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Rapid evolution of sensor technology, advances in instrumentation, and progress in devising data-acquisition
software and hardware are providing vast amounts of data for various complex phenomena that occur in
heterogeneous media, ranging from those in atmospheric environment, to large-scale porous formations, and
biological systems. The tremendous increase in the speed of scientific computing has also made it possible to
emulate diverse multiscale and multiphysics phenomena that contain elements of stochasticity or heterogeneity,
and to generate large volumes of numerical data for them. Thus, given a heterogeneous system with annealed
or quenched disorder in which a complex phenomenon occurs, how should one analyze and model the system
and phenomenon, explain the data, and make predictions for length and time scales much larger than those
over which the data were collected? We divide such systems into three distinct classes. (i) Those for which the
governing equations for the physical phenomena of interest, as well as data, are known, but solving the equations
over large length scales and long times is very difficult. (ii) Those for which data are available, but the governing
equations are only partially known, in the sense that they either contain various coefficients that must be evaluated
based on the data, or that the number of degrees of freedom of the system is so large that deriving the complete
equations is very difficult, if not impossible, as a result of which one must develop the governing equations with
reduced dimensionality. (iii) In the third class are systems for which large amounts of data are available, but
the governing equations for the phenomena of interest are not known. Several classes of physics-informed and
data-driven approaches for analyzing and modeling of the three classes of systems have been emerging, which are
based on machine learning, symbolic regression, the Koopman operator, the Mori-Zwanzig projection operator
formulation, sparse identification of nonlinear dynamics, data assimilation combined with a neural network, and
stochastic optimization and analysis. This perspective describes such methods and the latest developments in this
highly important and rapidly expanding area and discusses possible future directions.
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I. INTRODUCTION

A wide variety of systems of scientific, industrial, and
societal importance represent heterogeneous, and multiphase
and multiscale media. Examples vary anywhere from large-
scale porous formations, to composite materials, biological
systems, and Earth’s atmosphere. Many complex phenomena
also occur in such systems, including fluid flow, transport,
reaction, and deformation. Given the extreme importance of
such systems to human and societal progress, the goal for
decades has been developing models that describe not only
the multiscale and multiphase systems themselves, but also
the phenomena that occur there.

Consider, as an example, the problem of air pollution in
large urban areas. Chemical oxidants, especially ozone, are
major products of photochemical oxidation (reactions that are
influenced by Sun) of primary pollutants emitted from various
sources in the tropospheric layer [1]. Although the presence of
ozone in the stratospheric layer is responsible for continuation
of life on Earth, its presence in the troposphere is dangerous
to humans’ health and damaging to national and international
economies [2]. Effective control of the pollutants requires
accurate and comprehensive knowledge of the rates of emis-

sion and transport of the reactants that are present in the
atmosphere, and the chemical reactions that they participate
in. In particular, since in the presence of nitrogen oxides, NOx,
ozone production increases very significantly [1], which is the
main cause of the formation of photochemical smog, detailed
information on its concentration is needed for its control.

Such data are continuously collected by a large number
of sensors in large urban areas around the world, and have
been becoming available. To analyze and understand the huge
volume of the data that are being continuously collected, mod-
eling of such phenomena has been pursued for decades. Large
urban areas are, however, highly complex media. Consider,
for example, the Greater Tehran area, Iran’s Capital, which
begins on the tall Alborz mountains in the north, and ends
in the desert in the south, or the Greater Los Angeles area
that is sandwiched between San Bernardino, San Gabriel, and
San Fernando mountains and the Pacific Ocean. Clearly, the
terrains and topography of such large urban areas are highly
rough and complex. Any modeling of atmospheric pollution
over the two areas must take into acount not only the effect
of the large rough terrains—about 1300 and 87 000 km2 for,
respectively, the Greater Tehran and Los Angeles areas—and
their rough topography, but also the dynamic changes that
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occur there continuously on hourly, daily, monthly, and sea-
sonal bases, as the two areas represent multiscale systems, not
only in space, but also in time, which span at least 10–15
orders of magnitude. As a result, numerical simulation of
such complex phenomena, even if the governing equations
are known, is extremely difficult, as it involves turbulent flow,
reactions with highly nonlinear kinetics, a huge number of
reactants—typically five dozens or more—and the reaction
products—over one hundred -the presence or absence of a
wind velocity field, boundary conditions that vary dynami-
cally, and many other complicating factors [1,3].

The availability of vast amount of data is not limited to the
problem of atmospheric pollution. It is estimated that, over the
next decade, hundreds of billions of sensors that include air-
borne, seaborne and satellite remote sensing will be collecting
vast amounts of data for many phenomena, such as vegetation
and plantation, and the characteristics of draught-stricken ar-
eas, an increasingly important problem worldwide. The same
is also true of large geomedia and such complex problems as
seismology, fracture propagation, and earthquakes. Analysis
of such data, particularly those for which the signal-to-noise
ratio is low—usually referred to as noisy data—understanding
the subtle insights that they may provide, and incorporating
them into accurate physical models is a Herculean task, re-
quiring a paradigm shift.

Such a paradigm shift has slowly begun to emerge, with
two classes of approaches are currently being developed.
One class exploits deep-learning (DL), and more generally
machine-learning (ML), algorithms to address the problem.
The approach has been motivated by the fact that in many
cases, the ML algorithms [4,5] are capable of extracting
important features from vast amounts of data that are char-
acterized by spatial and temporal coverage; see for example,
Reichstein et al. [6]. In some cases, the governing equations
for the complex phenomena for which the data have been
collected may be known, which are then incorporated into
a ML approach to develop predictive tools for studying the
phenomena over spatial and time scales well beyond those
over which the existing data have been collected. Two rep-
resentative examples of such approaches are the work of
Kamrava et al. [7] for modeling fluid flow in porous materials,
and that of Alber et al. [8] for modeling of biophysical and
biomedical systems. In other cases, the governing equations
may be known, but they contain transport and other types of
coefficients that depend on the morphology of the systems in
which a complex phenomena occur, or require constitutive
relationships without which the governing equations would
not be very useful, unless one resorts to pure empiricism. As
a result, the constitutive relationships and/or the coefficients
that the governing equations contain must be discovered.

The second class of approaches is intended for the systems
in which the governing equations for physical phenomena
occurring in them and, hence, for the associated data, are not
known. Thus, one attempts to discover the equations using
the large amount of data currently available. The lack of gov-
erning equations is particularly true for those phenomena that
involve multiscale heterogeneity in the form of some sort of
stochasticity. The discovery of such equations has dominated
physical sciences and engineering for the past several decades,
as they provide predictions for systems’ behavior.

The classical approach has been based on the fundamental
conservation laws, namely, the equations that describe mass,
momentum and energy conservation. If a system is hetero-
geneous, then the microscale conservation laws are averaged
over an ensemble of its possible realizations to derive the
macroscale equations. This is, however, valid only if there
is a well-defined representative elementary volume (REV)
or scale, i.e., the volume or length scale over which the
heterogeneous system can be considered as macroscopically
homogeneous, so that it is stationary over length scales larger
than the REV.

But, what if the REV does not exist, or is larger than the
size of the system, in which case the system is nonstation-
ary, i.e., the probability distribution functions (PDFs) of its
properties vary spatially from region to region? Examination
of many important systems indicates that nonstationarity is
more like the rule, rather than the exception. A good example
is natural porous media at large (regional) length scales. It is
known [9] that the physical properties of such media, such as
their permeability and elastic constants approximately follow
nonstationary stochastic functions [10]. Thus, the question
is, what are the governing equations for flow, transport, and
deformation processes in such media?

Other obvious examples are biological, and nano- and neu-
roscience systems for which first-principle calculations are
currently very difficult, if not impossible, to carry out, whereas
data for them are becoming abundant and, in many cases,
with exceptional quality. In addition, the tremendous increase
in the computational power is making it possible to emulate
the behavior of diverse and complex systems that are high-
dimensional, multiscale, and stochastic. The question, then,
is, how can we discover the governing equations that not only
honor and better explain the data, but also provide predictions
for the future, or over much larger length and timescales than
those over which the data were collected? It should be clear
that the ability to discover the governing equations based di-
rectly on the data is of paramount importance in many modern
scientific and engineering problems.

This perspective describes the emerging field of physics-
informed and data-driven (PIDD) modeling of multiscale,
multiphysics systems and phenomena and, in particular, the
approaches for discovering the governing equations for given
sets of data that represent the characteristics of complex phe-
nomenon in heterogeneous media. We describe the emerging
approaches, discuss their strengths and shortcomings, and
point out possible future directions in this rapidly developing
and highly significant research area.

II. THREE TYPES OF SYSTEMS

This perspective is not about all the various computational
approaches for modeling of heterogeneous media. Instead,
it tries to address two fundamental questions: (a) Given a
set of data for a complex phenomenon in a heterogeneous
system, what is the best PIDD approach for modeling the phe-
nomenon? (b) If the governing equations for the phenomenon
are unknown, then how can one discover them through a PIDD
method? In general, the success of any PIDD approach for
addressing the two questions depends on the amount of avail-
able data, on the one hand, and the structure and complexity
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of the system itself, on the other hand. Thus, let us divide such
systems of interests into three classes:

(i) Type I, which consists of those systems for which the
governing equations for the physical phenomena of interest,
together with data for the phenomena, are known, but simu-
lating them in the heterogeneous system over large length and
long timescales is very difficult, if not impossible. For exam-
ple, Darcy’s law together with the Stokes’ equation describe
slow flow of Newtonian fluids in microscopically disordered,
but macroscopically homogeneous porous media, while the
convective-diffusion equation describes transport of a solute
and mass transfer in the same media [9], but solving such
equations in large-scale heterogeneous porous media over
long timescales is very difficult. In this case, the goal is to
develop a PIDD approach to simulate fluid flow or transport
process at large length scales and long times.

(ii) Type II represents systems for which data for complex
phenomena in the systems are available, and the physics of
the phenomena of interest is also partially known. For exam-
ple, any fluid flow and transport problem in porous media is
governed by the equations that describe mass and momentum
conservation, but they contain coefficients, such as the per-
meability, diffusivity, and the dispersion coefficients, which
must be evaluated based on the available data. Another ex-
ample is when the available data are for a system that exhibits
multiscale features, in which case reconstructing the complete
governing equations is a very difficult task, often involving
prohibitive computations. In such a case one resorts to a
PIDD dimensionality reduction technique, i.e., discovering an
ordinary or partial differential equation with the lowest order
that describes the data.

(iii) Type III systems represent the opposite to Type I,
i.e., those for which large amounts of data for some complex
phenomena are available, but the governing equations for the
phenomena at the macroscale are not known. Thus, the goal
is developing a PIDD algorithm for discovering the governing
equations for the phenomena of interest, and understanding
and explaining the data. As we describe below, one approach
to address this problem may be based on dimensionality
reduction, but other computational methods have also been
emerging.

In the rest of this perspective we describe the PIDD ap-
proaches for each of the three classes of systems.

III. TYPE-I SYSTEMS

We begin our discussions by describing the emerging
PIDD approaches for Type-I systems.

A. Data assimilation

Data assimilation is a well-established concept that has
been utilized in the investigations of the atmospheric and
geological sciences to make concrete predictions for weather,
oceans, climate, and ecosystems, as well as geomedia. Since
data assimilation techniques improve forecasting, or help de-
veloping a more accurate model that provides us with deeper
understanding of such complex systems, they play an impor-
tant role in the studies of climate change and pollution of
environment, as well as geological systems.

Data assimilation combines observational data with the
dynamical principles, or the equations or models that govern
a system of interest, to obtain an estimate of its state that is
more accurate than what is obtained by using only the data or
the physical model alone. Thus, in essence, data assimilation
is suitable for the first type of systems described in Sec. III,
i.e., those for which some reasonable amounts of data are
available, and the physics of the phenomena of interest is also
known. Both the data and the models have errors, however. As
discussed by Zhang and Moore [11], the errors in the data are
of random, systematic, and representativeness types. Models
also produce errors because, often, they are simplified, or are
incomplete to begin with, to make the computations afford-
able, which in turn generates error. We do not intend to review
in detail data assimilation methods, as they are well known,
but only describe them briefly, since in the next subsection we
discuss how data assimilation methods can be combined with
a machine-learning algorithm to not only improve forecasting,
but also reduce the computational burden significantly.

