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Temperature is a fundamental concept in thermodynamics. In macroscopic thermodynamics, systems possess
their own intrinsic temperature which equals the reservoir temperature when they equilibrate. In stochastic
thermodynamics for simple systems at the microscopic level, thermodynamic quantities other than temperature
(a deterministic parameter of the reservoir) are stochastic. To bridge the disparity in the perspectives about
temperature between the micro- and macroregimes, we assign a generic mesoscopic N-body system an intrinsic
fluctuating temperature T in this work. We simplify the complicated dynamics of numerous particles to one
stochastic differential equation with respect to T , where the noise term accounts for finite-size effects arising
from random energy transfer between the system and the reservoir. Our analysis reveals that these fluctuations
make the extensive quantities (in the thermodynamic limit) deviate from being extensive. Moreover, we derive
finite-size corrections, characterized by heat capacity of the system, to the Jarzynski equality. A possible violation
of the principle of maximum work that scales with N−1 is also discussed. Additionally, we examine the impact
of temperature fluctuations in a finite-size Carnot engine. We show that irreversible entropy production resulting
from the temperature fluctuations of the working substance diminishes the average efficiency of the cycle as
ηC − 〈η〉 ∼ N−1, highlighting the unattainability of the Carnot efficiency ηC for mesoscopic heat engines even
under the quasistatic limit. Our general framework paves the way for further exploration of nonequilibrium
thermodynamics and the corresponding finite-size effects in a mesoscopic regime.
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I. INTRODUCTION

In the field of nonequilibrium thermodynamics, stochastic
thermodynamics has attracted much attention recently. No-
table among its accomplishments are the fluctuation theorems,
which provide a quantitative framework for understanding the
statistical behavior of nonequilibrium processes and offer a
generalization of the second law. They are widely found and
proved in time-dependent driving processes [1–5], nonequi-
librium steady states [6–11], and quantum systems [12–20].

In addition to the aforementioned nonequilibrium pro-
cesses, the departure of a many-body system from thermal
equilibrium can be attributed to finite-size effects. In such
cases, the system fluctuates around the-maximum-entropy
(minimum-free-energy) state, with probabilities governed by
the exponential of entropy (free energy) as per Einstein’s
interpretation of the reverse form of the Boltzmann entropy.
Consequently, the system resides not in a full equilibrium
state but rather in a quasiequilibrium state, as postulated by
the theory of equilibrium fluctuations [21–23].

These studies primarily focused on equilibrium fluctu-
ations, providing limited insights into characterizing the
fluctuations and thermodynamic behaviors of mesoscopic sys-
tems undergoing nonequilibrium processes. However, the lack
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of clarity regarding mesoscopic nonequilibrium thermody-
namics has created a gap in connecting microscopic dynamics
and macroscopic thermodynamics. In particular, system’s in-
trinsic temperature is a fundamental concept in macroscopic
thermodynamics, while its counterpart in microscopic regime
becomes ambiguous. In stochastic thermodynamics applied to
simple systems with only a few degrees of freedom, temper-
ature is a deterministic parameter of the reservoir, whereas
other thermodynamic quantities (such as energy, entropy,
work, and heat) are subject to stochastic behavior [1–5].

To eliminate the disparity in the viewpoints on temperature
between the micro- and macroregimes, while also account-
ing for the fact that temperature fluctuates in equilibrium
states [21–23], we propose a stochastic thermodynamics for
mesoscopic systems that incorporates an intrinsic fluctuating
temperature. Our framework pushes the traditional stochastic
thermodynamics applied to small and simple systems into
exploring the complex nonequilibrium thermodynamic behav-
iors at the mesoscopic level.

In this study, we delve into the finite-size effects of a
generic N-body system undergoing an isothermal process
through the fluctuating temperature. A stochastic differential
equation (SDE) is formulated to simplify the complicated dy-
namics of numerous particles, where the noise term accounts
for finite-size effects arising from random energy exchanges
between the system and its reservoir. The temperature fluc-
tuation, characterized by the temperature distribution, leads
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to modifications of the Jarzynski equality and the average
efficiency of a quasistatic Carnot cycle at the mesoscopic
scale. These modifications result in deviations from the well-
established results typically applicable to systems in the
thermodynamic limit.

As a general framework for describing temperature fluctua-
tions in mesoscopic systems during nonequilibrium processes,
our theory unifies various results from pioneering studies and
different models. We extend the SDE that describes the fluc-
tuations of a levitated nanoparticle in a specific trap [24–27]
to encompass the temperature fluctuations of a mesoscopic
many-particle system confined in an arbitrary potential well.
In addition, it has been reported that the irreversible entropy
production in a finite-size Carnot cycle diminishes the max-
imum efficiency [28], while our theory comes up with a
general formula for quantitatively calculating the maximum
efficiency and yields consistent results with those presented
in Ref. [28] for specific models. Furthermore, the authors in
Ref. [29] analyzed the performance and the stability of the
Carnot cycle by considering the variance of the output work
for systems with scale-invariant spectra. Notably, our results
clearly demonstrate that the expression of the variance re-
mains unchanged for systems without scale-invariant spectra.

The power of our theory lies not only in providing uni-
versal phenomenological interpretations of previous results
but also in exploring the statistical laws governing finite-size
systems in nonequilibrium processes. For instance, we derive
finite-size corrections to the Jarzynski equality and predict a
possible violation of the principle of maximum work by an
amount proportional to N−1. These findings facilitate the anal-
ysis and future experimental realization of nanotechnology or
mesoscopic heat engines.

