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A quantum measurement involves energy exchanges between the system to be measured and the measuring
apparatus. Some of them involve energy losses, for example because energy is dissipated into the environment
or is spent in recording the measurement outcome. Moreover, these processes take time. For this reason, these
exchanges must be taken into account in the analysis of a quantum measurement engine, and set limits to its
efficiency and power. We propose a quantum engine based on a spin 1/2 particle in a magnetic field and study
its limitations due to the quantum nature of the evolution. The coupling with the electromagnetic vacuum is
taken into account and plays the role of a measurement apparatus. We fully study its dynamics, work, power, and
efficiency.
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I. INTRODUCTION

The advancement of quantum measurement engines [1–17]
not only offers significant technological potential but also
carries profound implications for fundamental physics [18].
Therefore, it is crucial to develop precise methods for assess-
ing their performance in terms of both efficiency and power.

In a quantum measurement engine, as opposed to a ther-
mal one [19–26], energy is introduced into the system not
in the form of heat but through an interaction with an ex-
ternal apparatus, typically interpreted as a measurement on
the system. If this interaction indeed constitutes a measure-
ment, the resulting information could be used to influence the
subsequent operation of the engine, similar to a Maxwell’s
demon scenario [27–32]. In a simpler context, the key is
that a measurement is conducted, the specific outcome being
inconsequential [33,34]. This type of quantum measurement
engine is the focus of our discussion.

While a comprehensive theory of quantum measurement
remains elusive [35–43], there is a general consensus that a
measurement process comprises several stages, which can be
summarized as follows.

(i) The system to be measured comes into contact with
the measuring device, which is usually a macroscopic body
significantly larger than the system [44,45], and they evolve
unitarily into an entangled state.

(ii) This initially entangled, yet pure state, transforms into
a mixed state where distinct measurement outcomes, stored
within the apparatus, can be assigned definite probabilities. If
the Schrödinger equation remains unaltered, this decoherence
process is attributed to the interaction of the system-apparatus
complex with an external environment [46–53].
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(iii) The mixed state evolves into a single pure state, in
which the measurement recorded by the apparatus displays a
definite result [54–58]. Since we are concerned with engines
that function regardless of the measurement outcome, the
completion of this stage is not essential for our analysis.

(iv) If the engine is designed to operate cyclically, the
recorded information must be erased before the next cycle
begins.

It is evident from this overview that a quantum measure-
ment involves repeated energy exchanges among the system,
apparatus, and the broader external world, some of which are
in the form of heat. For instance, in stage (iv), the erasure of
the apparatus’s memory would entail the release of heat, as
dictated by Landauer’s Principle [27]. In stage (iii), the transi-
tion from a mixed to a pure state implies a definite decrease in
entropy, which should also involve a heat exchange [59,60].
Furthermore, interaction with the environment in stage (ii)
would induce dissipation within the system-apparatus com-
plex, leading to entropy generation [61,62]. As such, the
measurement process is subject to constraints stemming from
the second [63–68] and third [69,70] laws of thermodynamics.

In this paper, our objective is to demonstrate that addi-
tional limitations on the measurement process arise not from
Thermodynamics but rather from relativity and quantum me-
chanics themselves. Specifically, we will focus on the fact
that a successful quantum measurement entails recording the
measurement outcome [71–75]. This record is imprinted on
a noninteracting system whose states are persistent and dis-
tinguishable, usually a macroscopic system or a system with
infinite degrees of freedom [76]. The recording process con-
sumes both energy and time, which must be considered when
evaluating the efficiency and power of a quantum measure-
ment engine.

For simplicity, our analysis will be based on a concrete
example: a quantum Otto engine utilizing a spin-1/2 particle
as the working substance [1]. This engine can be implemented
both as a heat engine and a quantum measurement engine.
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FIG. 1. Schematics of the system. The blue and red dots with
their respective thin arrows represent the spin 1/2 particle in its
orthogonal states, their size being proportional to the probability of
finding the system in that state. The thick arrows represent classical
magnetic fields. (a) State of the system after increasing the initial
field from B0 to B1 in the ẑ direction. (b) Initial state after turning
on the probe field. This represents the probe field implementation.
(c) Illustration of the spin precession and decay around the total field.