There are at least four approaches to data assimilation,
which are the Cressman method, the optimal interpolation
method, three- or four-dimensional variational analysis, and
the Kalman filter. They all represent least-squares methods,
with the final estimate selected in such a way as to mini-
mize the uncertainty. In all four approaches, the set of data
representing a system’s state is denoted by x. The actual or
true state xt is different from the best possible representa-
tion xb, produced by physical models and referred to as the
background state. To analyze the system and the data, an
observation vector y is compared with the state vector.

In the Cressman method [12], which belongs to a class
of methods called objective analysis, one assumes that the
model state is univariate and is represented by values of the
variable at discrete grid points. Suppose that a previous best
estimate of the model state is an n-dimensional vector, xb =
[xb(1), · · · , xb(n)]T, while the observations are represented by
a n-dimensional vector, y = [y(1), · · · , y(n)]T. The Cressman
method provides an updated model, xu = [xu(1), · · · , xu(n)]T,
by the following equation:

xu( j) = xb( j) +
∑n

i=1 ωi j[y(i) − xb(i)]∑n
i=1 ωi j

, (1)

with ωi j = max[0, (R2 − d2
i j )/(R2 + d2

i j )] and di j = |i − j|.
Note that ωi j = 1, if i = j, and ωi j = 0, if di j > R. R, which
is a control parameter defined by the user, is referred to as the
influence parameter.

In the optimal interpolation method one combines the
observation vector y with p entries with the background vec-
tor xb wth n entries, with n � p. Because there are usually
fewer observations than variables in the background model,
the only correct way of making the comparison is to use
an observation operator h from model n-dimensional state
space to p-dimensional observation space, which is a p × n
matrix H such that h(xb) = (h1, · · · , hp)T = Hxb, with hi =∑n

j=1 Hi jxb( j).
Suppose that B with a size n × n and R with a size p × p

are, respectively, the covariance matrices of the background
error xb − xt , and observation error y − h(xb). The two errors
are assumed to be uncorrelated. The n-dimensional analysis,
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or updated, vector xu is defined by, xu = xb + w[y − h(xb)],
where w is an n × p matrix that is selected such that the
variance of xu − xt is minimized. It can be shown that, w =
BHT(HBHT + R)−1.

In the three-dimensional variational analysis, a cost func-
tion σ 2(x) is defined by

σ 2(x) = (x − xb)TB−1(x − xb) + [y − h(x)]TR−1[y − h(x)]

≡ σ 2
b (x) + σ 2

o (x), (2)

with σ 2
b and σ 2

o being the background and observation cost
functions. It has been proven that if we write x = xu = xb +
w[y − h(x)b], then the cost function attains its global mini-
mum.

Generalization of the method to four-dimensional varia-
tional assimilation is straightforward. The observations are
distributed among (N + 1) times in the interval of interest.
The cost function is defined by

σ 2(x) = (x − xb)TB−1(x − xb)

+
N∑

i=0

[yi − Hi(xi )]
TR−1

i [yi − Hi(xi )], (3)

and, therefore, the data assimilation problem with a globally
minimum variance is reduced to computing the vector xu such
that σ 2(x) attains its minimal at x = xu.

The Kalman filter [13], also known as linear quadratic esti-
mation, has been used to continuously update the parameters
of models of dynamical systems for assimilating data. The
filter is optimal only under the assumption that the system is
linear and the measurement and process noises follow Gaus-
sian distributions. The algorithm, a recursive one, consists of
two steps. In the prediction step, the filter generates estimates
of the current state variables x together with their uncertain-
ties. After the data for the next measurement, which may
contain some error, become available, step two commences
in which the estimates are updated using a weighted aver-
age, with more weight given to those with greater certainty
(smaller errors). The algorithm operates in real time, using
only the present input measurements, and the state calculated
previously and its uncertainty matrix. It fails, however, for
highly nonlinear systems. The failure motivated the develop-
ment of the extended Kalman filter by which the nonlinear
characteristics of the system’s dynamics are approximated
by a version of the system that is linearized around the last
state estimate. The extended version has been popular due to
its ability for handling nonlinear systems and non-Gaussian
noise.

Evensen [14] identified a closure problem associated with
the extended Kalman filter in the evolution equation for the
error covariance. The problem in this context is having more
unknowns than equations. The linearization used in the ex-
tended filter discards higher-order moments in the equation
that governs the evolution of the error covariance. But, be-
cause this kind of closure technique produces an unbounded
growth of error, the ensemble Kalman filter was introduced to
alleviate the closure problem, which is a Monte Carlo method
in which the model states and uncertainty are represented by
an ensemble of realizations of the system [15].

The ensemble Kalman filter is conceptually simple and
requires relatively low computation, which is why it has re-
ceived increasing attention in history matching problems and
continuous updating of models, as new data become available.
Since instead of computing the state covariance using a recur-
sive method, the method estimates the covariance matrix from
a number of realizations, its computational cost is low. The en-
semble Kalman filter has been shown to be very efficient and
robust for real-time updating in various fields, such as weather
forecasting [16], oceanography, and meteorology [17]. It was
also used in the development of dynamic models of large-scale
porous media [18] and optimizing gas production from large
landfills [19], in both of which dynamic data become available
over a period of time. The reader is referred to Ref. [19] for
complete details of the method and how it is implemented.

B. Data assimilation and machine learning

When the governing equations for a complex phenomenon,
which are in terms of ordinary or partial differential equations,
are known and are solved numerically to describe the dynamic
evolution of the phenomenon, uncertainties often remain and
are usually of one of two types: (a) the internal variability that
is driven by the sensitivity to the initial conditions, and (b)
the errors generated by the model or the governing equations.
The first type has to do with the amplification of the error in
the initial condition, and arises even if the model is complete
and “perfect.” It is mitigated by using data assimilation, briefly
described above. The second type has recently been addressed
by use of machine-learning techniques, which have been
emerging as an effective approach for addressing the issue
of models’ errors. To develop reduced-order models (ordinary
or partial differential equations) for complex phenomena, the
variables and scales are grouped into unresolved and resolved
categories, and machine-learning approaches are emerging as
being particularly suitable for addressing the errors caused by
the unresolved scales.

To see the need for addressing the errors due to unresolved
scales, consider, for example, the current climate models. The
resolution of the computational grids used in the current cli-
mate models is around 50–100 km horizontally, whereas many
of the atmosphere’s most important processes occur on scales
much smaller than such resolutions. Clouds, for example, can
be only a few hundred meters wide, but they still play a crucial
role in Earth’s climate since they transport heat and moisture.
Carrying out simulations with a resolution comparable with
the size of such clouds is impractical for the foreseeable
future. To address the issue, two approaches have been used to
combine data assimilation with a machine-learning approach.

(i) The first approach is based on learning physical approx-
imation, usually called subgrid parametrization, which are
typically computationally expensive. Alternatively, the same
can be achieved based on the differences between high- and
low-resolution simulations. For climate models, for example,
parametrizations have been heuristically developed over the
past several decades and tuned to observations; see, for ex-
ample, Hourdin et al. [20]. Due to the extreme complexity
of the system, however, significant inaccuracies still persist
in the parametrization, or physical approximations of, for
example, clouds in the climate models, particularly given the
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fact that clouds also interact with such important processes
as boundary-layer turbulence and radiation. Given the debate
over global warming and how much Earth will warm up as
a result of increased greenhouse gas concentrations, the fact
that such inaccuracies manifest themselves as model biases
only goes to show the need for accurate and computationally
affordable models.

(ii) In the second approach one attempts to emulate the
entire model by using observations, and spatially dense and
noise-free data. Various types of neural networks, including
convolutional [21,22], recurrent [23], residual [24], and echo
state networks [25] have been utilized. An echo state net-
work is a reservoir computer, i.e., a computational framework
based on the theory of recurrent neural network (RNN) that
maps input data onto higher-dimensional computational space
through the dynamics of a fixed and nonlinear system called
a reservoir, which uses a RNN with a hidden layer of low
connectivity. The connectivity and weights of hidden neurons
are fixed and randomly assigned. Dedicated neural network
architectures, combined with a data assimilation method are
used [26] to address problem of partial and/or noisy observa-
tions.

As discussed by Rasp et al. [27], cloud-resolving mod-
els do alleviate many of the issues related to parameterized
convection. Although such models also involve their own tun-
ing and parametrization, the advantages that they offer over
coarser models are very significant. But climate-resolving
models are also computationally too expensive, if one were
to simulate climate change over tens of years in real time.
Rapid increase in the computational power is making it possi-
ble, however, to carry out “short”-time numerical simulations,
with highly resolved computational grids, which cover up to a
few years. It is here that machine-learning approaches have
begun to play an important role in addressing the issue of
inaccuracies and grid resolution, because neural networks can
be trained by the results of the short-term simulations, and
then be used for forecasting over longer periods of time.

1. Example 1: Representing subgrid processes in climate models
using a machine-learning algorithm

A good example is the approach developed by Rasp et al.
[27] for representing subgrid processes in climate models.
They trained a deep neural network to represent all atmo-
spheric subgrid processes in a climate model. The training
was done based on learning from a multiscale climate model
that explicitly took convection into account. Then, instead
of using the traditional subgrid parametrizations, the trained
neural network was utilized in the global general circulation
model, which could interact with the resolved dynamics and
other important aspects of the core model. Their approach
is a physics-informed machine-learning (PIML) algorithm,
which are those in which, in addition to providing a signifi-
cant amount of data for training the network, some physical
constraints are also imposed on the algorithms. The constraint
in this case was the climate model. We will return in the PIML
algorithms in the next section, and describe them in detail.

The base model that Rasp et al. utilized [27] was ver-
sion 3.0 of the well-known superparameterized community

atmosphere model (SPCAM) [28] in an aquaplanet setup.
Assuming a realistic equator-to-pole temperature gradient, the
sea temperature was held fixed, with a full diurnal cycle (a
pattern that recurs every 24 h), but no seasonal variation. In
superparameterization, a 2D cloud-resolving model is embed-
ded in each grid column (which in Rasp et al. [27] was 84 km
wide) of the global circulation model, which resolves explic-
itly deep convective clouds and includes parameterizations for
small-scale turbulence and cloud microphysics. For the sake
of comparison, Rasp et al. [27] also carried out numerical
simulations using a traditional parametrization package, usu-
ally referred to as the controlled CAM (CTRLCAM) [27]. The
model and package exhibit many typical problems associated
with traditional subgrid cloud parametrizations, including a
double intertropical convergence zone, and too much driz-
zle, but also missing precipitation extremes, whereas SPCAM
contains the essential advantages of full three-dimensional
cloud-resolving models that address such issues with respect
to observations.

The neural network used [27] was a nine-layer deep, fully
connected net with 256 nodes in each layer and 5 × 105

parameters that were optimized to minimize the mean-squared
error between the network’s predictions and the training tar-
gets. The advantages of the deep neural network are that they
have lower training losses, and are more stable in the prog-
nostic simulations. Simulations were carried out for a period
of five years, after a one-year spin-up—the time taken for an
ocean model to reach a state of statistical equilibrium under
the applied forcing. In the prognostic global simulations, the
neural network parametrization interacted freely with the re-
solved dynamics, as well as with the surface flux scheme.

In Fig. 1(a) the results for the mean subgrig heating, com-
puted by SPCAM, CTRLCAM, and neural network-aided
model, referred to as NNCAM, are shown. The results com-
puted by the latter two models are in very good agreement,
whereas those determined by simulating the CTRLCAM
package produced a double peak, usually referred to as the
intertropical convergence zone in climate models. The cor-
responding mean temperatures are shown in Fig. 1(b), with
the same level of agreement between the results based on
the SPCAM and NNCAM. The results for the radiative
fluxes predicted by the NNCAM parametrization were also
in close agreement with those of SPCAM for most of the
globe, whereas the results produced by CTRLCAM had large
differences in the tropics and subtropics caused by its afore-
mentioned double-peak bias. Figure 2 presents the results for
precipitation distribution, indicating once again the inability
of CTRLCAM in producing the correct results, since the
computed distribution exhibits too much drizzle and absence
of extremes. However, the results computed by SPCAM and
NNCAM are in good agreement, including the tails of the
distribution.