This paper is organized as follows: In Sec. II the stochastic
differential equation for the system’s temperature is derived.
We further obtain the Fokker-Planck equation for the system’s
temperature in Sec. III. In Sec. IV the stochastic thermody-
namics in terms of the fluctuating temperature is developed,
and the finite-size correction to the Jarzynski equality is
obtained. As a demonstration of our theory, we study the
efficiency of a finite-size heat engine in a quasistatic Carnot
cycle in Sec. V. Conclusions and outlooks of this study are
given in Sec. VI.

II. TEMPERATURE FLUCTUATIONS IN ISOTHERMAL
PROCESSES AT MESOSCOPIC SCALE

In this section we begin by providing a brief introduction
to the stochastic Fokker-Planck equation [30], where the noise
term characterizes the fluctuation of the flux density aris-
ing from the random collisions between the system and the
reservoir at the mesoscopic level. We regard the equation as
the generalization of the theory of equilibrium fluctuations in
nonequilibrium processes.

Subsequently, we present the corresponding stochastic dif-
ferential equation governing the system’s temperature under
the ergodic approximation. As a result, the stationary solution
represents a quasiequilibrium state in a canonical system,
in alignment with the theory of equilibrium fluctuation (see
Sec. III). It is noteworthy that although the derivation of the
stochastic differential equation for the system’s temperature

relies on the stochastic Fokker-Planck equation, we contend
that our findings remain independent of the specific details
concerning the system’s evolution in nonequilibrium pro-
cesses. These results can be applied to study discrete-state
systems or other systems not described by the stochastic
Fokker-Planck equation.

A. Stochastic Fokker-Planck equation

Let ρ(z), z = (x, p), x = (x1, . . . , xd ), p = (p1, . . . , pd )
denote the one-particle phase-space distribution of the sys-
tem (d denotes the dimension of the system). The stochastic
Fokker-Planck equation is given by [30]

∂ρ

∂t
= Lstρ + ∂

∂ p
· j, (1)

where

j = γ pρ(1 + ερ) + γ mkBTr
∂ρ

∂ p
+ ζ (2)

is the flux density in phase space which originates from colli-
sions between the system and the reservoir, and

Lst = − p
m

· ∂

∂x
+ ∂U

∂x
· ∂

∂ p
(3)

denotes the streaming operator. Here m is the mass of the par-
ticle, γ the damping coefficient, U the potential energy, kB the
Boltzmann constant, and Tr the temperature of the reservoir,
and ε = 1,−1, 0 for (noncondensed) bosons, fermions and
distinguishable particles, respectively. Hereafter, we do not
show the time dependence of the functions explicitly without
ambiguity. We emphasize that similar results to Eq. (1) can be
obtained with various approaches [31–39].

Due to the discreteness of particle number and the random-
ness of collisions between the system and the reservoir, the
noise term characterizes the finite-size effects of the dynam-
ics. Here ζ is a d-dimensional Gaussian white noise satisfy-
ing 〈ζi(z, t )〉 = 0, 〈ζi(z, t )ζ j (z′, t ′)〉 = 2hd mγ kBTrρ(z, t )[1 +
ερ(z, t )]δi jδ(z − z′)δ(t − t ′) (h denotes the Planck constant).
In the thermodynamic limit, the suppression of the noise ζ is
shown in Refs. [30,36].

Equation (1) is conservative in particle number

N =
∫

ρ dz, (4)

where dz = ∏d
i=1 dxi d pi/hd . The internal energy E and the

Boltzmann entropy S of the system are, respectively, given by

E =
∫ (

p2

2m
+ U

)
ρ dz (5)

and

S = kB

∫
[−ρ ln ρ + ε−1(1 + ερ) ln(1 + ερ)] dz. (6)

Also, we define F = E − TrS as the nonequilibrium free en-
ergy of the system.

In the absence of the noise term ζ, Eq. (1) determines a
steady state (a semiclassical equilibrium state in phase space)

ρeq(z) = 1

eβr [p2/(2m)+U (x)−μr ] − ε
, (7)
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where βr = 1/(kBTr ) is the inverse temperature, and μr the
chemical potential, p2 = ∑d

i=1 p2
i . In fact, the equilibrium

state ρeq is the minimum point of the nonequilibrium free
energy F with constant N .

B. Ergodic approximation

Let τp denote the characteristic time of the motion due to
the potential (e.g., the oscillating period of the harmonic trap).
When τp is much smaller than the relaxation time γ −1, the
variation of ρ along the equienergy surface in the phase space
is relatively small. The distribution function therefore depends
only on the phase-space variables through the energy variable
ε(z) = p2/(2m) + U (x). Such an approximation is called an
ergodic approximation, which has been widely used in the
literature on kinetic theory [40–45] (in Refs. [25–27], it is
called highly underdamped regime).