In the heat engine implementation, the Otto cycle starts
with the spin aligned with an external magnetic field of
strength B0 [see Fig. 1(a)]. This field is then increased to B1,
causing the spin to perform work against the field (referred
to as the work field). Subsequently, the spin is brought into
contact with a high-temperature heat source, making both spin
projections equally probable. At this temperature, reducing
the work field back to B0 incurs no energy cost. Finally, the
spin is cooled back to the original state, statistically aligned
with the work field. The efficiency of the Otto cycle is deter-
mined by 1 − λ, where λ = B0/B1 [1].

In the quantum measurement implementation, the hot bath
is replaced by the measurement of the spin’s projection on a
direction orthogonal to the work field. Assuming the projec-
tion postulate, the spin collapses into a state oriented in the
orthogonal plane, where both projections along the work field
direction are equally probable. While the efficiency of the cy-
cle would be the same as in the heat engine implementation if
no additional heat exchanges related to the measurement were
considered, it is generally accepted that at least the Landauer
erasure heat should be included in the efficiency calculation.

Our goal is to analyze the measurement step more closely
by proposing a specific measurement protocol rather than
simply assuming a projective measurement. For simplicity we
shall only consider this part of the machine cycle.

Our protocol involves applying a strong magnetic field of
intensity B2 (where B2 � B1) perpendicular to the original
field, which we refer to as the probe field [see Fig. 1(b)].

Under the action of the magnetic fields, the spin precesses
around the resultant of the work and probe fields [77,78] [see

Fig. 1(c)]. During precession, the time dependence of the spin
leads to the emission of electromagnetic waves. The actual
amount of radiated energy depends on the original state of the
spin, and so the final field state may be regarded as a record of
the measurement outcome [79]. The energy spent on building
this record is extra cost of the working of the machine, and so
it affects the machine efficiency. Similarly, the time spent on
the spin relaxation must be taken into account in estimating
the machine power. While other measurement protocols for
two-dimensional Hilbert spaces, such as the Stern-Gerlach
[80] or the electron-shelving [81] experiments, are easier to
perform in a laboratory and are conceptually simpler, they
usually rely on entangling intermediate degrees of freedom,
such as the position of the particle or excited internal states,
between the recording device and the actually measured sub-
system, making the theoretical analysis less straightforward
and most of the time only approximated or phenomenological.
We believe the simplicity and direct interaction between the
measured subsystem and the recording device (the radiated
magnetic field) is a fundamental conceptual advantage for the
proposed protocol.

The machine actually has two modes of operation. As a
measurement device, it is best to allow the spin to get fully
aligned with the work and probe fields, thus maximizing the
radiated energy, and making the final states of the radiation
field as different from each other as possible. However, this
also makes for the lowest efficiency as an engine. So when
regarded as an engine, the best strategy is to leave the probe
field on only until the mean value of the spin projection
along the work field vanishes, at which time the probe field
is turned off. This is actually a short time in comparison
to the spin relaxation time scale, so the amount of radiated
energy is small. This makes for a poor measurement but an
efficient engine, as we will show. The point is that while this
may not be the usual way to measure a spin in practice, it
nevertheless may be regarded as a paradigmatic measurement
in so far as it contains the two essential elements of the
measurement process: it leaves the spin in a specific state
based on the original value of its projection, and it leaves a
record of this state, imprinted on a noninteracting system with
infinitely many degrees of freedom [45]. Because of this, the
system has been widely used as a paradigmatic measurement
process and serves the purpose of analyzing the dynamics in
detail.

In the following, we solve for the joint evolution of the
spin and the quantized radiation field by considering them
as a single coupled quantum system [79,82–86], and thus
find the final states of the radiation field, the energy taken
from the spin, and the characteristic time of the process. The
energy invested in the radiation field and the time required
to generate it reduce both the engine’s efficiency and power,
and must be incorporated into their evaluation alongside the
heat exchanges previously mentioned [63,87–89]. Although
the actual effect is quantitatively small, we emphasize its fun-
damental character, as it follows essentially from the finiteness
of c and h̄.