In terms of speeding up the computations, NNCAM
parametrization was about 20 times faster than SPCAM’s.
Moreover, the neural network does not become more expen-
sive at prediction time, even if trained with higher-resolution
training data, implying that the approach can scale with ease to
neural networks trained with much more expensive 3D global
cloud-resolved simulations.
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FIG. 1. Longitudinal and five-year temporal averages. (a) Mean convective and radiative subgrid heating rates �Tphy. (b) Mean temperature
T of superparametrized community atmosphere model (SPCAM) and biases of neural network-aided community atmosphere model (NNCAM)
and controlled community atmosphere model (CTRLCAM) relative to SPCAM. The dashed black line denotes the approximate position of the
tropopause. (c) Mean short- (solar) and longwave (thermal) net fluxes at the top of the atmosphere and precipitation. The latitude axis is area
weighted. Based on Ref. [27].

2. Example 2: Inferring unresolved scale parametrization
of an ocean-atmosphere model

The second example that we briefly describe is the
work of Brajard et al. [29], who developed a two-step ap-
proach in which one trains model parametrization by using
a machine-learning algorithm and direct data. Their approach
is particularly suitable for cases in which the data are noisy,
or the observations are sparse. As the first step, a data assim-
ilation technique was used, which was the ensemble Kalman
filter (see above), to estimate the full state of the system based
on a truncated model. The unresolved part of the truncated
model was treated as model error in the data assimilation
system. In the second step, a neural network was used to
emulate the unresolved part, a predictor of model error given
the state of the system, after which the neural network-based

FIG. 2. Precipitation histogram of time-step (30 min) accumula-
tion. The bin width is 3.9 mm d−1. Solid lines show the simulations
for reference sea surface temperature (SST). Dashed lines denote
the simulation results for warming up by +4-K (see the original
reference [30]). The neural network in the +4-K case is NNCAM-ref
+4 K. Based on Ref. [27].

parametrization model was added to the physical core trun-
cated model to produce a hybrid model.

Brajard et al. [29] applied their approach to the modular
arbitrary-order-ocean-atmosphere model (MAOOAM), which
has three layers, two for the atmosphere and one for the
ocean, and is a reduced-order quasigeostrophic model that
is resolved in the spectral space. The model consists of Na

modes of the atmospheric barotropic streamfunction ψa,i and
the atmospheric temperature anomaly Ta,i, plus No modes of
the oceanic streamfunction ψo, j and the oceanic temperature
anomaly To, j , so that the total number of variables is Nx =
2(Na + No). The ocean variables are considered as slow, while
the atmospheric variables are viewed as the fast. Two versions
of MAOOAM were considered, namely, the true model with
dimension Na = 20 and No = 8 (Nx = 56), and a truncated
model with Na = 10 and No = 8 (Nx = 36). The latter model
does not contain 20 high-order atmospheric variables, ten
each for the streamfunction and the temperature anomaly and,
therefore, it does not resolve the atmosphere-ocean coupling
that is related to high-order atmospheric modes.

The true model was used to simulate and generate synthetic
data, part of which was used to train the neural network. It
was simulated for a period of approximately 62 years after
a spin-up of 30 000 years. The synthetic observations took
into account the fact that observations of the ocean are not at
the same scale as those of the atmosphere; thus, before being
assimilated, instantaneous ocean observations were averaged
over a 55 days rolling period centered at the analysis times.
The architecture of the neural network was a simple three
layers multilayer perceptrons.

To test the accuracy and predictive power, as well as
the long-term properties of the two versions of MAOOAM
and their hybrid with a neural network, three key variables,
ψo,2, T0,2 and ψa,1—the second components of ocean stream-
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function and temperature and the first component of the
atmospheric streamfunction—were computed, since they ac-
count, respectively, for 42, 51, and 18 percent of the variability
of the models. Simulations of Brajard et al. [29] indicated
that the predictions of the hybrid model, one consisting of
data assimilation and the neural network with noisy data,
matched very closely with the hybrid model with perfect data.
In contrast, the truncated model’s predictions differed from
the true ones by a factor of up to 3.

We note that since many reconstruction methods involve
computation of the derivatives of functions, which are difficult
and may also introduce error, developing derivative-free meth-
ods is highly desirable. In this context, although ensemble
Kalman-based systems have been successful, they cannot be
systematically refined to return or produce the correct solu-
tion, except in the setting of linear forward models. Pavliotis
et al. [31] proposed a reconstruction derivative-free approach
to Bayesian reconstruction—an approach in which the data,
the unknown parameter, and the noise in the observations
are all treated as random variables, and one extracts informa-
tion and assesses uncertainty based on the measured data, a
model of the measurement process, and a model of a priori
information—which may be used for posterior sampling or
for maximum a posteriori estimation. The method relies on a
fast and slow system of stochastic differential equations for
the local approximation of the gradients.

Wider applications of the data assimilation combined with
a machine-learning method do face challenges. For example,
the computational architecture, such as multi-core supercom-
puters and graphics processing units, and the data types used
for physics-based numerical simulation and for machine-
learning algorithms, can be very different. Moreover, training
and running hybrid models efficiently impose very heavy re-
quirements on both the hardware and software. These are, of
course, challanges for an emerging field.

C. Physics-informed machine-learning approaches

Although machine-learning algorithms and neural net-
works have been used for decades for predicting properties
of various types of systems [32], the problem that many such
algorithms suffer from is that they lack a rigorous, physics-
based foundation and rely on correlations and regression.
Thus, although they can fit very accurately a given set of data
to some functional forms, they do not often have predictive
power, particularly when they are tasked with making predic-
tions for systems for which no data were “shown” to them,
i.e., none or very little data for the properties to be predicted
were used in training the neural network.

To address such a severe shortcoming, the PIML al-
gorithms that were briefly mentioned above have been
developed. As mentioned above, in PIML algorithms one, in
addition to providing a significant amount of data for training
the network, imposes some physics-based constraints on the
algorithms. For example, if macroscopic properties of het-
erogeneous materials, such as their effective conductivity and
elastic moduli, are to be predicted by a neural network, then,
in addition to the data that are used for training it, one can also
impose the constraint that the predictions must satisfy rigor-
ous upper and lower bounds derived for the moduli [33,34].

Or, if one is to use a machine-learning algorithm to predict
fluid flow and transport of a Newtonian fluid in a porous
medium, then one can impose the constraint that the predic-
tions must satisfy the Navier-Stokes equation, or the Stokes’
equation if fluid flow is slow, and the convective-diffusion
equation if one wishes to predict the concentration profile of
a solute in the same flow field. Any other constraint that is
directly linked with the physics of the phenomenon may also
be imposed.

In general, three distinct approaches are being developed
that contribute to the accuracy and acceleration of the training
of a PIML algorithm that are as follows [4,5,7,35–37].

1. Multi-task learning

In this approach, the cost function to be minimized glob-
ally to develop the optimal machine-learning algorithm, and
the neural network structure include the aforementioned con-
straints. In other words, it is not enough for the traditional
cost function of the neural networks—the sum of the squares
of the differences between the predictions and the data—to be
globally minimum, but rather the cost function is penalized by
imposing the constraints on it. Thus, the approach is a multi-
task learning process, because not only the PIML algorithm
is trained by the data, but the training also includes some
physics-based constraints, such as a governing equation, up-
per and/or lower bounds to the properties of interest, and other
rigorous information and insights, so that the predictions will
also be based on, and satisfy, the constraints. The imposition
of the constraints represents a bias in the training process,
because they force the algorithm to be trained in a specific
direction. We present two concrete examples to illustrate the
method.

Example 1: Predicting fluid flow in a two-dimensional
polymeric membrane. In this problem, a high-resolution three-
dimensional (3D) image of a membrane of size 500 × 500 ×
1000 voxels was used [7], whose porosity, thickness, perme-
ability, and mean pore size were known. Seven hundred 2D
slices with a size 175 × 175 pixels were extracted from the 3D
image, and fluid flow in the slices was simulated by solving
the Navier-Stokes equations, with part of the results used in
the training the algorithm.

A physics-informed recurrent encoder-decoder (PIRED)
network was then developed. The network, a supervised one,
consisted of encoder and decoder, known as the U-Net and
residual U-Net (RU-Net), whose architecture is shown in
Fig. 3. The encoder had four blocks, with each block contain-
ing the standard convolutional and activation layers, as well
as pooling and batch normalization layers. The pooling layer
compressed the input images to their most important features
by eliminating the unnecessary ones, and stored them in the
latent layer that consisted of the activation, convolutional, and
batch normalization layers. The batch normalization layer not
only allowed the use of higher learning rates by reducing
internal covariate shift, but also acted as a regularizer for
reducing overfitting [38]. The mean 〈x〉 and variance V2(x)
of batches of data x were computed in the bath normalization
layer, and a new normalized variable y was defined by

y = γ
x − 〈x〉√
V2(x) + ε

+ β. (4)

041001-7



MUHAMMAD SAHIMI PHYSICAL REVIEW E 109, 041001 (2024)

FIG. 3. The architecture of the PIRED network, with Ei and
Di indicating the encoder and decoder blocks; σ 2 being the cost
function, and xi the input. The pressure P j and fluid velocity |v| j

are the output. Based on Ref. [7].

Here, γ and β are learnable parameter vectors that have the
same size as the input data, and ε is set at a typically small
value, say 10−5. During the training, the layer kept running
estimates of its computed mean and variance, and utilized
them for normalization during evaluation. The variance was
calculated by the biased estimator.

The decoder also had four blocks. Each block contained
the convolutional, activation and batch normalization layers,
as well as a transposed convolutional layer that was similar
to a deconvolutional layer in that, if, for example, the first
encoder had a size 128 × 64 × 64, i.e., 128 features with a
size 64 × 64, then, the transposed convolutioonal layer in the
decoder also had a similar size. The transposed convolutional
layer utilized the features extracted by the pooling layer to
reconstruct the output, which were the pressure and fluid
velocity fields, P and v, at various times. Because the latent
layer of the recurrent neural network consisted of residual
blocks, i.e., layers that, instead of having only one connection,
were connected to more distant previous layers, it improved
the performance of the PIRED, and sped up significantly the
overall network’s computations.

Assuming that the fluid is incompressible and Newtonian,
the mass conservation equation for a 2D medium is given by
∇ · v = ∂vx/∂x + ∂vy/∂y = 0, where both velocity compo-
nents vx and vy and the spatial coordinates x and y are made
dimensionless by a characteristic length L and characteristic
velocity v0. The (dimensionless) Navier-Stokes equation is
given by

Dv
Dt

= ∂v
∂t

+ v · ∇v = −∇P + Re−1∇2v, (5)

where Re = ρv0L/μ is the Reynolds number, and D/Dt =
∂/∂t + v · ∇ is the substantial derivative. Three residual func-
tions, ξ1 = ∇ · v, ξ2 = Dvx/Dt + ∂P/∂x − Re−1∇2vx, and
ξ3 = Dvy/Dt + ∂P/∂y − Re−1∇2vy, were defined and incor-
porated in the cost function σ 2, minimized by the PIRED
network, instead of naively minimizing the squared differ-
ences between the data and predicted values of v and P.

The idea of incorporating the governing equations in the
loss function was first proposed and implemented by Hamzeh-

pour and Sahimi [39,40], who studied development of optimal
models of large-scale porous media, given static and dynamic
data for their various properties. To converge to the actual,
numerically calculated values by solving the mass conserva-
tion and the Navier-Stokes equations, one must have, ξi = 0
for i = 1, 2, and 3. Thus, the PIRED network learned that the
mapping between the input and output must comply with the
requirement that, ξi = 0, which not only enriched its training,
but also accelerated convergence to the actual values of P and
v. The cost function σ 2 was, therefore, defined by

σ 2 = 1

n

{
n∑

i=1

[(Pi − P̂i )
2 + (|vi| − |v̂i|)2]

}

+
3∑

i=1

n∑
j=1

ξi(x j, y j, t j )
2, (6)

where n is the number of data points used in the train-
ing, and Pi and |vi| are the actual pressure and magnitude
of the fluid velocity at point (xi, yi ) at time ti, with the
superscript ˆ denoting the predictions by the PIRED network.
The P and v fields were computed at four distinct times. Note
that the amount of the data needed for computing P and v was
significantly smaller than what would be needed by standard
machine-learning methods.