Moreover, we assume that the potential energy U explicitly
depends on a time-dependent parameter λ(t ), called the work
parameter. The ergodic approximation requires that τp � τd,
where τd is the driving time of λ. Then, following the sim-
ilar procedure in Ref. [45] and using Eq. (1), we obtain the
evolution equation of the mean occupation number ρ̃(ε) at the
single-particle energy ε:

∂

∂t
(gρ̃) + dλ

dt

∂

∂ε

(
∂U

∂λ
gρ̃

)

= ∂

∂ε

[
γ gp2

m

(
ρ̃ + ερ̃2 + kBTr

∂ρ̃

∂ε

)
+ ζ̃

]
, (8)

where

g(ε, t ) =
∫

δ

[
ε − p2

2m
− U (x, λt )

]
dz (9)

denotes the density of states [λt ≡ λ(t )], and

ρ̃(ε, t ) = g(ε, t )−1
∫

δ

[
ε − p2

2m
− U (x, λt )

]
ρ(z, t ) dz,

(10)
with ρ̃(ε(z), t ) = ρ(z, t ) under the ergodic approximation.
Here we have used the abbreviation

O(z) ≡ 1

g(ε, t )

∫
δ

[
ε − p2

2m
− U (x, λt )

]
O(z) dz, (11)

and

ζ̃ (ε, t ) ≡
∫

δ

[
ε − p2

2m
− U (x, λt )

]
p
m

· ζ(z, t ) dz (12)

is a Gaussian white noise satisfying 〈ζ̃ (ε, t )〉 = 0,
〈ζ̃ (ε, t )ζ̃ (ε′, t ′)〉 = 2m−1γ kBTrρ̃(ε, t )[1 + ε ρ̃ (ε, t )] g (ε, t )
p2(ε, t )δ(ε − ε′)δ(t − t ′). Such a noise characterizes the
fluctuation of the density distribution of the system in the
single-particle energy space.

C. SDE for the system temperature

The right-hand side (r.h.s.) of Eq. (8) describes random
collisions between the particles and the reservoir. Also, there
are also collisions among the particles. Let τa denote the
relaxation time due to the internal collisions. We assume τa �

γ −1, τd so that the system is approximately a equilibrium state
during the timescales γ −1, τd . Thus, it is characterized by a
time-dependent effective temperature T and a time-dependent
effective chemical potential μ, which is called endoreversibil-
ity [27,46–49]. Specifically, we have [the mean occupation
number at ε, Eq. (7)]

ρ̃ = 1

eβ(ε−μ) − ε
. (13)

Substituting Eq. (13) into Eqs. (4), (5), and (6), one finds

N = kBT

(
∂ lnZ
∂μ

)
β

, (14)

E = −
(

∂ lnZ
∂β

)
βμ

, (15)

and

S = kB(lnZ − βμN + βE ), (16)

with the partition function

Z = −ε

∫
ln[1 − εeβ(μ−ε)]gdε. (17)

Here Eqs. (14) and (15) determine the value of β = 1/(kBT )
and μ, and Z is the grand canonical partition function of the
system.

Equations (13)–(17) connect the dynamical variables ρ̃

and the thermodynamic variables T, μ, E , S. Accordingly, the
dynamic equation Eq. (1) can be represented by a thermo-
dynamic equation. Taking the time derivative of E on both
sides of Eq. (5) and using Eqs. (8), (13), and (17), we obtain a
stochastic differential equation for internal energy

dE

dt
= 

dλ

dt
+ �(Tr − T ) + ξ, (18)

where

 = −kBT
∂ lnZ

∂λ
(19)

denotes thermodynamic force conjugate to λ, � ≡ γ dNkB,
and

ξ (t ) ≡ −
∫

ζ̃ (ε, t ) dε (20)

is a Gaussian white noise satisfying 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 =
2�kBTrT (t )δ(t − t ′). In the derivation, we have used the
identity ∫

eβ(ε−μ) p2g

[eβ(ε−μ) − ε]2
dε = dNmkBT . (21)

The first two terms on the r.h.s. of Eq. (18) correspond to
the power and the rate of heat flow respectively. The rate
of heat flow satisfies Newton’s law of cooling with � as the
cooling rate. The noise term accounts for the random energy
transfer between the system and the reservoir. For a single
particle in a single-well potential, similar results have been
reported in Refs. [25–27]. Equation (18) is thus considered as
a generalization to an N-body system in a general potential.

As a thermodynamic equation, Eq. (18) describes the evo-
lution of the system in a nonequilibrium isothermal process,
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which should satisfy thermodynamic relations. To proceed,
we consider λ, T, N as independent thermodynamic variables
and do not show their dependence of functions for simplicity.
We introduce C ≡ ∂E/∂T as the heat capacity with constant
λ and obtain the following thermodynamic relations from
Eqs. (15), (16), and (19):

∂S

∂T
= C

T
,
∂S

∂λ
= −∂

∂T
,
∂C

∂λ
= −T

∂2

∂T 2
. (22)

Moreover, taking the time derivative on both sides of
Eq. (15), we obtain the first law by using Eqs. (16) and (22)

dE

dt
= 

dλ

dt
+ T ◦ dS

dt

=
(

 − T
∂

∂T

)
dλ

dt
+ C ◦ dT

dt
, (23)

where ◦ indicates the Stratonovich integral, which enables us
to use ordinary calculus. Due to the noise ξ , the Stratonovich
integral and the Itô integral are related by

C ◦ dT

dt
= C

dT

dt
+ �kBTrT

C2

∂C

∂T
. (24)

Comparing Eq. (23) with Eq. (18) and transforming the
Stratonovich integral into the Itô integral [Eq. (24)], we fi-
nally obtain the stochastic differential equation for the system
temperature

C
dT

dt
= T

∂

∂T

dλ

dt
+ �(Tr − T ) − �kBTrT

C2

∂C

∂T
+ ξ . (25)

III. FOKKER-PLANCK EQUATION
FOR THE SYSTEM TEMPERATURE

The system’s temperature fluctuate due to the noise term in
Eq. (25). The Fokker-Planck equation for its probability dis-
tribution P(T, t ) = 〈δ(T − T (t ))〉 (〈· · · 〉 denotes the average
over the noise ξ ) is

∂P

∂t
= ∂

∂T

[
−T

C

∂

∂T

dλ

dt
P + �

C
(T − Tr )P + �kBTr

C

∂

∂T

(
T P

C

)]

= ∂

∂T

[
−T

C

∂

∂T

dλ

dt
P + �T

C2
P

∂

∂T

(
F + kBTr ln

kBT P

C

)]
.