In summary, we contend that an effective quantum mea-
surement requires the recording of its outcome. This is a
physical process constrained by the principles of quantum me-
chanics and relativity, over and above other thermodynamic
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considerations, and has direct implications on the engine effi-
ciency and power.

This paper is structured as follows: In the following sec-
tion, we introduce the spin quantum Otto cycle, fueled by
a thermal source, which serves as our standard model. In
Sec. III, we present our proposal and replace the thermal
source with a quantum protocol that aims to mimic a measure-
ment in specific conditions. Section IV addresses the work,
efficiency, and power of the engine. Finally, we offer some
concluding remarks.

II. A SPIN QUANTUM OTTO CYCLE

To initiate our discussion, we’ll delve into the workings of
a thermal engine, setting the stage for a comparative analysis
with the forthcoming quantum measurement engine. Our fo-
cus will be on a straightforward realization of a spin quantum
Otto cycle [1]. It is worth noting that in [1], the authors per-
form a projective measurement along the x̂ axis, while in this
work we replace this step by an interaction with an external
field which will serve as a measuring device as we will show.

Our system involves a spin-1/2 particle. At the cycle’s
inception, the particle resides in a thermal state at temperature
T , interacting with a magnetic field Bz(0) oriented along the
ẑ axis. This configuration implies a well-defined spin in the
z direction, where the spin assumes the value of 1/2 with a
corresponding probability

p+ = 1

1 + e−2β0μBz (0)
, (1)

and the value −1/2 with probability p− = 1 − p+. β0 is the
initial inverse temperature multiplied by the Boltzmann con-
stant and μ = eh̄/2m with e and m the charge and mass of the
particle, respectively. The mean energy of the spin is

〈E〉(0) = −μBz(0)(p+ − p−). (2)

At the onset of the cycle’s initial phase, we raise the field
adiabatically to a new magnitude, denoted as Bz(1), hence-
forth we shall call this field the “work” field. Throughout
this process, entropy remains constant, while the mean energy
experiences a reduction, yielding

〈E〉(1) = −μBz(1)(p+ − p−). (3)

Hence, the machine yields work

W01 = −[〈E〉(1) − 〈E〉(0)] = μ[Bz(1) − Bz(0)](p+ − p−).

(4)

During the second leg, we let the spin evolve to a state
where its orientation along the x axis becomes well defined,
assuming either value with equal probability. This alignment
can be achieved by coupling the system to a heat bath at
infinite temperature. Regardless of the approach, the heat ex-
change incurred is irreversible, as the system and bath are at
different temperatures. The resulting mean energy is now

〈E〉(2) = 0 (5)

and the exchanged heat is

Q12 = 〈E〉(2) − 〈E〉(1) = μBz(1)(p+ − p−). (6)

During the third stage, we return the field adiabatically to its
initial value, Bz(0). As p+ equals p− throughout this process,
there is no net exchange of work. Subsequently, we enable the
system to undergo thermalization once more, releasing a heat

Q30 = −〈E〉(0). (7)

It is natural to write down the efficiency

ηO = W01

Q12
= 1 − 〈E〉(0)

〈E〉(1)
:= 1 − λ, (8)

where

λ = Bz(0)

Bz(1)
. (9)

III. IMPLEMENTATION AS A QUANTUM
MEASUREMENT ENGINE

The goal of implementing the quantum Otto cycle [1] as
a quantum measurement engine is to avoid energy exchanges
under the form of heat, thus sidestepping limitations imposed
by the second law of thermodynamics.

In the thermal engine implementation of the Otto cycle,
the main heat exchange happens in the second leg, where the
two projections of the spin along the work field are brought
to equiprobability. A natural replacement for this operation is
to force the spin to be projected upon the orthogonal plane.
According to the usual projection postulate [90], this may be
realized by a spin measurement along any direction on that
plane.