A fluid was injected into the membrane at one side with
a constant speed v0, and extracted at the opposite side at
a fixed pressure. The other two boundaries were assumed
to be impermeable. Solving the mass conservation and the
Navier-Stokes equations in each 2D image took about 6 CPU
minutes. The computations for training the PIRED network
on an Nvidia Tesla V100 graphics processing unit (GPU) took
about 2 GPU hours. Then, the tests for accuracy took less than
a second. Part of the results were used in the training, and
the rest in testing and comparing with the predictions of the
PIRED network.

The reverse Kullback-Leibler divergence (relative entropy)
[41] was used to minimize the cost function σ 2. If p(x) is the
true probability distribution of the input and output data, and
q(x) is an approximation to p(x), then the reverse Kullback-
Leibler divergence from q(x) to p(x) is a measure of the
difference between the two. The aim is, of course, to ensure
that q(x) represents p(x) accurately enough that it minimizes
the reverse Kullback-Leibler divergence DKL(q‖p), defined
by

DKL[q(x)‖p(x)] =
∑
x∈S

q(x) log

[
q(x)

p(x)

]
, (7)

where S is the space in which p(x) and q(x) are defined.
DKL = 0, if q(x) matches p(x) perfectly and, in general, it may
be rewritten as

DKL[q‖p] = Ex∼q[− log p(x)] − H[q(x)], (8)

where H[q(x)] = Ex∼q[− log q(x)] is the entropy of q(x),
with E denoting the expected value operator and, thus,
Ex∼q[− log p(x)] being the cross-entropy between q and p.
Optimization of DKL with respect to q is defined by

arg min DKL[q‖p] = arg minEx∼q[− log p(x)] − H[q(x)]

= arg minEx∼q[log p(x)] + H[q(x)]. (9)
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FIG. 4. Computational efficiency and accuracy of the PIRED.
Comparison of the cost function σ 2 for the (a) training and (b) testing
data for pressure p and fluid velocity v. Based on Ref. [7].

Thus, according to Eq. (9), one samples data points from q(x)
and does so such that they have the maximum probability of
belonging to p(x). The entropy term of Eq. (9) “encourages”
q(x) to be as broad as possible. The autoencoder tries to
identify a distribution q(x) that best approximates p(x).

The trained PIRED network was used to reconstruct the ve-
locity and pressure field in new (unused in training) 2D images
using only a small number of images. Figures 4(a) and 4(b)
present, respectively, the change in the cost function σ 2 for the
training and testing datasets of the network. σ 2 decreases for
both P and v during both the training and testing, indicating
convergence toward the true solutions for both fields.

An effective permeability K was defined by, K =
μLq/(A�P), where q, A and �P are, respectively, the steady-
state volume flow rate, and the surface area perpendicular to
the macroscopic pressure drop �P. K was computed for 300
testing slices, and was predicted by the PIRED network as
well. The comparison is shown in Fig. 5(a). But a most strin-
gent test of the PIRED network is if it can predict accurately
the permeability (and other properties) of a completely dif-
ferent porous medium without using any data associated with
it. Thus, the image of a Fontainebleau sandstone [42] with a
porosity of 0.14 was used. Since the sandstone’s morphology
is completely different from the polymeric membrane’s, a
slightly larger number of 2D slices from the membrane (not
the sandstone) was utilized to better train the PIRED network.
Figure 5(b) compares the effective permeabilities of one hun-
dred 2D slices of the sandstone with the predictions of the
PIRED network.

Example 2: Predicting arterial blood pressure in cardio-
vascular flows. Predictive modeling of cardiovascular flows
and aspire is a valuable tool for monitoring, diagnosis, and

FIG. 5. Comparison of the actual permeabilities K and the pre-
dictions by the PIRED network for (a) 300 2D images of the
membrane, and (b) for 100 images of the Fontainebleau sandstone.
K is normalized according to (K − Kmin )/(Kmax − Kmin ). Based on
Ref. [7].

surgical planning that can be utilized for large patient-specific
topologies of systemic arterial networks, to obtain detailed
predictions for, for example, wall shear stress and pulse wave
propagation. The models that were developed in the past
relied heavily on preprocessing and calibration procedures
that require intensive computations, hence hampering their
clinical applicability. Kissas et al. [43] developed a machine-
learning approach, a physics-informed neural network (PINN)
for seamless synthesis of noninvasive in-vivo measurements
and computational fluid dynamics. In many ways, their PINN
is similar to the PIRED described above, except that in Kam-
rava et al.’s work [7] the input data included a digitized image
of the system.

Making a few assumptions, Kissas et al. [43] modeled
pulse wave propagation in arterial networks by a reduced
order (simplified) 1D model based on mass conservation and
momentum equations,

∂A

∂t
+ ∂ (Avx )

∂x
= 0, (10)

∂vx

∂t
+ αvx

∂vx

∂x
+

(vx

A

) ∂

∂x
[(α − 1)Avx]

+ 1

ρ

∂P

∂x
− KR

vx

A
= 0. (11)

Here, A(x, t ), vx(x, t ), and P(x, t ) denote, respectively, the
cross-sectional area, blood’s velocity, and pressure at time t ,
with x being the direction of blood flow; α is a momentum flux
correction factor; ρ is the blood’s density, and KR is a friction
parameter that depends on the velocity profile (flow regime).
However, since the artery is an elastic deformable material,
the constraint imposed by mass and momentum conservation
is not sufficient for determining the pressure, since only the
pressure gradient appears in the momentum equation. Assum-
ing, however, that the artery is a linearly elastic material, the
constitutive law for displacement of its walls, given by

P = Pe + β(
√

A − √
A0), (12)

relates directly the arterial wall displacement to the absolute
pressure in each cross section. Here, β is a coefficient re-
lated to the Young’s modulus and the Poisson’s ratio of the
artery; A0 = A(x, 0), and Pe is the external pressure. Thus,
as another constraint, the constitutive relation was coupled
to the mass and momentum conservation laws, implying that
the correlations between them can be exploited through the
PINN to determine the absolute pressure from velocity and
cross-sectional area measurements. The system that Kissas
et al. [43] modeled and studied, a Y -shaped bifurcation, is
shown in Fig. 6. Three-dimensional geometries recovered
from magnetic resonance imaging data and the corresponding
centerlines (shown in Fig. 6) were extracted by using the vas-
cular modeling toolkit library. The governing equations were
then discretized and solved numerically by discontinuous
Galerkin method, a numerical scheme that combines features
of the finite-element and the finite-volume frameworks.

Thus, similar to the PIRED example described above, three
residual functions, ξi with i = 1, 2, and 3, were defined by
the left-hand sides of Eqs. (10)–(12). Several factors con-
tribute to the overall cost, or loss, function, σ 2, which should
be minimized globally. They are, (a) the usual sum of the
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FIG. 6. Schematic representation of a Y -shaped bifurcating arte-
rial system and its 1D centerlines used in the reduced model. Based
on Ref. [43].

squared differences between the computed blood velocity and
the arterial cross section and the corresponding data at every
computational point (x, t ). Blood velocity data are typically
obtained using Doppler ultrasound or 4D flow MRI, while the
area data are gleaned from 2D Cine images recovered by 4D
flow MRI. (b) The sum of the squared residual functions ξi,
defined above, for a sample of the collocation points used
in the numerical simulation of mass conservation and mo-
mentum equation. (c) Contributions by the junctions at the
bifurcation points shown in Fig. 6. We refer to the channel
on the left-hand side of Fig. 6 as artery 1, and the two on
the right that bifurcate from it as numbers 2 and 3. Con-
servation of mass requires that, A1v1 − (A2v2 + A3v3) = 0,
where, for convecience, we deleted the subscript x of the
fluid velocities. Moreover, conservation of momentum implies
that p1 + 1

2ρv2
1 − (p2 + 1

2ρv2
2 ) = 0 and p1 + 1

2ρV 2
1 − (p3 +

1
2ρv2

3 ) = 0. Thus, three additional residual functions, ξi with
i = 4, 5, and 6 were defined by the left-hand sides of the
above equations, and the overall cost function σ 2 was the sum
of the three types of contributions.

In many problems of the type we discuss here, there maybe
an additional complexity: The order of magnitude of fluid
velocity, cross-sectional area, and pressure are significantly
different. For example, one has, P ∼ 106 Pa, A ∼ 10−5 m2,
and vx ∼ 10 m/s. Such large differences give rise to a sys-

tematic numerical problem during the training of the PINN,
since it affects severely the magnitude of the back-propagated
gradients that adjust the neural network parameters during
training. To address this issue, Kissas et al. [43] made the
governing equations dimensionless by defining a characteris-
tic length and a characteristic velocity, so that they all take on
values that are O(1). They then normalized the input to have
zero mean and unit variance, since as Glorot and Bengio [44]
demonstrated, doing so mitigates the pathology of vanishing
gradients in deep neural networks. The activation function that
Kissas et al. [43] utilized was a hyperbolic tangent function,
tanh x.

Three neural networks, one for each artery in the Y -shape
system, were used. Each of the networks had seven hidden
layers with one hundred neurons per layer, followed by hyper-
bolic tangent activation function. Two thousand collocation
points were used in the discontinuous Galerkin method for
solving the discretized equations. Other details of the ap-
proach and the model are given in the original reference.

Figure 7 presents the results in Y -shaped bifurcation.
Figure 7(a) compares the predicted velocity wave, computed
by discontinuous Galerkin solution, with the predictions of
the PINN with and without nondimensionalization, while
Fig. 7(b) does the same for the pressure. They were computed
at the middle point of artery 1. The agreement is excellent.
The same type of approach was utilized by Zhu et al. [45]
for surrogate modeling and quantifying uncertainty, and by
Geneva and Zabaras [46] and Wu et al. [47] for modeling of
nonlinear dynamical systems.

The works of Karmrava et al. [7] and Kissas et al. [43],
as well as those of others [45–47], are representative of the
PIML approach. The general approach is not restricted to
problems described above involving numerical simulation of
flow and transport equations. As mentioned above, Hamzeh-
pour and Sahimi [39,40] were the first to incorporate the
governing equations in the loss function to develop an optimal
model of a large-scale porous medium. Part of the dynamic
data that they used to construct the model and minimizing
the loss function were seismic records, for which they in-
corporated the governing equation for wave propagation. In
addition, suppose, for example, that in the PIRED example,
fluid flow is not isothermal. Thus, one must incorporate the
energy equation governing the temperature T of the sys-
tem, DT/Dt = ∂T/∂t + (v · ∇)T = αT ∇2T , where αT is the
thermal diffusivity. Clearly, then, a fourth residual function,

FIG. 7. Flow through a Y -shaped bifurcation. (a) Comparison of the computed velocity, u(t ) = vx (t ) wave, obtained by the discontinuous
Galerkin (DG) method with those predicted by the PINN with and without nondimensionalization at the middle point of channel 1 (the left
channel in Fig. 6). (b) Same as in panel (a) but for the pressure wave. Based on Ref. [43].
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ξ4 = DT/Dt − αT ∇2T , should be incorporated in the loss
functions. Similarly, if one is interested in, for example, mass
transfer in a binary fluid mixture of A and B in the mem-
brane (which is when a membrane is used for separation of
fluid mixtures), then, given that CA, the concentration of A,
satisfies the mass continuity equation for a binary mixture,
namely, DCA/Dt = ∂CA/∂t + v · ∇CA = DAB∇2CA (reaction
terms may be added to the right-hand side, if there are chem-
ical reactions), where DAB is the mass diffusivity of A in a
mixture of A and B, and v · ∇CA represents a drift (convective)
term, then, another residual function, ξ5 = DCA/Dt − DAB∇2

may be defined and incorporated in the loss function. If the
mixture contains more than two components, then one defines
other residual functions based on the Maxwell-Stefan equa-
tions for a multicomponent mixture.