(26)

Here T ∈ [0,∞), and we assume that P quickly goes to zero
when T → ∞ or T → 0. The second equality in Eq. (26)
shows the thermodynamic nature implied in it. When t → ∞,
let λ be a constant, and then Eq. (26) determines a stationary
solution

Ps(T, λ) = C

Z̃kBT
e−βr F , (27)

where Z̃ ≡ ∫
C(kBT )−1eS/kB−βr E dT denotes the generalized

partition function of the system [30]. In the absence of the
factor C/(Z̃kBT ), Ps is actually the quasiequilibrium state in
a canonical system according to the theory of equilibrium
fluctuation [21–23] and satisfies the large deviation principle.

Similar to the equilibrium free energy in statistical mechan-
ics, we define

F ≡ −kBTr ln Z̃ (28)

as the generalized free energy of the system. Then we have the
relation F = E − TrS , where

E ≡
∫

EPs dT = −∂ ln Z̃
∂βr

(29)

is the mean internal energy of the system at the quasiequilib-
rium state, and

S ≡
∫ (

S − kB ln
kBT Ps

C

)
Ps dT = kBβr (E − F ) (30)

is the mean entropy of the system at the quasiequilibrium
state. Here the mean entropy is a sum of the mean Boltzmann
entropy (the first term in the integral) and the contribution
from the distribution of the system’s temperature (the second
term in the integral), the latter of which is consistent with the
perspective of information theory [50,51]. Also, we confirm
the fundamental relation in thermodynamics

dE = Tr dS + ̃ dλ (31)

and

dF = −S dTr + ̃ dλ, (32)

where ̃ ≡ −kBTr∂ ln Z̃/∂λ denotes the generalized thermo-
dynamic force conjugate to λ at the quasiequilibrium state.
We want to emphasize here that these generalized quantities
F , E,S , which are extensive in the thermodynamic limit, are
no longer extensive due to the finite-size effect of the system.

In the thermodynamic limit, we apply the Gaussian approx-
imation of Eq. (27) as (central limit theorem)

Ps(T, λ) �
√

Cr

2πkBT 2
r

exp

[
−Cr (T − Tr )2

2kBT 2
r

]
, (33)

where Cr ≡ C|T =Tr . Equation (33) approximates the system’s
temperature fluctuation at the equilibrium state. Its mean value
Tr and variance kBT 2

r /Cr are consistent with the theory of
equilibrium fluctuation [21–23]. Then, substituting Eq. (33)
into Eq. (28), we obtain

F = Fr − kBTr

2
ln

2πCr

kB
+ O

(
1

N

)
, (34)

where Fr ≡ F |T =Tr . The first term on the r.h.s. is the equi-
librium free energy of the system at temperature Tr and the
second term on the r.h.s. is the finite-size correction to it.

IV. STOCHASTIC THERMODYNAMICS

In the spirit of stochastic thermodynamics [1–3], in
this section we are going to define stochastic thermody-
namic quantities corresponding to Eqs. (18), (23), and (26).
First, a trajectory of the system’s temperature is defined as
T[0,τ ] := {T (t )|t ∈ [0, τ ]}. According to Eqs. (18) and (23),
the stochastic work w[T[0,t]] and the stochastic heat q[T[0,t]]
are, respectively, given by

w[T[0,τ ]] =
∫ τ

0
 dλ (35)
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and

q[T[0,τ ]] =
∫ τ

0
T ◦ dS

=
∫ τ

0

(
−T

∂

∂T
dλ + C ◦ dT

)

=
∫ τ

0
[�(Tr − T ) + ξ ]dt . (36)

Thus, we have the conservation law of energy

E (τ ) − E (0) = w[T[0,τ ]] + q[T[0,τ ]] (37)

at the mesoscopic level.
Corresponding to Eq. (26), the stochastic entropy s(t ) and

stochastic free energy f (t ) are respectively given by (also see
Ref. [30])

s(t ) = S(t ) − kB ln
kBT (t )P(T (t ), t )

C(t )

= kB

[
βrE (t ) − βrF (t ) − ln

P(T (t ), t )
Ps(T (t ), λ(t ))

]
, (38)

and

f (t ) = E (t ) − Trs(t )

= F (t ) + kBTr ln
kBT (t )P(T (t ), t )

C(t )

= F (t ) + kBTr ln
P(T (t ), t )

Ps(T (t ), λ(t ))
. (39)

Here P(T, t ) is the solution of Eq. (26), S (F ) denotes
the Boltzmann entropy (nonequilibrium free energy) of the
system, and the term −kB ln[kBT PC−1] (kBTr ln[kBT PC−1])
denotes the finite-size correction to S (F ) from the distribution
of the system’s temperature. The term kBβr (E − F ) corre-
sponds to the mean entropy at the quasiequilibrium state S in
Eq. (30). The term −kB ln(P/Ps ) (after taking the average over
P) corresponds to the relative entropy, which measures how
far the temperature distribution is from the quasiequilibrium
state. Consequently, we have E = 〈E〉|P=Ps , S = 〈s〉|P=Ps , and
F = 〈 f 〉|P=Ps . It is worth mentioning that the stochastic free
energy f , the difference between which and the generalized
free energy F measures how far the system departures from
the quasiequilibrium state, has not been reported in previous
papers (but for Ref. [30]).

