiling is
composed of the small and large squares and rectangles. The
ratio between short and long edges is set as the golden ratio.
Recently, the hexagonal three-tile tiling, which is composed
of small and large hexagons and parallelograms, has been
found [55]. The ratio between the short and long edges is
given by the golden ratio. Figure 8(c) [(d)] shows the running
average for square Fibonacci (hexagonal three-tile) tiling.
Similar to the Ammann-Beenker, Niizeki-Gähler, and Socolar

FIG. 8. (a) Square Fibonacci and (b) hexagonal three-tile lattices.
(c) [(d)] Blue thin curve shows the running average for the square
Fibonacci (hexagonal three-tile) lattice. Bold solid (dashed) curves
in the insets of (c) and (d) represent �̄2(R) obtained by the Gaussian
with σ/a = 3 (σ/a = 5).

tilings, the running averages slowly increase, in contrast to
the Penrose and Stampfli tilings. We obtain B̄ = 0.835(5) for
the square Fibonacci tiling and B̄ = 1.39(3) for the hexagonal
three-tile tiling by means of the filter function method with
σ/a = 5.

V. SUMMARY

We have studied the hyperuniformity of the two-
dimensional periodic and quasiperiodic point patterns system-
atically. To calculate the hyperuniformity order metric, which
quantifies the regularity of the hyperuniform point patterns,
we have developed an efficient method, where the filter func-
tion and histogram of two-point distances are combined. Then
we have calculated the hyperuniformity order metric. For the
Shastry-Sutherland and trellis lattices composed of triangles
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and squares, we have demonstrated that the order metric for
the former is smaller than the latter. We have also compared
the order metrics for the Stampfli hexagonal and dodecagonal
quasiperiodic tilings. The order metric for the former is larger
than the latter. These results indicate that the order metric is
deeply related to the lattice symmetry, i.e., being smaller for
a higher symmetry, in addition to the density of points. The
filter-function method proposed here will also be applicable to
heterogeneous media consisting of discrete phases [13,56] and
density (scalar-field) distributions [57]: hyperuniform density
distributions appear in electron systems on quasiperiodic lat-
tices [17,18]. Since the system size tractable with numerical
simulations is limited, the method may be particularly useful
in computing the order metric of such distributions.

We note that the histogram obtained within a relatively
small R can give a reasonable value of the order metric. In the

cases of square lattice and Penrose tiling, the order metrics
to three digits are obtained from the data with R/a � 10,
as shown in Tables I and III. This fact would be useful in
evaluating the order metric for small point patterns observed
in experiments.
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