Therefore, more generally, the loss function (6) should be
written as

σ 2 = 1

n

{
n∑

i=1

[(Pi − P̂i )
2]

}
+

m∑
i=1

n∑
j=1

ξi(x j, t j )
2,

where Pi is the data point for property P at point i, P̂i is the
corresponding computed property computed by the PINN, and
m is the number of additional constraints ξ j , such as the gov-
erning equations, imposed on the neural network algorithm.
The advantage that the PIRED approach offers is that, if the
input data include images, its encoder compresses the image
to its essential features, hence saving a considerable amount
of computation time.

Since such approaches involve numerical simulation of
the governing equations imposed on the cost function of the
neural networks, and in particular convolutional ones, an im-
portant question to address is the correct implementation of
the boundary conditions in the learning process, which is par-
ticularly important in the PINN approach. As is well-known,
there are three types of boundary conditions (BCs), namely,
the Dirichlet BC—specifying the value of the unknown at the
boundary—Neumann BC—specifying the flux)—and Robin
BC (a mix of the first two). To address the problem, Sukumar
and Srivastava [48] introduced geometry-aware trial functions
to improve the training for partial differential equations by
using concepts from constructive solid geometry, from which
they utilized the so-called real functions, dubbed R-functions,
which are used for representing and controlling the shape of
a system, and generalized barycentric coordinates—a coor-
dinate system in which the location of a point is specified
by reference to a simplex, which is a triangle for points in
2D and a tetrahedron for points in 3D space—to construct
an approximate distance function ζ (x) to the boundary of the
domain in Rd . To impose the homogeneous Dirichlet BC, the
trial function was ζ (x) multiplied by the PINN approximation.
Sukumar and Srivastava [48] used transfinite interpolation
(a method for constructing functions over a planar domain
such that they match a given function on the boundary) to
generalize the trial function to a priori satisfy inhomogeneous
Dirichlet, Neumann, and Robin BCs. This eliminated model-
ing error due to satisfying the BCs in a collocation method
and, therefore, simplifies the training of the neural network.

2. Learning aided by physical observations

The training of any machine-learning algorithm can be
improved by feeding it, as the input, observational data that
convey the physics of the system under study. As mentioned
in the Introduction, vast amounts of data are being collected
for various complex phenomena. Thus, if such data, which
provide insights into the phenomena, are used as the input
to training of a machine-learning algorithm, they will bias
it toward satisfying the observational data, implying that the
final machine-learning tool should be capable enough for
providing accurate predictions for those aspects of the phe-
nomenon for which no data were fed to the algorithm as the
input; see, for example, Kashefi et al. [49] who developed a
point-cloud deep-learning algorithm for predicting fluid flow
in disordered media. A point cloud is a set of data points that is
typically sparse, irregular, orderless, and continuous, encodes
information in 3D structures, and is in per-point features that
are invariant to scale, rigid transformation, and permutation.
Due to such characteristics, feature extractions from a point
cloud is difficult for many deep-learning models.

3. Embedding prior knowledge and inductive biases

One may design neural networks in which prior knowl-
edge and inductive biases are embedded, to facilitate making
predictions for the phenomena of interest. There are several
procedures that can be used for this purpose.

Convolutional neural networks. They were first proposed
by LeCun et al. [50], and are considered to be the best
known examples of such approaches. They were originally
designed such that the invariance along groups of symmetries
and patterns found in nature were honored. It has also been
possible to design more general convolutional neural networks
that honor such symmetry groups as rotations and reflections,
hence leading to the development of architectures that depend
only on the intrinsic geometry, which have been shown to be
powerful tools for analyzing medical images [51] and climate
pattern segmentation [52].

Kernel methods. Such methods [53], which minimize the
cost function over a space of functions, rather than over a
set of parameters as in the old neural network, represent a
class distinct approaches that fall into the category of algo-
rithms that improve the performance of the PIML approaches.
They were motivated [53–55] by the physics of the systems
under study. Moreover, many approaches that utilize neural
networks have close asymptotic links to the kernel methods.
For example, Wang et al. [56,57] showed that the training
dynamics of the PIML algorithms can be understood as a
kernel regression method in which the width of the network
increases without bound. In fact, neural network-based meth-
ods may be rigorously interpreted as kernel methods in which
the underlying warping kernel—a special type of kernels that
were initially introduced [58] to model nonstationary spatial
structures—is also learned from data.

Graph neural networks. In many machine-learning pro-
cesses, the training process must deal with data that are
presented as graphs that contain relations and correlations
between the information. Examples include learning molec-
ular fingerprints, protein interface, classifying diseases, and
reasoning on extracted structures, such as the dependency
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trees of sentences. Graph neural networks and their vari-
ants, such as graph convolutional networks, graph attention
networks, and graph recurrent networks, have been pro-
posed for such problems, and have proven to be powerful
tools for many deep-learning tasks. An excellent review was
given by Zhou et al. [59]; see also Refs. [7,36,37] for their
applications.

It should be clear that one may combine any of the above
three approaches to gain better performance of machine-
learning algorithms. In addition, as the PIRED example
described above demonstrated, when one deals with prob-
lems involving fluid flow, transport, and reaction processes
in heterogeneous media, one may introduce dimensiolness
groups, such as the Reynolds, Froude, and Prandtl numbers
that not only contain information about and insights into the
physics of the phenomena, but may also help one to upscale
the results obtained by the PIML algorithm to larger length
and timescales.

The field of PIML algorithms has been rapidly advanc-
ing. Many applications have been developed, particularly for
problems for which either simulations based on advanced
classical numerical simulations pose extreme difficulty, or
they the problems so ill-posed that render the classical meth-
ods useless. They include, in addition to those referenced
above, PIML for 4D flow magnetic resonance imaging data
[43], predicting turbulent transport on the edge of magnetic
confinement fusion devices—a problem that has been studied
for several decades [60]—and a fermionic neural network
(dubbed FermiNet) for ab initio computation of the solution
of many-electron Schrödinger equation [61–63], which is a
hybrid approach for informing the neural network about the
physics of the problem. Since the wavefunctions must be
parameterized, a special architecture was designed for Fer-
miNN that followed the Fermi-Dirac statistics, i.e., it was
anti-symmetric under the exchange of input electron states
and the boundary conditions. As such, the parametrization
was a physics-informed process. FermiNet was also trained
by a physics-informed approach in that, the cost function was
set as a variational form of the value of the energy expectation,
with the gradient estimated by a Monte Carlo method. Several
papers have explored application of the PIML to geoscience
[4,7,35–37,63–67], as well as to large-scale molecular dy-
namics simulations [68] in which a neural network is used to
represent the potential energy surfaces, and preprocessing is
used to preserve the translational, rotational and permutational
symmetry of the molecular system. The algorithm can be im-
proved by using deep potential molecular dynamics, DeePMD
[69], which makes it possible to carry out molecular dynamics
simulations with one hundred million atoms for more than one
nanosecond long [67], as well as simulations whose accuracy
was comparable with ab initio calculations with one million
atoms [70,71].

IV. TYPE-II SYSTEMS

Recall that in this type of systems data for a complex
phenomenon in a heterogeneous system are available, and the
physics of the phenomena of interest is also at least partially
known. This type of systems may be divided into two groups.
(a) The governing equations contain coefficients that must be

evaluated based on the available data, because such coeffi-
cients depend on the morphology of the system. For example,
any fluid flow and transport phenomenon in heterogeneous
porous media is governed by the equations that describe mass
and momentum conservation, but they contain flow and trans-
port coefficients, such as the permeability, diffusivity, and the
dispersion coefficients, which must be evaluated based on
the available data. (b) The available data are for a complex
phenomenon that exhibits multiscale features, in which case
reconstructing the complete governing equations based on the
data is a very difficult task that involves prohibitive computa-
tions. In such a case one resorts to a PIDD dimensionality
reduction technique, i.e., discovering an ordinary or partial
differential equation with the lowest order that describes the
data.

A. Machine-learning approach

One way of determining the coefficients that appear in the
governing equations for a complex phenomenon in a heteroge-
neous system is using a machine-learning algorithm to link the
structure of the system to the coefficients. THe same approach
can also be used to discover some terms of the governing
equations that are required for solving the governing equa-
tions.

1. Example: Linking the permeability of a porous
medium to its morphology

Slow flow through a porous medium is governed by
the Stokes’ equation, together with Darcy’s law, v =
−(Ke/μ)∇P, that relates the fluid’s velocity v to the pressure
gradient ∇P, where Ke is the effective permeability of the
pore space, and μ is the fluid’s viscosity. A long-standing
problem has been the relationship between Ke and the mor-
phology of porous media [9]. Various approaches have been
proposed to address the problem [9,72], based on various
approximations.

Kamrava et al. [35] developed a network that utilized a
DL algorithm to link the morphology of porous media to
their effective permeability. The network was neither a purely
traditional artificial neural network, nor was it a purely DL
algorithm, but rather a hybrid of both. Ten 3D x-ray images
of actual sandstones were utilized as the input data. By com-
puting the porosity of the samples of various sizes, images of
size 2003 voxels were selected as the representative elemen-
tary volume of the core. The input data were preprocessed
to prepare them for the convolutional neural network (CNN),
which was transforming the initial log-normal distribution of
the permeabilities to a Gaussian distribution, since a CNN can
better connect the identified features, when the distribution
is Gaussian. To carry out the transformation, the PDF of
the permeability data was constructed based on which the
cumulative density function (CDF) was computed. The target
PDF, namely, the Gaussian distribution was also constructed
using the mean and variance of the data, after which the
corresponding CDF was determined. Having the two CDFs,
the new PDF and, consequently, the new permeability values
were calculated. To do so, for each selected permeability from
the original CDF graph its equivalent permeability from the
target CDF was determined, i.e., the Gaussian distribution.

041001-12



PHYSICS-INFORMED AND DATA-DRIVEN DISCOVERY OF … PHYSICAL REVIEW E 109, 041001 (2024)

Since the ten samples were not nearly enough to provide
the required variability in the types of morphology that one
encounters in sandstones, the number of 3D images was in-
creased using two methods. One was the Boolean method by
which, given the statistical distribution of the sizes of solid
objects, one produces many realizations of their packing. One
hundred of such realizations of each type of the packing were
generated that covered a wide range of pore-size distribution.
In the second approach the original ten 3D x-ray images were
used to generate 500 stochastic realizations of them, 50 for
each of them, using the cross-correlation based simulation
[73–77]. All the realizations complied with the porosity distri-
bution of the original 3D image. Thus, the DL algorithm used
an enriched database that contained realizations of pore space
with diverse morphologies.

The algorithm that was used was a supervised learning,
i.e., all the training inputs had their own label, which was
their permeability. The network had the usual convolutional,
activation, pooling, and fully connected layers. The overall
procedure was as follows:

(i) The number of filters and their sizes, the architecture of
the network, and other parameters were set.

(ii) The weights, biases, and filter matrices were initialized,
with the first two initialized by selecting their values from a
Gaussian distribitioon with zero mean and a unit variance.

(iii) The images of porous media were supplied to the
network. The input was processed by various layers of the
CNN, after which it produced its first estimate of the output,
the permeabilities.

(iv) The cost function was computed. If it was larger than a
preset threshold, then back-propagation was used to calculate
the gradients of the error with respect to all the variables,
and stochastic gradient descent was utilized to update all the
weights and filter values and other parameter to minimize the
error.

(v) Steps (iii) and (iv) were repeated for all the training data
until the error reached a plateau and did not change any more.

Kamrava et al. [35] demonstrated that the network
successfully developed accurate correlations between the
morphology of porous media and their effective permeabil-
ity. The high accuracy of the network was demonstrated by
its predictions for the permeability of a variety of porous
media.

A similar deep-learning algorithm was used to link the
morphology of porous media to the dispersion coefficient of a
solute transported by slow flow of a solvent through the same
pore space [64]. Others used similar ideas to link the effective
diffusivity [65] and other propertties [78,79] to the morphol-
ogy of porous media. The same type of approaches have been
used for developing a mapping between the hydraulic con-
ductivity field of a porous formation and the macrodispersion
coefficient in a large-scaler porous medium represented by a
2D Gaussian field [66].