Moreover, the stochastic total entropy production sp[T[0,τ ]]
reads

sp[T[0,τ ]] =s(τ ) − s(0) + sr[T[0,τ ]], (40)

where sr[T[0,τ ]] = −q[T[0,τ ]]/Tr is the stochastic entropy
change of the reservoir.

Then we prove the fluctuation theorems based these
stochastic quantities. According to Eq. (25), the probability
distribution of the trajectory T[0,τ ] conditioned with a fixed
initial temperature T0 ≡ T (0) reads [52–54]

P[T[0,τ ]|T0] = e−S̃[T[0,τ ]], (41)

where the integral measure is DT ≡ ∏N
i=1 d Ti√

C2
i /(2πT ∗

i �t ), with the Stratonovich discretization 0 =
t0 < t1 < · · · < tN−1 < tN = τ , �t ≡ ti − ti−1, Ti ≡ T (ti),

T ∗
i ≡ (Ti + Ti−1)/2, λi ≡ λ(ti ), λ∗

i ≡ (λi + λi−1)/2, Ci ≡
C|T =T ∗

i ,λ=λ∗
i
. Here the action S̃ as a generalized Onsager-

Machlup functional is given by

S̃[T[0,τ ]] = 1

4�kBTr

∫ τ

0

[
C

dT

dt
− T

∂

∂T

dλ

dt

− �(Tr − T ) − �kBTrT

C

∂

∂T
ln

C

T

]2 dt

T

+ 1

2

∫ τ

0

∂

∂T

[
T

C

∂

∂T

dλ

dt
+ �

C
(Tr − T ) − �kBTr

2C2

]
dt .

(42)

In Eq. (42) we also have chosen the Stratonovich dis-
cretization. Such a choice ensures that the time reversal
of P[T[0,τ ]|T0] is also under the Stratonovich discretization
[52,53].

To proceed, let P†[T †
[0,τ ]|T †

0 ] denote the conditional prob-

ability distribution of the reverse trajectory T †
[0,τ ] := {T (τ −

t )|t ∈ [0, τ ]} with another fixed initial temperature T †
0 ≡

T †(0) and a reverse protocol λ†(t ) := λ(τ − t ) (the super-
script † indicates the reverse trajectory). It follows from
Eqs. (41) and (42) that

P†[T †
[0,τ ]|T †

0 ] = e−S̃[T †
[0,τ ]]

= e−S̃[T[0,τ ]]
∣∣∣
{ dT

dt , dλ
dt }→{− dT

dt ,− dλ
dt }

, (43)

and thus the detailed fluctuation theorem is obtained as

ln
P[T[0,τ ]|T0]

P†[T †
[0,τ ]|T †

0 ]
= ln

P(Tτ , τ )

P(T0, 0)
+ sp[T[0,τ ]]

kB
, (44)

where Tτ ≡ T (τ ). By adding an arbitrary normalized dis-
tribution at the initial time of the reverse process P′(T †

0 , 0)
and noticing DT = DT †, we obtain the integral fluctuation
theorem as 〈

P′(T †
0 , 0)

P(Tτ , τ )
e− sp

kB

〉
= 1. (45)

Such an equality is formally consistent with the integral fluc-
tuation theorems in previous studies [1,2]. For a choice of
P′(T †

0 , 0) = P(Tτ , τ ), we obtain the integral fluctuation the-
orem for total entropy production [1,2,30]

〈e−sp/kB〉 = 1. (46)

As a corollary, the second law 〈sp〉 � 0 follows from the
fluctuation theorem by using Jensen’s inequality.

When both P(T0, 0), P′(T †
0 , 0) are stationary solutions

of the Fokker-Planck equation [quasiequilibrium state in
Eq. (27)], i.e., P(T0, 0) = Ps(T0, λ0), P′(T †

0 , 0) = Ps(Tτ , λτ ),
we obtain the generalized Jarzynski equality [30]

〈e−βrw〉 = e−βr�F , (47)

and the generalized principle of maximum work 〈w〉 � �F
by using Jensen’s inequality [30], where �A ≡ A(τ ) − A(0)
for some time-dependent function A. In the thermodynamic
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FIG. 1. φ as a function of T for different λτ /λ0.

limit, it follows from Eq. (34) that

〈e−βrw〉 = e−βr�Fr

√
Cr (λτ )

Cr (λ0)
+ O

(
1

N

)
(48)

and

〈w〉 � �Fr − kBTr

2
ln

[
Cr (λτ )

Cr (λ0)

]
+ O

(
1

N

)
. (49)

Here the ratio of the heat capacity is a finite-size correction
to the Jarzynski equality and the principle of maximum work.
Equation (49) indicates that when Cr (λτ ) > Cr (λ0), a possible
violation of the principle of maximum work by an amount on
the order of N−1 is possible. We further define the following
quantity to characterize such a correction:

φ ≡
∣∣∣∣ ln [Cr (λτ )/Cr (λ0)]

2βr�Fr

∣∣∣∣. (50)

For example, if the system is specified as N = 1000 two-
level particles with energy spacing λ (see Appendix A for
details), we plot φ as a function of temperature Tr in Fig. 1
for different λτ/λ0. In this figure we see that φ significantly
increases as the temperature decreases. It is hence possible
in principle to observe the finite-size correction to Jarzyn-
ski equality in some experimental platforms. In addition, for
systems with quantum phase transitions [55,56], the depen-
dence of heat capacity on parameters near the critical point
is remarkable. In such cases, the finite-size correction will be
particularly important for the Jarzynski equality.