Our strategy will be somewhat different as we shall con-
sider instead a destructive measurement of the original spin
projection along the work field, but with the same final out-
come of leaving the spin projected along the orthogonal plane.

We shall force the spin to evolve by applying a probe field
of strenght B2 in the x̂ direction. The direction of the total
field is n̂ [work plus probe fields, see Fig. 1(b)]. The probe
field will be kept on until the mean value of the spin projection
along the work field vanishes, at which point the probe field is
turned off.

Our goal is to show that, in the process, a small amount of
energy is radiated as electromagnetic waves. The actual final
state of the field depends on whether the spin was initially up
or down, and so it may be regarded as a record of the original
spin projection.

To do this we shall not appeal to the projection postulate
but rather solve for the joint evolution of the spin and the
radiation fields, a strategy inspired by Heisenberg’s analysis
of the bubble chamber in [83]. For simplicity we shall restrict
this analysis to the second leg of the cycle only, assuming that
the other legs proceed as in the usual implementation.

A. The model

We assume the work and probe fields are classical, constant
fields along the duration of the second leg.
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The radiation field is expanded in modes, leading to the
quantized magnetic field

�Bq = i

√
h̄

ε0c

∫
DK√

2k
[(�k × �eμ)aK ei�k·�r − (�k × �e†

μ)a†
K e−i�k·�r].

(10)

ε0 is the vacuum permittivity. The modes are indexed by
K = (k, α) where k is the momentum and α denotes the
polarization vector εα . Here∫

DK =
∫

d3k

(2π )3

∑
α

; (11)

aK and a†
K are the creation and destruction operators for the

corresponding mode. They have units of k− 3
2 .

The spin is carried by a particle with magnetic moment
μ = qh̄

2m , the magnetic moment of the particle (it is assumed
that g = 2 and q is the charge of the particle), is so that
�μ · �B has energy units. Since the particle is effectively far
from the field sources, the interaction takes a dipole-dipole
form and can be written as −�μ · �B [77,78,82]. This particle is
further assumed to be captured into a harmonic trap, so that
its position is a Gaussian variable whose uncertainty σ is the
smallest length scale in the problem.

The spin-radiation field complex evolves under the Hamil-
tonian

H = HS ⊗ 1ph + 1S ⊗ Hph + HI , (12)

where HS is the Hamiltonian for the spin under the classical
magnetic fields

HS = −h̄	σn̂. (13)

The spin operator along the n̂ direction of the total classical
magnetic field will be represented by the Pauli matrix σ3 and
h̄	 = μ

√
B2

1 + B2
2 , with B1 and B2 being the magnitudes of

the work (B1) and probe (B2) fields.
Hph is the free Hamiltonian for the radiation field

Hph =
∫

DK h̄ωK a†
K aK , (14)

and HI is the interaction Hamiltonian

HI = σ+ ⊗ B† + σ− ⊗ B, (15)

where σ± are the raising and lowering spin operators along the
direction n̂, while the field operator B is

B = −i
∫

DK KK−aK . (16)

Here, the interaction Hamiltonian is an approximation of the
term −�μ · �Bq coming from (10), where we dropped the lon-
gitudinal term (associated with the n̂ direction) assuming that
the quantized contribution to the total field in this direction is
negligible compared to the classical one. If we were working
in the interaction picture, this could be regarded as a rotating
wave approximation, where the highly improbable spin flips
against the classical field are neglected.