B. Data-driven approach for reconstructing
Kramers-Moyal expansion

The approach has been developed for systems for which the
data are in the form of nonstationary time series X (t ), or spa-
tially varying series X (x). Characterizing such nonstationary

time and spatial series has been a problem of fundamental in-
terest for a long time, as they are encountered in a wide variety
of problems, ranging from economic activity [80], to seismic
time series [81], heartbeat dynamics [82,83], and large-scale
porous media [9], and their analysis has a long and rich tra-
dition in the field of nonlinear dynamics [84–86]. Much of
the effort has been focused on addressing the question of how
to extract a deterministic dynamical system of equations by
an accurate analysis of experimental data since, if successful,
the resulting equations will yield all the important information
about and insights into the system’s dynamical properties.

The standard approach has been based on treating the
fluctuations in the data as stochastic variables that have been
superimposed additively on a trajectory or time series that the
deterministic dynamical system generates. The approach was
originally motivated by the efforts for gaining deeper under-
standing of turbulent flows [87,88], and has been evolving
ever since. Although it has already found many applications
[89], it is still under further development (see below). More
importantly, the approach has demonstrated the necessity of
treating the fluctuations in the data as dynamical variables that
interfere with the deterministic framework.

In this approach, given a nonstationary series X (t ), one
constructs a stationary process y(t ), which can be done by at
least one of two methods. (a) The algebraic increments, y(t ) =
X (t + 1) − X (t ), are constructed. The best-known example of
such series is the fractional Brownian motion (FBM) [90] with
a power spectrum, S(ω) ∝ 1/ω2H+1, where H is the Hurst
exponent. It is well-known that the FBM’s increments, with
S(ω) ∝ 1/ω2H−1, called fractional Gaussian noise [90], are
stationary. Moreover, when H = 1/2, the increments are un-
correlated, whereas for H = −1/2 X (t ) becomes random. (b)
Let Z = ln X (t ). Then, one constructs the returns y(t ) of X (t )
defined by, y(t ) = Z (t + 1) − Z (t ) = ln[X (t + 1)/X (t )], so
that y(t ) is the logarithmic increments series. It is straightfor-
ward to show that both approaches produce stationary series
by studying their various moments over windows of different
sizes in the series. One then analyzes y(t ) based on the appli-
cation of Markov processes and derives a governing equation
for the series based on a Langevin equation, the details of
which are as follows.

One first checks whether y(t ) does follow a Markov
chain [91,92]. If so, then its Markov timescale tM—the min-
imum time interval over which y(t ) can be approximated
by a Markov process—is estimated (see below). In general,
to characterize the statistical properties of any series y(t ),
one must evaluate the joint probability distribution function
Pn(y1, t1; · · · ; yn, tn) for the number of the data points, n. If,
however, y(t ) is a Markov process, then the n-point joint
probability distribution function Pn is given by

Pn(y1, t1; · · · ; yn, tn) =
n−1∏
i=1

P(yi+1, ti+1|yi, ti ),

where P(yi+1, ti+1|yi, ti ) is the conditional probability. More-
over, satisfying the Chapman-Kolmogorov equation [93],

P(y2, t2|y1, t1) =
∫

dy3 P(y2, t2|y3, t3)P(y3, t3|y1, t1), (13)
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is a necessary condition for y(t ) to be a Markov process for
any t3 ∈ (t1, t2). (The opposite is not necessarily true, namely,
if a stochastic process satisfies the Chapman-Kolmogorov
equation, it is not necessarily Markov). Therefore, one
checks the validity of the Chapman-Kolmogorov equation
for various values of y1 by comparing the directly evaluated
P(y2, t2|y1, t1) with those computed according to right-hand
side of Eq. (13).

The Markov timescale tM may be evaluated by the least-
squares method. Since for a Markov process one has

P(y3, t3|y2, t2; y1, t1) = P(y3, t3|y2, t2), (14)

one compares P(y3, t3; y2, t2; y1, t1) =
P(y3, t3|y2, t2; y1, t1)P(y2, t2; y1, t1) with that obtained based
on the assumption of y(t ) being a Markov process. Using the
properties of Markov processes and substituting in Eq. (14)
yield

PM(y3, t3; y2, t2; y1, t1) = P(y3, t3|y2, t2)P(y2, t2; y1, t1). (15)

One then computes the three-point joint probability distribu-
tion function through Eq. (14) and compares the result with
that obtained through Eq. (15). Doing so entails, first, deter-
mining the quality of the fit by computing the least-squares
fitting quantity χ2, defined by

χ2 =
∫

dy3 dy2 dy1

[
P(y3, t3; y2, t2; y1, t1)

− 1

σ 2
3 j + σ 2

M

PM(y3, t3; y2, t2; y1, t1)

]2

, (16)

where σ 2
3 j and σ 2

M are, respectively, the variances of
P(y3, t3; y2, t2; y1, t1) and PM(y3, t3; y2, t2; y1, t1). Then, tM is
estimated by the likelihood statistical analysis. In the absence
of a prior constraint, the probability of the set of three-point
joint probability distribution functions is given by

P(t3 − t1) = �y3,y2,y1

1√
2π

(
σ 2

3 j + σ 2
M

) exp

{
[P(y3, t3; y2, t2; y1, t1) − PM(y3, t3; y2, t2; y1, t1)]2

2
(
σ 2

3 j + σ 2
M

)
}

, (17)

which must be normalized. Evidently, then, when for a set
of the parameters χ2

ν = χ2/N is minimum (with N being the
degree of freedom), the probability is maximum. Thus, if χ2

ν

is plotted versus t3 − t2, then tM will be the value of t3 − t1 at
which χ2

ν is minimum [94].
Knowledge of P(y2, t2|y1, t1) for a Markov process y(t ) is

sufficient for generating the entire statistics of y(t ), which is
encoded in the n-point probability distribution function that
satisfies a master equation, which itself is reformulated by a
Kramers-Moyal expansion [95],

∂P(y, t |y0, t0)

∂t
=

∑
k

(−1)k ∂k

∂yk
[D(k)(y, t )P(y, t |y0, t0)].

(18)

The Kramers-Moyal coefficients D(k)(y, t ) are computed by

D(k)(y, t ) = 1

k!
lim

�t→0
M (k),

M (k) = 1

�t

∫
dy′(y′ − y)kP(y′, t + �t |y, t ). (19)

For a general stochastic process, all the coefficients can be
nonzero. If, however, D(4) vanishes or is small compared to
the first two coefficients [93], then truncation of the Kramers-
Moyal expansion after the second term is meaningful in the
statistical sense, in which case the expansion is reduced to
a Fokker-Planck equation that, in turn, according to the Ito
calculus [93,94] is equivalent to a Langevin equation, given
by

dy(t )

dt
= D(1)(y) +

√
D(2)(y) η(t ), (20)

where η(t ) is a random “force” with zero mean and Gaussian
statistics, δ-correlated in t , i.e., 〈η(t )η(t ′)〉 = 2δ(t − t ′).

The Langevin equation makes it possible to reconstruct a
time series for y(t ) similar, in statistical sense, to the original
one, and can be used to make predictions for the future, i.e.,
given the state of the system at time t , one determines the
probability of finding the system in a particular state at time
t + τ by writing X (t + 1) in terms of X (t ) by

X (t + 1) = X (t ) exp{σy[y(t ) + ȳ]}, (21)

where ȳ and σy are the mean and standard deviations of y(t ).
To use Eq. (21) to predict X (t + 1), one needs [X (t ), y(t )].
Thus, three consecutive points in the series y(t ) are selected
and a search is carried out for three consecutive points in
the reconstructed y(t ) with the smallest difference with the
selected points. Wherever this happens is taken to be the time
t which fixes [X (t ), y(t )].

1. Example 1: Fluctuations in human heartbeats

It has been shown that various stages of sleep may be
characterized by extended correlations of heart rates, sepa-
rated by a large number of beats. The method described above
based on the Markov timescale tM and the drift and diffu-
sion coefficients, D(1) and D(2), provides crucial insights into
the difference between the interbeat fluctuations of healthy
subjects and patients with congestive heart failure. Figures 8
and 9 present [92,96] the drift and diffusion coefficients for
the two groups of patients (for details of the data see the
original references). In particular, the diffusion coeffcients of
the healthy subjects and those with congestive heart failure are
completely different. The important point to emphasize is that,
the approach can detect such differences even at the earliest
stages of development of congestive heart failure [92,93],
when no other analysis can.

Despite its success, the approach is still under develop-
ment. According to the Pawula theorem [97], only three
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FIG. 8. The drift coefficient D(1)(x) for two classes of patients,
the healthy ones and those with congestive heart failure (CHF).

outcomes are possible in a Kramers-Moyal equation of order
k: (a) The expansion is truncated at k = 1, implying that the
process is deterministic. (b) The expansion is truncated at
k = 2, which results in the Fokker-Planck equation describing
a diffusion process, and (c) the expansion must, in principle,
contain all the terms, k → ∞, in which case any truncation at
a finite order k > 2 would produce a nonpositive probability
distribution function. More importantly, it has become evident
[98] that a nonvanishing D(4)(X, t ), i.e., when the Kramers-
Moyal expansion cannot be truncated after the second term,
represents a signature of a jump discontinuity in the time
series, in which case one needs the Kramers-Moyal coeffi-
cients of at least up to order six, i.e., up to D(6)(X, t ), and in
many cases even up to order eight [98], to estimate the jump
amplitude and rate. For nonvanishing D(4)(X, t ), the govern-
ing equation for a time series X (t ) with the jump-diffusion
process is given by [30,98]

dX (t ) = D(1)(X, t )dt +
√

D(2)(X, t ) η(t ) + ξdJ (t ), (22)

where J (t ) is a Poisson jump process. The jump’s rate
λ(x, t ) can be state-dependent with a size ξ , and is
given by, λ(x, t ) = M (4)(x, t )/[3σ 4

ξ (x, t )], where, σ 2
ξ (x, t ) =

M (6)(x, t )/[5M (4)(x, t )]. Dynamic processes with jumps are
highly important, as they have been used to describe ran-
dom evolution, for example, of neuron dynamics [28,99],

FIG. 9. The diffusion coefficient D(2)(x) for two classes of pa-
tients, the healthy ones and those with congestive heart failure
(CHF).

FIG. 10. (a) Implantation scheme of intracranial electrodes in a
patient with seizures originating in the left mesial temporal lobe:
temporal-lateral grid electrode (8 × 4 contacts, denoted by GL), two
temporal-basal strip electrodes (4 contacts each, denoted by TB), and
a hippocampal depth electrode (10 contacts, denoted by TL). The
most anterior contact (TL1) is located ventral to the amygdala, while
the most posterior contact (TL10) is located within the hippocampus.
The latter electrode samples the epileptic focus. (b) Segments of
the intracranial electroencephalographic (iEEG) time series recorded
during the seizure-free interval from within the epileptic focus (con-
tact TL4) and from a distant brain region (contact GLC6). Based on
Ref. [98].

soil moisture dynamics [100], and such financial features
as stock prices, market indices, and interest rates [101],
and epileptic brain dynamics [98]. Let us describe a prac-
tical application of dynamic processes with jumps that is
data-based and reconstruct the governing equation for the
dynamics.

2. Example 2: Reconstruction of stochastic
dynamics of epileptic brain

Brain’s electrical rhythms in epileptic patients tend to be-
come imbalanced, giving rise to recurrent seizures. When a
seizure happens, the normal electrical pattern is disrupted
by sudden and synchronized bursts of electrical energy that
may briefly affect the consciousness of the patient, as well
as the movements or sensations. Figure 10(b) presents in-
tracranial electroencephalographic (iEEG) time series in a
patient with seizures originating in the left mesial temporal
lobe.

The first- and second-order Kramers-Moyal coefficients
and Langevin-type modeling of iEEG time series can be used
to construct stochastic qualifiers of epileptic brain dynamics,
which yield valuable information for diagnostic purposes. In
particular, it has been shown [102] that qualifiers based on
the diffusion coefficient make it possible to obtain a more
detailed characterization of spatial and temporal aspects of
the epileptic process in the affected, as well as nonaffected
brain hemispheres. There is, however, a major difference
between the dynamics of the affected and nonaffected regions
of brain, with the former region, responsible for the generation
of focal epileptic seizures, being characterised by a nonvan-
ishing fourth-order Kramers-Moyal coefficient, whereas that
is not the case for the dynamics of latter region [102]. Thus,
pathological brain dynamics is not described by continuous
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FIG. 11. Sample results computed based on the data for an epilepsy patient with an epileptic focus in the left mesial temporal lobe, showing
the (a) diffusion coefficients, (b) jump amplitudes, and (c) jump rates, together with the respective probability distribution functions estimated
from normalized iEEG time series, recorded during the seizure-free interval from within the epileptic focus (contact TL4 in Fig. 10) and the
data from a distant brain region (contact GLC6, as shown in Fig. 10). Based on Ref. [98].

diffusion processes and, hence, by the Langevin-type mod-
eling described above. Pathological iEEG time series exhibit
highly nonlinear properties [103], and are in fact described by
a jump-diffusion process.