V. FLUCTUATING CARNOT CYCLE

As an application of our theory, we study a fluctuat-
ing Carnot cycle with finite-size working substance using
Eq. (25). As illustrated in Fig. 2, the Carnot cycle consists of
four processes: 1 → 2, adiabatic compression (γ = 0); 2 →
3, isothermal expansion (hot reservoir’s temperature Th); 3 →
4, adiabatic expansion (γ = 0); and 4 → 1, isothermal com-
pression (cold reservoir temperature Tc). Let Tn, n = 1, . . . , 4
denote the corresponding temperature of the working sub-
stance at state n. Then we have 〈T1〉 = 〈T4〉 = Tc and 〈T2〉 =
〈T3〉 = Th. Let λn, En,Cn, Sn, sn, n = 1, . . . , 4 denote the cor-
responding work parameter, internal energy, heat capacity,
Boltzmann entropy, and stochastic entropy of the working
substance, respectively. By using Eq. (26) with γ = 0, it is

FIG. 2. Carnot cycle in the temperature-entropy diagram. The
shaded regions represent the temperature fluctuation due to the finite-
size effect of the working substance.

straightforward to prove that in the adiabatic processes, both
the average Boltzmann entropy and stochastic entropy are
constants,

〈S1〉 = 〈S2〉, 〈S3〉 = 〈S4〉 (51)

and

〈s1〉 = 〈s2〉, 〈s3〉 = 〈s4〉. (52)

Then let Pn, Psn,Fn, n = 1, . . . , 4 denote the correspond-
ing temperature distribution, quasiequilibrium state, and
generalized free energy of the working substance, respec-
tively. In the quasistatic limit, dλ/dt → 0 and the working
substance is a quasiequilibrium state with Tr = Th (Tr = Tc)
all the time in the isothermal expansion (compression) process
according to Eq. (26). Meanwhile according to Appendix B,
the working substance at the end of the adiabatic processes is
generally not a quasiequilibrium anymore. That is to say, P1 =
Ps1, P3 = Ps3, and P2 �= Ps2, P4 �= Ps4. Such a result reflects
the fact that from state 2− → 2+ (4− → 4+), the working
substance has quickly thermalized during a vanishing small
timescale γ −1, where the average temperature of the working
substance remains the same but the variance of the temper-
ature of the working substance changes. Consequently, no
work is done during the vanishing small time, and the finite
irreversible entropy production occurs due to the contribution
from the relative entropy [see Eqs. (38)–(40)], which is a
finite-size effect and first reported in Ref. [28] to our best
knowledge.

In Fig. 2 we illustrate the finite-size effects of the fluctu-
ating Carnot cycle in terms of the temperature and entropy
of the working substance. The end-to-end solid and dashed
lines represent their mean values, while the shaded regions
signify the fluctuations attributable to finite-size effects. We
accentuate the irreversible entropy production depicted within
the two cuboids, which diminishes the average efficiency of
the Carnot cycle.

In the two isothermal processes, the variances of the input
work both vanish (see the example in Ref. [57]). Therefore,
the input work in the two isothermal processes is a constant,
F3 − F2 + F1 − F4, corresponding to the generalized princi-
ple of maximum work. In the two adiabatic processes, there
is no heat transfer and the input work is equal to the internal
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energy change according to the conservation law of energy,
E2 − E1 + E4 − E3. Thus, using Eq. (38), the total input work
reads

win = E2 − E1 + E4 − E3 + F3 − F2 + F1 − F4

= Th

(
s2 − s3 + kB ln

P2

Ps2

)
+ Tc

(
s4 − s1 + kB ln

P4

Ps4

)
.

(53)

Accordingly, the absorbed heat from the hot reservoir reads

qh = Th

(
s3 − s2 − kB ln

P2

Ps2

)
, (54)

where s1, s2 are independent of s3, s4 due to the thermalization
in the two isothermal processes. Note that the connections
between s1, s2 or s3, s4 satisfy the energy-conservation equa-
tion in the adiabatic process [Eq. (25) with γ = 0]. It follows
from Eq. (40) that the entropy production of the cycle is (also
see Refs. [58,59])

sp = qh + win

Tc
− qh

Th

= s4 − s1 − s3 + s2 + kB ln
P4

Ps4
+ kB ln

P2

Ps2
. (55)

To study the efficiency of the cycle, we adopt the definition
of the stochastic efficiency in Ref. [60],

η = − win

〈qh〉 , (56)

which is called the scaled fluctuating efficiency. The moments
of the efficiency always exist, and its mean value is equal to
the conventional efficiency of a cycle. Using Eqs. (52)–(54),
the average efficiency of the cycle is

〈η〉 = 1 − Tc[�s + D(P4||Ps4)]

Th[�s − D(P2||Ps2)]

= ηC − (1 − ηC)
〈sp〉
�s

+ O

(
1

N2

)
. (57)

Here ηC ≡ 1 − Tc/Th is the Carnot efficiency, �s ≡ 〈s3〉 −
〈s2〉 = 〈s4〉 − 〈s1〉 is the average entropy change of the work-
ing substance in the isothermal expansion process,

D(P||Ps) ≡
∫

P ln
P

Ps
dT, (58)

is the relative entropy, and 〈sp〉 = D(P2||Ps2) + D(P4||Ps4)
following from Eqs. (52) and (55) is the total average en-
tropy production of the cycle according to Eq. (55). Since
�s > 0 and 〈sp〉 � 0, we conclude that the irreversible en-
tropy production due to the temperature fluctuation of the
working substance diminishes the average efficiency of the
cycle. Consequently, even in the quasistatic limit, the Carnot
efficiency remains unattainable. Such an equation is also
shown in Ref. [28].