To define the amplitude KK− we first introduce the vector

KK = μ

√
h̄

ε0c
F [k]

(
k × εα√

2k

)
, (17)

where

F [k] = e− k2σ2

2 (18)

is a structure function which takes into account the uncertainty
in the spin localization. We then project the vector KK on
the plane perpendicular to n̂, where we choose two cartesian
coordinates, 1 and 2, and define

KK+ = K∗
K− = KK1 − iKK2. (19)

B. Dynamics

The system of spin plus radiation field is described by a
density matrix ρ obeying the Liouville-von Neumann equa-
tion

ih̄
d

dt
ρ = [H, ρ]. (20)

The spin and field separately are described by the Landau
traces ρS = Trphρ, ρph = TrSρ. We write [91,92]

ρ = ρS ⊗ ρph + ρc, (21)

where ρc describes the entanglement between both sub-
systems; both its partial traces vanish Trphρc = TrSρc = 0.
Introducing the decomposition (21) in (20) and taking the
corresponding partial traces we get

ih̄ρ̇S = [HS, ρS] + Trph[HI , ρS ⊗ ρph] + Trph[HI , ρc], (22)

ih̄ρ̇ph = [Hph, ρph] + TrS[HI , ρS ⊗ ρph] + TrS[HI , ρc]. (23)

We have used that TrS[Hph, ρc] = [Hph, TrS ρc] = 0, and also
Trph[HS, ρc] = 0. For the correlation part of the system we get

ih̄ρ̇c = [H, ρc] + [HI , ρs ⊗ ρph] − Trph([HI , ρ]) ⊗ ρph − ρS

⊗ TrS ([HI , ρ]). (24)

Without loss of generality we may parametrize

ρS = 1
2 [1 + �r · �σ ] = 1

2 [1 + r3σn̂ + r+σ+ + r−σ−], (25)

where r− = r∗
+ and r2

3 + r+r− � 1, with equality for a pure
state.

Our strategy will be to find an approximate expression
for ρph and ρc for an arbitrary evolution of the r± and r3

parameters, to first order in the interaction Hamiltonian, which
can then be introduced into the equation for ρS (22) to obtain
an equation valid to second order in the interaction, to be
solved self-consistently.

C. Radiation field dynamics

We assume an uncorrelated initial state so that ρc is itself
of first order in the interaction. Then to find the field den-
sity matrix to first order we may neglect ρc. Introducing the
parametrized ρS from Eq. (25) into Eq. (23), we obtain

ih̄ρ̇ph = [
H eff

ph , ρph
]
, (26)
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where

H eff
ph =

∫
DK heff

K (27)

and

heff
K = h̄ωK a†

K aK + i

2
(r−KK+a†

K − r+KK−aK ). (28)

If the initial state of the field is the vacuum, then it evolves
into a normalized coherent state

aK |zK〉 = zK |zK〉, (29)

where

zK = 1

2h̄
KK+

∫ t

0
dt ′ e−iωK (t−t ′ )r−(t ′). (30)

D. Correlation dynamics

Using ρS as in Eq. (25) and the first order reduced density
matrix for the radiation field,

ρph ≈
∏

K

|zK〉〈zK | (31)

into Eq. (24) we get for the correlation density matrix

ih̄ρ̇c = [H0, ρc] + F (t ) (32)

with H0 = HS + Hph, and

F = σn̂ ⊗ f3 + σ+ ⊗ f+ + σ− ⊗ f−, (33)

where the f j are photonic operators, f3 = − f †
3 and f− =

− f †
+; explicitly

f3 = −1

4
r3(r−[B†, ρph] + r+[B, ρph])

+ 1

4
(r−{B†, ρph} − r+{B, ρph})

+ h̄

2
(r−	eff − r+	∗

eff )ρph, (34)

f+ = − 1

4
r+(r−[B†, ρph] + r+[B, ρph])

− 1

2
r3({B†, ρph} + 2h̄	effρph ) + 1

2
[B†, ρph], (35)

where

h̄	eff = −i
∫

DK KK+z∗
K . (36)

The solution is

ρc = −i
∫ t

0
dt ′ e−iH0 (t−t ′ )F (t ′)eiH0(t−t ′ ). (37)

E. Spin dynamics

To obtain the spin dynamics we use the first order ρph

from Eq. (31) and ρc from Eq. (37) into Eq. (22) for the spin
reduced density matrix. We also define

r± = e±i2	t r̄±,

rn̂ = 1 − r3. (38)

Then,

ṙn̂ = − 1

2

∫ t

o
dt ′ H (t − t ′)