Anvari et al. [98] considered intracranial iEEG time series,
which had been recorded during the presurgical evaluation of
a subject with drug-resistant focal epilepsy. The multichan-
nel recording [see Fig. 10(a)] lasted for about 2000 s and
was taken during the seizure-free interval from within the
presumed epileptic focus (seizure-generating brain area), as
well as from distant brain regions. Thus, the analyzed data
did not have a seizure event. Instead, it contained background
iEEG time series. Anvari et al. [98] showed that the D(4)

coefficient of both time series do not vanish, and modeled
the data with a jump-diffusion process. Figure 11 presents
the computed diffusion coefficients D(2)(x), jump amplitudes
σ 2

ξ (x), and jump rates λ(x), as well as the respective proba-
bility distribution functions, estimated from normalized iEEG
time series that contained 4 × 105 data points, for one epilepsy
patient.

Carrying out extensive analyses of multi-day, multi-
channel iEEG recordings from ten epilepsy patients, Anvari
et al. [98] demonstrated that the dynamics of the epileptic
focus is characterized by a stochastic process with a mean dif-
fusion coefficient and a mean jump amplitude that are smaller
than those that characterize the dynamics of distant brain
regions. Therefore, higher-order Kramers-Moyal coefficients
provide extra and highly valuable information for diagnostic
purposes.

Note, however, that as a result of the jump processes,
estimating the Kramers-Moyal coefficients by Eq. (16) en-
counters some fundamental drawbacks that have recently been
studied [104–106]. Therefore, data-driven reconstruction of
the governing equations based on Kramers-Moyal expansion
is still an evolving approach, and as it is developed further, it
will also find a wider range of applications.

C. Data-driven approach for Mori-Zwanzig
projection operator formulation

Mori [107] and Zwanzig [108] developed a formalism
that provides a mathematically exact procedure for devel-
oping reduced-order models for high-dimensional dynamical

systems, such as turbulent flow, as well as data, which are
constructed based on projection operators. The essence of the
method is reformulating a set of ordinary differential equa-
tions (ODEs) into a reduced system for the resolved variables
xr , but still retaining the dynamics of the original system,
which implies correctly representing the contribution of the
unresolved variable on the resolved physics of the system. The
method does so by applying a projection operator to the evo-
lution process of the original dynamic systems described by
the set of ODEs, to achieve reduction in their dimensionality.

Mori’s formulation leads to a generalized linear Langevin
equation, whereas that of Zwanzig produces generalized
nonlinear Langevin equation. The equation consists of Marko-
vian, noise, and memory terms, and is an exact representation
of the dynamics of the model. Thus, the approach may
be viewed as a nonlinear generalization of the stochas-
tic Kramers-Moyal expansion, described above. In practice,
however, use of the method is computationally difficult, par-
ticularly when applied to systems that are described by PDEs;
this is discussed below. Comprehensive discussions of the
subject are given Mazenko [109], Evans and Morriss [110],
and Hijón et al. [111].

The approach was originally developed for describing
nonequilibrium statistical mechanics of molecular systems,
with the goal of solving for the probability density functions
and time correlation functions, and was limited to Hamil-
tonian dynamical systems. Chorin et al. [112] extended the
formulation to general time-dependent systems, such as those
in hydrodynamics and reaction-diffusion systems. They de-
veloped their framework for optimal prediction, i.e., obtaining
the solution of nonlinear time-dependent problems, described
by

dx(t )

dt
= f[x(t )], (23)

for which a full-order solution is too difficult computationally
and, in addition, the unresolved part of the initial conditions
is uncertain. Here, x(t ) is the state of the system at time
t , and f[x(t )] represents the dynamic constraints that define
the equations of motion of the system, such as, for example,
the Navier-Stokes equations for hydrodynamics of Newtonian
fluids, which can be generalized to include parametrization
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and forcing. Thus, the goal is to determine f[x(t )] from the
data.

We describe the Mori-Zwanzig formulation by closely fol-
lowing Falkena et al. [113]. Consider nonlinear dynamical
systems described by Eq. (23), with the initial condition corre-
sponding to a trajectory x(t ), x(t = 0) = y, and an observable
u(y, t ) = g[x(t )] along the solution of the equation, where g is
defined on Rn. Thus, one must have

∂

∂t
u(y, t ) = Lu(y, t ), (24)

with u(y, 0) = g(y), where L is the Liouville operator defined
by, Lu = ∑n

i=1 Ri(y)∂u(y, t )/∂yi, with yi being the ith compo-
nent of y, and R = {R1, R2, · · · Ri} the vector field. The goal
for a linear system is to construct a system of equations for a
select subset of m resolved variables xr ∈ Rm, with the unre-
solved variables denoted by xu ∈ Rn−m, such that x = (xr, xu).

To reduce or map the system of n components onto one
with m components, one needs a projection operator P, P :
C(Rn,Rk ) → C(Rm,Rk ), with k being the dimension of an
arbitrary function f (xr, xu) to which the projection is applied.
One example of such projection operator is the linear one,
[P f ](xr, xu) = f (xr, 0), i.e., one that sets all the unresolved
variables to zero, keeping only the resolved ones. We denote
by Q the complement of P, defined by Q = I − P, where I is
the identity operator.

The solution of the system (24) is u(y, t ) = [etLg](y),
where etL is the evolution (also called the Koopman opera-
tor [114]; see below), which propagates an observable with
L and etL commuting. Thus, if g = yi, then xi(y, t ) = etLyi.
Equation (24) is rewritten as

∂

∂t
[etLg](y) = [etLLg](y) = [etLPLg](y) + [etLQLg](y).

(25)

The second term on the right-hand side of Eq. (25) describes
the evolution of the unresolved variables. If one invokes the
Duhamel-Dyson identity, namely,

et (A+B) = etA +
∫ t

0
e(t−s)(A+B)BesAds, (26)

and takes A = QL and B = PL, then one obtains

[etLQLg](y) = [etQLQLg](y)

+
∫ t

0
[e(t−s)LPLesQLQLg](y)ds, (27)

and, therefore, Eq. (25) becomes

∂

∂t
[etLg](y) = [etLPLg](y) + [etQLQLg](y)

+
∫ t

0
[e(t−s)LPLesQLQLg](y)ds. (28)

In particular, if g(y) = yi, we have [etLg](y) = xi(y, t ), and
obtain the generalized Langevin equation,

∂

∂t
xi(y, t ) = Mi[xr (y, t ), 0] + Ni(y, t )

+
∫ t

0
Ki[xr (y, t − s), s]ds, (29)

where Ni = [etQLQLg](y) and Ki = [PLNi](y, t ). As men-
tioned above, the Mori-Zwanzig formulation produces a
generalized Langevin equation with three terms, namely, the
Markov, noise, and memory functions represented, respec-
tively, by Mi, Ni, and the integral on the right-hand side of
Eq. (29). The noise term, produced by the uncertainty in the
initial conditions, is the solution of the following orthogonal
dynamic equation,

∂

∂t
Ni(y, t ) = QLNi(y, t ), (30)

with the initial condition, Ni(y, 0) = QLyi. It is called orthog-
onal dynamics because its solution lies in the orthogonal space
of projection operator P at all times.

Equation (29) is exact, but determining its solution is not
necessarily simpler than the original equation, Eq. (23). The
main bottleneck for using the Mori-Zwanzig formulation and
utilizing Eq. (29) for constructing dynamical equations for a
set of data is determining the numerical solution of Eq. (30),
which is difficult. For example, directly evaluating the integral
requires storing the solutions from all the previous steps at
every time step, which is a difficult task. The “ease” of obtain-
ing the solution depends crucially on the choice of projection
operator P, which plays an important role in determining the
form and complexity of the orthogonal dynamics equation,
Eq. (30). P should be selected such that the orthogonal dy-
namics system is stable, implying that one must not only retain
stabilizing factors in the unresolved dynamics, but also select
P such that solving Eqs. (29) and (30) is less complex than
solving the original system described by Eq. (23).

A simple example [113,115] illustrates how the method
works. Consider the following system of ODEs,

d

dt

(
xr

xu

)
=

(
a11 a12

a21 a22

)
, (31)

with the initial condition, x(0) = (yr, yu). We wish to derive
an equation for xr only, which is accomplished by solving the
equation for xu by the method of variation of parameters and
substituting the result into the equation for xr to obtain

dxr

dt
= a11xr (t ) + a12ea22t yu +

∫ t

0
a12ea22(t−s)a21xr (s)ds.

(32)

Equation (32), which is exact, exhibits the same behavior as
the original system, and the effect of the unresolved variables
appears only as the initial condition yu.

Since the main obstacle to using the Mori-Zwanzig ap-
proach is having the right projection operator P, it may be
useful to discuss the issue further, to provide some guid-
ance for selecting the operator. As already discussed, Mori’s
formulation leads to a generalized linear Langevin equation,
whereas that of Zwanzig produces a generalized nonlin-
ear Langevin equation. In the former case, the projection
operator relies on the inner product defined by, 〈 f , g〉 =∫

f (x)g(x)dμ(x), where μ(x) is the probability distribution
function. Given the inner product, Mori’s projection operator
is defined onto the span of a set of linearly independent basis

041001-17



MUHAMMAD SAHIMI PHYSICAL REVIEW E 109, 041001 (2024)

functions bi(x), so that [116]

[P f ]b(x) =
∑

i

∑
j

〈 f , bi〉[C−1]i, jb j (x), (33)

with C being the covariance matrix, Ci j = 〈bi, b j〉. If the basis
functions are orthonormal, then C = I, with I being the iden-
tity matrix, and the projection operator is greatly simplified:

[P f ]b(x) =
∑

o

〈 f , bi〉bi(x). (34)

However, in Zwanzig’s formulation, the observables are a
subset of the resolved variables xr , and the projection oper-
ator is defined by direct marginalization of the unresolved
variables. If the probability distribution μ(x) for variable x
is written for resolved and unresolved variables as a density
function ρ(xr, xu) [116], then

[P f ](xr ) =
∫

f (xr, xu)ρ(xr, xu)dxu∫
ρ(xr, xu)dxu

, (35)

which yields a nonlinear function that has been used [117] for
developing models of turbulence based on the Mori-Zwanzig
formulation.

Alternative ways of getting around the difficulty of se-
lecting the projection operator have also been suggested. For
example, Gouasmi et al. [115] proposed to approximate the
equation for orthogonal dynamics by a less complex one using
pseudo-orthogonal dynamics approximation. In their method
the memory kernel in the above integral is estimated a priori
by utilizing full-order solution snapshots. Thus, a pseudo-
orthogonal dynamics equation is solved that has the Liouville
form, instead of solving the original one. The method is based
on the assumption that, for one observable, the semigroup
(algebraic structures that consist of a set together with an
associative internal binary operation on it) of the orthog-
onal dynamics operator is a composition operator, akin to
semigroups of Liouville operators, hence mimicking their be-
havior.

Despite the difficulty in developing the right projection op-
erator P and obtaining the numerical solution for the dynamics
of the system that is less expensive than solving the original
system, the Mori-Zwanzig approach is gradually gaining more
recognition and use as a way of discovering reduced-order
governing equations for systems for which a considerable
amount of data is available.