In the thermodynamic limit, we are only concerned about
the mean value 〈A〉 and the variance σ 2

A = 〈(A − 〈A〉)2〉 for
some T -dependent function A. As a result, the tempera-
ture distribution of the working substance is approximately
a Gaussian distribution, Tn ∼ N (〈Tn〉, σ 2

Tn
), for n = 1, . . . , 4.

Therefore, we find

�s = S3h − S2h + O

(
kB

N

)
= S4c − S1c + O

(
kB

N

)
(59)

and

〈sp〉 = 1

2

[
ln(κκ ′) + 1

κ
+ 1

κ ′ − 2

]
, (60)

where Snc(h) ≡ Sn|T =Tc(h) for n = 1, . . . , 4, κ ≡ C(Tc, λ2)/
C(Th, λ1), and κ ′ ≡ C(Th, λ4)/C(Tc, λ3) (see Appendix B).

As an example, we specific the working substance as the
N-particle system studied in Ref. [28], with the Hamiltonian

H =
dN∑
i=1

(
p2

i

2m
+ a

∣∣∣xi

L

∣∣∣λ) + V, (61)

where m denotes the mass of the N particles, a the char-
acteristic energy of the system, L the characteristic length
of the system, λ the work parameter, and V the interactions
among these particles (which can be ignored in comparison
with the kinetic and potential energy but is strong enough to
make the particles ergodic). Taking use of the internal energy
of the system at the equilibrium state [Eq. (B15) in Ref. [28]],
we obtain the total average entropy production of the cycle
from Eq. (60) as

〈sp〉 = 1

2
ln

[
λ1(λ2 + 2)λ3(λ4 + 2)

(λ1 + 2)λ2(λ3 + 2)λ4

]

+ (λ2 − λ1)

λ1(λ2 + 2)
+ (λ4 − λ3)

λ3(λ4 + 2)
, (62)

with κ = λ1(λ2 + 2)/[(λ1 + 2)λ2], and κ ′ = λ3(λ4 +
2)/[(λ3 + 2)λ4]. Such a result is consistent with the leading
order of the expression of the relative entropy shown in
Eq. (7) of Ref. [28] in the large-N limit, while the latter was
previously obtained through complicated calculation. Such a
consistence indicates that our formalism is universal and is
able to exactly capture the entropy production of the cycles
due to the finite-N effects of the working substance.

Substituting Eqs. (59) and (60) into Eq. (57), the average
efficiency is obtained as

〈η〉 = ηC − (1 − ηC)
κκ ′ ln(κκ ′) + κ + κ ′ − 2κκ ′

2κκ ′(S3h − S2h)
+ O

(
1

N2

)
.

(63)

In particular, for a constant heat capacity of the working
substance (such as ideal gas), κ = κ ′ = 1 and the Carnot
efficiency is recovered 〈η〉 = ηC to the order of N−1.

Furthermore, we consider the variance of the efficiency
σ 2

η . It follows from Eq. (56) that σ 2
η = σ 2

win
/〈qh〉2. Using the

linear relation between the initial and final internal energy in
the adiabatic process (Appendix B), we obtain the correlation
functions

〈E1E2〉 − 〈E1〉〈E2〉 = kBTcThC1c + O
(
k2

BT 2
)
, (64)

〈E3E4〉 − 〈E3〉〈E4〉 = kBTcThC3h + O
(
k2

BT 2
)
. (65)
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Combining Eqs. (53), (54), and (59), one finds

σ 2
η = σ 2

E2−E1
+ σ 2

E4−E3

〈qh〉2

= kB(Th − Tc)2(C1c + C3h)

T 2
h (S3h − S2h)2

+ O

(
1

N2

)
. (66)

It is worth mentioning here that such a result also appeared in
Ref. [29] for the spectra of the working substance with scale
property, while our result is not limited to this case. That is to
say that our theory is independent of the details of the working
substance and is thus universal.

VI. CONCLUSION AND OUTLOOK

In this paper we have studied the temperature fluctuations
of a finite-size system. Initially, we drive a stochastic dif-
ferential equation to describe the evolution of the system’s
temperature during a isothermal process. The noise term in
the equation accounts for finite-size effects resulting from
random energy exchanges between the system and its reser-
voir. Consequently, the system’s stationary state represents a
quasiequilibrium state according to the theory of equilibrium
fluctuation, in which the generalized thermodynamic quanti-
ties (which are extensive in the thermodynamic limit) deviate
from being extensive due to finite-size effects.

Furthermore, we develop stochastic thermodynamics based
on the temperature fluctuations of the system and substantiate
the fluctuation theorems. The obtained results provide finite-
size corrections to the Jarzynski equality, which is quantified
by the square root of the ratio of the system’s heat capacities
at the final and initial stages of the driving. Additionally, we
observe a breach of the principle of maximum work by an
amount on the order of N−1.