× [r̄+(t ′)(r̄−(t ) − r̄−(t ′)) + rn̂(t ′)] + c.c. (39)

and

˙̄r+ = −
∫ t

0
dt ′ H (t − t ′)r̄+(t ′)

× [1 + rn̂(t ′)e−2i	(t−t ′ ) − rn̂(t )], (40)

where

H
(
t − t ′) = 1

h̄2

∫
DK KK+KK−e−i(2	−ωK )(t−t ′ ). (41)

The dynamics generated by Eqs. (39) and (40) is similar to
the one encountered in a quantum mechanical decay problem,
namely at very early times rz and r̄± are quadratic in time,
then turn into an exponential decay, and finally a power law
approach to the final equilibrium state [93,94]. Careful con-
sideration shows that the quadratic period is so short that it
can be neglected without loss of accuracy (see the Appendix),
and by the time of the final approach to equilibrium, spin
and radiation are already effectively decoupled. Moreover we
shall assume that initially the probability of the spin being
up is dominant. Then |r±| is never large and we may lin-
earize Eqs. (39) and (40) around the stable equilibrium at
rz = r± = 0.

The decay time may be found as an approximate pole in
the Laplace transform of rz and r̄+,[

s − i

h̄2

∫
DK

KK+KK−
2	 − ωK − is

]
r̄+(s) = r̄+(t ≈ 0), (42)

where the right hand side is taken at some point at the begin-
ning of the exponential stage. There is indeed an approximate
pole at

s ≈ −ξ + iφ (43)

with

ξ = π

h̄2

∫
DK KK+KK−δ(2	 − ωK )

φ = h̄−2P.V.

(∫
DK KK+KK−
ωK − 2	 − φ

)
≈ 0. (44)

As ξ is positive, Eq. (44) ensures stability in the linear regime.
While on the exponential stage we may approximate

r̄± ≈ r̄0
±e−ξ t

rn̂ ≈ r0
z e−ξ t . (45)

The value of ξ Eq. (44) is the essential input we need to
analyze the machine efficiency and power.

IV. ANALYSIS

A. The engine cycle

Initially, the spin points in the +ẑ direction with probability
p+, and the are no photons. The initial density matrix is then

ρ0 = 1

2

(
1 �

� 1

)
⊗ |0〉〈0|, (46)
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where � = p+ − p− = tanh(βμB) with β = (kBT )−1. The
probe field B2 is applied in the x direction. Then, the total
magnetic field points in the n̂ := cos θ x̂ + sin θ ẑ direction. In
order to compute the radiation due to the spin precession,
we will work with this rotated axis and assume that the σ3

Pauli matrix is associated with the n̂ direction. As the working
system we consider only the spin, and therefore only its pure
energy (and not the interaction one) will be taken into account
for thermodynamic purposes. That is to say,

Es = 〈HS〉ρS . (47)

We define h̄	i ≡ μBi. The engine cycle is as follows:
(i) In the first step we extract work by making the mag-

netic field grow from B0 to B1 in the ẑ direction. The extracted
work is

W1 = �h̄(	1 − 	0). (48)

(ii) The motivation for the next step is to be able to de-
crease this bigger field by making no work in the system. For
that, we turn on a probe magnetic field, B2, in the x̂ direction.
This field will make the spin precede and radiate. Turning this
field on costs no energy at all because of the initial condition.
It is important to note that in this step the system will radiate.

(iii) Now the spin has a certain alignment with the n̂ direc-
tion and turning B2 off will cost a work

Eoff = h̄	2 cos (θ )r3 − h̄	1 cos (θ )Re(r+), (49)

where r3 and r± correspond to the evolution in the n̂ axis and
tan(θ ) = B1

B2
.

The better aligned the spin and the total field are, the more
expensive the energetic price to turn the probe field off.

(iv) Now that the spin is (imperfectly) aligned in the n̂
direction, decreasing the work field in the ẑ direction from B1

to B0 requires a work exchange, depending on the alignment
direction. If the projection along the ẑ axis is positive, work
must be fed into the system. Otherwise, a negative projection
would allow for a useful work extraction:

W2 = −h̄[	1 − 	0][cos (θ )Re(r+) + sin (θ )r3] (50)

This term must be taken into account as work (either positive
or negative) as it is a coherent change in the ẑ magnetic field,
which is the exact way we extracted work in the first step.

(v) In this last step, we let the spin thermalize again. This
releases a heat

Q = h̄	0[� − cos (θ )Re(r+) − sin (θ )r3] (51)

B. Efficiency

The efficiency is

η = W

Eoff
= [	1 − 	0][� − �0]

cos θ [	2r3 − 	1Re(r+)]
, (52)

where we have defined �0 := cos(θ )Re(r+) + sin(θ )r3 and
W := W1 + W2.

In order to compare with previous results, the strategy we
will adopt is to turn the B2 field off when the mean value of
the spin is in the x-y plane, so Re(r+) = −r3 tan θ = −r3

	1
	2

and �0(tc) = 0. Then, for t = tc we have

ηc = [	1 − 	0]�

cos θ r3(tc)
[

	2
1+	2

2
	2

] = [	1 − 	0]�

cos θ r3(tc)	2

	2

. (53)

Recall that 	2 = 	2
1 + 	2

2. To make the machine work we
need to have 	2 > 	1 > 	0. To study the efficiency we
parametrize

λ	1 = 	0,

γ	2 = 	1 (54)

We arrive to the formula:

ηc = [1 − λ]

[
� sin θ

r3(tc)

]
= [1 − λ]

[
r3(0)

r3(tc)

]

= [1 − λ]

[
1 − rn̂(0)

1 − rn̂(0)e−ξ tc

]
. (55)

In this expression it is clear that, if ξ = 0, we recover the
original result from [1].

The fact that tc is finite also places limits on the power
which may be extracted from the engine. We shall not analyze
this issue in detail because the end result is consistent with
expectations from a simple “quantum speed limit” analysis
[95–97].

C. Numerical results

We assume that the particle is in a harmonic trap of fre-
quency 	trap so F [k] in (18) is

F (k) = e− 1
2 σ 2k2

(56)

with σ =
√

h̄
m	trap

.

For the critic time, when we turn off the probe field, we
have the transcendental equation

Re(r+(t )) = − tan θ r3(t ), (57)

which, consistently with the accuracy of the other computa-
tions, we approximate by

tc ≈ arccos(−γ 2)

2	
, (58)

where we put the initial conditions r±(0) = � cos θ and
r3(0) = � sin θ .

We recall that

r3(t ) ≈ 1 − (1 − � sin θ )e−ξ t ,

r± ≈ � cos (θ )e(−ξ±i2	)t ,

� = tanh (β h̄	0),

β = (kT )−1, (59)

and report the following parameters for the numerical results:

m = 2000 me,

q = qe,

B1 = 0.1 Tesla,

	trap = 100 	1, (60)
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FIG. 2. ξ tc as a function of the parameter γ [which measures
the probe field strength, see Eq. (54)]. The efficiency is a decreasing
function of this quantity. Here we show the regime where the radia-
tion correction is maximum, where the probe field is several orders
of magnitude bigger than the work field. For γ → 1 this quantity is
always decreasing.

where me and qe are the electron mass and charge,
respectively.

The numerical quantities studied are ξ tc, of which effi-
ciency is a decreasing function given by Eq. (55) (see Fig. 2),
the dimensionless work,

Wdim = W1 + W2

μB1
(61)

Eqs. (48) and (50), normalized by the characteristic energy of
the system μB1 (see Fig. 3), and the dimensionless power,

Pdim = W

tc

h̄

(μB1)2 (62)

(see Fig. 4). The radiation correction to the efficiency is
peaked when the probe field is tuned with the characteristic
frequency of the particle width. The power is a decreasing
function of γ and we observe a trade off in λ. When λ → 1,

there is no change in the initial field and no work is extracted

FIG. 3. Dimensionless work Wdim (normalized by the character-
istic energy of the system μB1), Eq. (61), as a function of the λ

parameter [which measures the work field strength, see Eq. (9)].

but when λ → 0, p+ = p− and the thermal state has equal
probabilities in the ẑ direction, so increasing the work field
produces no work.