To demonstrate the impact of temperature fluctuations at
the mesoscopic level in typical thermodynamic processes, we
analyze the efficiency of a finite-size heat engine operating
in a quasistatic Carnot cycle. Our findings reveal that even
under the quasistatic limit, the Carnot efficiency ηC remains
unattainable due to the irreversible entropy production arising
from temperature fluctuations of the working substance. For
some specific models, our general results of the mean value
and variance of the efficiency align with previous findings in
Refs. [28] and [29], respectively.

In closing, our framework paves the way for further ex-
ploration of mesoscopic nonequilibrium thermodynamics and
the corresponding finite-size effects [39]. Several theoretical
predictions made in this work can potentially be verified
on a mature experimental platform [61]. As possible ex-
tensions of our current results, the finite-time performance
[27,60,62] and optimization [46,63,64] of the proposed fluctu-
ating Carnot cycle are worth further investigation. Moreover,
considering both the temperature fluctuations of the working
substance and the finiteness of the heat reservoirs [48,49,65–
67], finding the power-efficiency trade-off relation [62,68,69]
and relevant optimizations of the heat engine present an-
other challenging task with implications for mesoscopic heat
engines.

ACKNOWLEDGMENTS

Y.H.M. thanks the National Natural Science Foundation of
China for support under Grant No. 12305037 and the Fun-
damental Research Funds for the Central Universities under
Grant No. 2023NTST017.

APPENDIX A: THERMODYNAMIC QUANTITIES
OF TWO-LEVEL SYSTEMS

We consider an ensemble of noninteracting two-level sys-
tems, such as N free spin-1/2 particles. The excited state and
ground state of the ith subsystem are denoted as |e〉i and |g〉i,
respectively, and the Hamiltonian of the system reads

H =
N∑

i=1

λ|e〉ii〈e|, (A1)

where λ is the energy spacing of the two states and the ground
state energy is set to zero. When this system is at the thermal
equilibrium state with inverse temperature β, the populations
in the excited and ground state are

pe = e−βλ

1 + e−βλ
, (A2)

pg = 1

1 + e−βλ
, (A3)

with the partition function Z (λ) = 1 + e−βλ, and the internal
energy

U = N peλ = Nλ

1 + e−βλ
. (A4)

Then the heat capacity of the system is

C = ∂U

∂T
= Nβ2λ2eβλ

(1 + e−βλ)2 , (A5)

where the λ-dependent heat capacity contributes to the finite-
size correction of the Jarzynski equality.

By using Eq. (A5) and noting that

�F = −Nβ−1 ln

[
Z (λτ )

Z (λ0)

]
= Nβ−1 ln

(
1 + e−βλ0

1 + e−βλτ

)
,

(A6)
the quality φ defined in Eq. (50) is specifically obtained as

φ = 1

2N

∣∣∣∣∣∣∣
2 ln

[
λτ (1+e−βλ0 )
λ0(1+e−βλτ )

]
+ β(λτ − λ0)

ln
(

1+e−βλ0

1+e−βλτ

)
∣∣∣∣∣∣∣. (A7)

APPENDIX B: SOLUTION OF THE SYSTEM’S
TEMPERATURE IN THE ADIABATIC PROCESS

Taking the average on the both sides of Eq. (25) with γ = 0
(adiabatic process), we have

dTe

dt
=

〈
T

C

∂

∂T

〉
dλ

dt

=
[

Te

Ce

∂e

∂Te
+ σ 2

T

2

∂2

∂T 2
e

(
Te

Ce

∂e

∂T

)]
dλ

dt
+ O

(
T

N2τ

)
,

(B1)
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where Te ≡ 〈T 〉, e ≡ |T =Te , and Ce ≡ C|T =Te . Since the
adiabatic process connects two isothermal processes, let Ta

(Tb) denote the temperature of the reservoir at the initial (fi-
nal) time t = 0 (t = τ ), and we have the following boundary
conditions:

Te(0) = Ta, Te(τ ) = Tb. (B2)

Let δT (t ) ≡ T (t ) − Te(t ). In the thermodynamic limit, we
have δT (t ) ∼ TeN−1/2 → 0. Therefore, the linearization of
Eq. (25) with γ = 0 around Te(t ) reads

dδT

dt
= δT

∂

∂Te

(
Te

Ce

∂e

∂Te

)
dλ

dt
+ O

(
T

Nτ

)

= δT
d

dt
ln

Te

Ce
+ O

(
T

Nτ

)
, (B3)

where we have used Eq. (B1) in the second equality. The
solution of Eq. (B3) is

δT (τ ) = δT (0)
TbCa(λ0)

TaCb(λτ )
. (B4)

That is to say, T (τ ) linearly depends on T (0). Moreover, the
standard deviation reads

σT (τ ) = σT (0)
TbCa(λ0)

TaCb(λτ )
. (B5)

Equations (B4) and (B5) serve as the equation for the
temperature fluctuation of the system in the adiabatic
process.

For an adiabatic process with an initial quasiequilibrium
state

P(T, 0) =
√

Ca(λ0)

2πkBT 2
a

exp

[
−Ca(λ0)(T − Ta)2

2kBT 2
a

]
, (B6)

σ 2
e (0) = kBT 2

e (0)/Ce(0). According to Eq. (B5), the corre-
sponding temperature distribution at the end of the adiabatic
process during time τ is obtained as

P(T, τ ) =
√

κCb(λτ )

2πkBT 2
b

exp

[
−κCb(λτ )(T − Tb)2

2kBT 2
b

]
, (B7)

where κ ≡ Cb(λτ )/Ca(λ0) is the ratio of the heat capacity at
the final and initial times. Hence for κ �= 1, the work sub-
stance at time t is not at an quasiequilibrium state anymore.
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