V. FINAL REMARKS

From a thermodynamic perspective, a machine in contact
with a single thermal reservoir is impossible, and one in
contact with two has, at most, the Carnot efficiency. When
the energy is not supplied by a thermal source, the Carnot
bound ceases to hold, but still other limitations arise. As-
suming the projection postulate, it has been claimed that the
simple act of measuring a device can fuel it in a very efficient
way [3–6,8,15], but a more realistic measurement model is
very much needed to shed light on this issue. Quantum mea-
surement involves a complex interaction between the object
system, the measuring apparatus, a recording device, and the
environment at large. Further, in any realistic case, the mea-
surement apparatus must have a large number of degrees of
freedom [79].

Our model gives us a scenario where this complexity may
be fully explored. It yields to a first principle description,
the fuelling dynamics can be fully studied, a measurement
limit of this system can be taken, and it shows very clearly
that, when a “to be measured” quantum system, i.e., the spin
1/2 particle in this case, comes into contact with a “mea-
surement device” (a macroscopic object, i.e., the quantized
electromagnetic field with uncountable many degrees of free-
dom), the energy spreads out and both efficiency and power
decrease.

Even though in the case at hand this phenomenon is quan-
titatively rather small, and the losses in efficiency and power
can be minimized varying the parameter of the model, the
point is that limitations on efficiency, power, and measurement
accuracy are linked in such a way that a certain compromise is
unavoidable: an improvement on any of these implies a loss on
the others. For this reason the particulars of the measurement
process must be taken into account in order to make the model
of the machine complete.

Similar analyses must be done in the field of quantum
measurement based quantum computers [98,99]. The impos-
sibility for a quantum measurement engine to do work in a
perfectly efficient way shows that the finiteness of h̄ and c lead
to limitations in the feasibility of certain physical processes
that resemble those coming from the laws of thermody-
namics, even in regimes where these do not apply, at least
directly.
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APPENDIX: ANALYSIS FOR EARLY TIMES

For short times we use the ansatz rz(t ) = rz(0)e− f (t ),
r̄+(t ) = r̄+(0)e−g(t ) and write the Taylor series in time around
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FIG. 4. Dimensionless power Pdim (normalized by the characteristic power of the system (μB1 )2

h̄ ), Eq. (62), as a function of the λ and γ

parameters, which parametrize the work and probe fields strength, respectively.

t = 0 for f , g, and H :

f (t ) = a0 + a1t + 1
2 a2t2 + 1

6 a3t3 + ...

g(t ) = b0 + b1t + 1
2 b2t2 + 1

6 b3t3 + ... (A1)

H (t ) = H0 + H1t + 1
2 H2t2 + 1

6 H3t3 + ....

By doing so, we compute

a0 = 0, b0 = 0,

a1 = 0, b1 = 0,

a2 = H0, b2 = H0, (A2)

a3 = 1
2 [H1 + H∗

1 ] = 0,

b3 = −[H1 + H0rz(0)2i	].

As H0 is real and positive defined, this tells us that in the
regime of applicability of our machine, both variables tend

to decrease and, after a short period, the system tends to its
linear regime.

In order to match the early time regime to the exponential
decay given by Eq. (45), we search for a time t∗ and an
initial condition rz(t∗) such that both solutions and their first
derivatives coincide:

rz(t∗)e−ξ t∗ = rz(0)e− H0
2 t2

∗ ,

−ξrz(t∗)e−ξ t∗ = −H0t∗rz(0)e− H0
2 t2

∗ . (A3)

From there we find that

t∗ = ξ

H0
,

rz(t∗) = rz(0)e
ξ2

2H0 . (A4)

This tells us that, in our regime where ξ � 	 and H0 ∼
σ−4 � ( m	

h̄ )2, the exponential dominates from very early
times and it is a very good approximation to simply set the
initial conditions for this function.
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