1. Example 1: Heat conduction in a nanosize system

Chu and Li [118] used the Mori-Zwanzig procedure to
derive an equation that describes heat conduction in nanome-
chanical systems, since the conventional heat conduction
equation breaks down at such length scales. They considered
a 1D isolated chain of N atoms, divided evenly into n blocks,
each of which contained “atoms” with known equilibrium
spacing between neighboring atoms, and calculated energy
transport between the blocks. Thus, the local energy den-
sity was selected as the coarse-grained variable, for which a
generalized Langevin equation was derived using the Mori-
Zwanzig procedure. The propagating operator L was defined

by

L ≡ v0
∂

∂x0
+ f (x0)

m

∂

∂v0
, (36)

where x0 and v0 are, respectively, the initial position and ve-
locity of the molecules, m is their mass, and f (x) is the force,
i.e., f = −∇E (x), with E being the potential energy. They
showed that the calculated results using the Mori-Zwanzig
method agrees with the results obtained with nonequilibrium
molecular dynamics simulations in which they imposed a
temperature gradient between the two ends of the chain of 250
atoms.

2. Example 2: Reduced-order equation for turbulent flow

Tian et al. [116] used extensive data for isotropic tur-
bulence to drive the projection operator of Mori-Zwanzig
approach and construct a reduced-order Navier-Stokes equa-
tion. If the equation is spatially discretized, then one obtains
the following set of nonlinear equations for the fluid’s velocity
v(t ):

dv(t )

dt
= R[v(t )], (37)

which is similar to Eq. (23), where R is the nonlinear function
that represents the spatially discretized right-hand side of the
Navier-Stokes equations. Computations for fully resolved dy-
namics of the Navier-Stokes equations is prohibitive for any
physical problem. Thus, to develop a reduced-order model for
turbulence, the velocity field is usually coarse-grained using
a spatial filter, which reduces the range of scales that must
be resolved. Suppose that v̄(t ) is the filtered fluid velocity.
Then, as described above, according to the Mori-Zwanzig
formulation, Eq. (29) for v̄(t ), in vector form, is given by

d v̄(t )

dt
= M[v̄(t )] + N (t ) −

∫ t

0
K[v̄(t − s), s]ds, (38)

which is the nonlinear version of the formulation. In the linear
formulation, i.e., in terms of Mori’s original derivation, the
generalized Langevin equation for the linearly independent
basis functions b(t ) is given by

db(t )

dt
= M · b(t ) + N (t ) −

∫ t

0
K(t − s) · b(s)ds. (39)

The advantage of Mori’s projection operator is that, due to
the linearity of the projected low-dimensional functions, the
derivation of the kernel K is significantly simpler.

Extensive data were obtained by numerical simulation
of fully resolved discrete Eulerian Navior-Stokes equations,
given by

∂vi

∂t
+ ∂viv j

∂x j
= − ∂ p

∂xi
+ ν

∂2vi

∂x2
j

, (40)

where ν is the kinematic viscosity, and p is the pressure that
was computed by solving the Poisson’s equation for p. The
data were used to extract the kernel and the noise term in
Eq. (39) by computing a two-point correlation function and
relating them to each other by an iterative process [119].

Figure 12 compares the Frobenius norm of the memory
kernel (normalized by its corresponding Markov operator) for
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FIG. 12. Normalized Frobenius norm of the learned memory
kernel for observable set as a function of normalized time delay. Two
types of spatial filters, Gaussian and box filters, with various filtering
length scales l�, were applied to the variables of the physical space.
Based on Ref. [116].

a set of observable in the original data with the results ob-
tained with a Gaussian filter of various resolution, as measured
by filtering length l�. The Frobenius norm of an m × n matrix
is defined as the square root of the sum of the squares of its
elements. As discussed by Tian et al. [116], the Frobenius
norm of the memory kernel does not vanish with a finite time
delay, but becomes two to three orders of magnitude smaller
at a time delay around several Kolmogorov timescales (i.e.,
the smallest timescale in turbulent flow), hence indicating that
using finite support in the memory integral can be a reasonable
assumption, because the contributions from large time delays
are generally negligible. Moreover, the effect of the filtering
length scale l� is significant. With larger l� the temporal
decay of the memory kernel becomes slower, making the finite
memory length longer, hence indicating a shift of dynamical
contributions from the Markov term to memory integral.

As mentioned above, even though the Mori-Zwanzig for-
malism was developed over 50 years ago, due to the intensive
computations that are required for determining the kernel in
the integro-differential equation that represents the general-
ized Lagevin equation, as well as the complexity of selecting
the projection operator, only very recently have the applica-
tions of the method begun to emerge. They include developing
a reduced-order model for turbulence by Parish and Du-
raisamy [120,121] and Maeyama and Watanabe [122]. Li
and Stinis [123] developed a reduced-order model for uncer-
tainty quantification, while Stinis [124] presented a series of
higher-order models for the Euler equation based on the Mori-
Zwanzig formulation. The research field is finally emerging.

D. Koopman and Perron-Frobenius transfer operators

When the available data are for a system that exhibits
multiscale features, reconstructing the governing equation is
a very difficult task as it involves prohibitive computations.

An example is a dynamical system that consists of many
subsystems operating over distinct times scales, such that
some of the subsystems act over short timescales, whereas
others respond slowly to any external driver. Alternatively, the
system may possess intrinsic properties that act over distinct
timescales, such as fast vibrations and slow conformational
changes of molecules in a molecular system. Such systems
suffer from what Richard Ernest Bellman, the American ap-
plied mathematician, called [125] the curse of dimensionality,
which refers to phenomena that arise when one analyzes and
organizes data in a high-dimensional space, not in a low-
dimensional one, such as the 4D space of everyday life. In
such cases one resorts to a data-driven dimensionality reduc-
tion technique, examples of which were already described
above, for the dynamical system. In other words, although
the true governing equation may be a function of multiple
variables in the form of a PDE, one tries to represent and
reproduce the important features of the system and the data
by a much simpler equation.

There are a variety of such techniques, some of which
were already described, and other are described in this and the
following subsections. Here, we describe those that are based
on the transfer operator theory. Such methods involve approx-
imating the operators and their eigenvalues, eigenfunctions,
and eigenmodes, and have been used to analyze complex
problems in molecular dynamics, fluid flow, applied physics,
and various engineering disciplines. A good review of the
subject is given by Klus et al. [126], on which we partly rely
for our discussions.

First, let us define a transfer operator. Suppose that
{Xt } (with t � 0) is an autonomous or time-homogeneous
stochastic process, i.e., one for which the distribution of Xt ,
conditioned to Xs = s, depends only on x and (t − s) with t �
s � 0. Then, the transition density function, pτ : X × X →
[0,∞] of the process Xt is defined by

P [Xt+τ ∈ A|Xt = x] =
∫
A

pτ (x, y)dy, (41)

where A is a measurable set (dataset). Clearly, P is a con-
ditional probability, implying that pτ (x, y) is the conditional
probability density of Xt+τ = y, given that Xt = x. Then, if
ft (y) ∈ L∞(X) is an observable of, or set of data for, the
system, the Koopman operatorKτ : L∞(X) → L∞(X) is de-
fined [114,127] by (for a recent review of Koopman operator
dynamical models see Bevanda et al. [128])

Kτ ft (x) =
∫
X

pτ (x, y) ft (y)dy, (42)

where τ is a given lag time. Equation (42) clearly indicates
that the Koopman operator, which is infinite-dimensional
and linear, describes the evolution of the observable (or the
dataset). Another operator is the Perron-Frobenius operator
(propagator), Pτ : L1(X) → L1(X), defined by

Pτ pt (x) =
∫
X

pτ (y, x)pt (y)dy, (43)

where pt ∈ L1(X) is the probability density of the system.
Note that Pτ , an infinite-dimensional operator, describes the
evolution of densities. Both Kτ and Pτ are adjoint of each
other, when considered with respect to the duality pairing
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(inner product) defined by 〈 f , g〉 = ∫
X f (x)g(x)dx. The as-

sumption that the dynamical process Xt is homogeneous
implies that, Pσ+τ = PσPτ , and similarly for the Koopman
operator.

For many applications, one is interested in the system’s
evolution with respect to the equilibrium density. Hence, con-
sider a density π . It is called invariant or equilibrium density,
if Pτπ = π , implying that π is an eigenfunction of Pτ with
the corresponding eigenvalue being one. If L1

π (X) � ut (x) =
π (x)−1 pt (x) is a probability density with respect to the equi-
librium density π , then the Perron-Frobenius operator with
respect to the equilibrium density is defined by

Tτ ut (x) =
∫
X

π (y)

π (x)
pτ (y, x)ut (y)dy. (44)

As usual, one is interested in the eigenvalues λi(τ ) ∈ C and
eigenfunctions φi : X → C of such operators, defined by the
standard way, namely, Aτ φi = λi(τ )φi, where Aτ is any of the
three operators defined above. As an example, consider a 1D
Ornstein-Uhlenbeck process, given by [see also Eq. (20)]

dXt = −βDXt dt +
√

2DdWt , (45)

with Xt being a 1D Brownian motion (i.e., the Wiener pro-
cess), and β and D the friction and diffusion coefficients.
Then, the eigenvalues and eigenfunctions of the Koopman
operator associated with the Ornstein-Uhlenbeck process are
given by

λi = exp[−βD(i − 1)τ ] (46)

and

φi(x) = 1√
(i − 1)!

Hi−1(
√

β x), (47)

with Hi being the ith probability’s Hermite polynomial [129],
and i = 1, 2, · · · .

Our main focus is the application of the Koopman op-
erator, whose eigenvalues and eigenfunctions, together with
the Koopman modes that are vectors, allow one to recon-
struct a dynamical system and propagate its state [130]. In
essence, the eigenfunctions of the Koopman operator pro-
vide intrinsic coordinates that globally linearize the original
nonlinear dynamics. An important point to remember is that
the Koopman eigenvalues and eigenfunctions are independent
of observation state, implying that data acquired by various
sensors would yield the same results for the eigenvalues and
eigenfunctions, if the information that the data contain is
sufficiently rich.

Suppose that each component g j of the full-vector observ-
ables (data points), g j (x) = x j ( j = 1, · · · , d , with d being
the dimension of the data vector), is written as, gj (x) =∑

i φi(x)ηi j . Here, ηi are the components of the Koopman
modes defined by, ηi = [η1i, η2i, · · · , ηdi]T. Therefore, we ob-
tain g(x) = x = ∑

i φi(x)ηi, and

Kτ g(x) = E[g(Xτ )|X0 = x] = E[Xτ |X0 = x]

=
∑

i

λi(τ )φi(x)ηi. (48)

The key to data-driven dimensionality reduction and re-
construction of the dynamical equation is the recognition

that since the operator is infinite-dimensional, computing its
eigenvalues, eigenfunctions, and eigenmodes numerically en-
tails projecting the operator onto a finite-dimensional space,
spanned by a given set of basis functions, which we describe
next, to make the calculations manageable.

Consider a pair of data vectors, xi and yi, with xi = Xti
and yi = Xti+τ , assuming that we do not necessarily know the
system’s underlying dynamics. Writing, X = [x1, x2, · · · , xm]
and Y = [y1, y2, · · · , ym], with m being the number of mea-
surement points, and assuming that a long trajectory, z =
[z0, z1, · · · ] of the system is given, with zi = Xt0+hi, where h
is the time step size, we obtain, X = [z0, z1, · · · , zm−1] and
Y = [znτ

, znτ +1, · · · , znτ +m−1], i.e., Y is obtained by shifting
X by the lag time τ , where τ = nτ h. A similar method is used
if more than one trajectory is given, in which case one has data
matrices, rather than vectors.

For some methods of projecting an infinite-dimensional
operator onto a finite-dimensional one, one needs a set of
uniformly bounded basis functions or observables (sometimes
they are called dictionary), [ψ1, ψ2, · · · , ψk] ⊂ L∞(X), to
represent the eigenfunctions, which could be any type of func-
tion. The crucial point is to select an optimal size of the set of
such basis functions. A limited set with a few basis functions
may not accurately represent the eigenfunctions, whereas if
the set is too large, one may encounter overfitting [127]. There
are several methods for data-driven approximation of transfer
operators, particularly the Koopman operator, some of which
were described by Klus et al. [126]. In what follows we
describe such methods.

1. Time-lagged independent component analysis (TICA)

The method was proposed by Molgedey and Schuster [131]
and developed further by Hyvärinen et al. [132]. It has been
used in molecular dynamics as a preprocessing step to lower
the size of the state space, which is accomplished by pro-
jecting the dynamics onto the main coordinates [133,134].
For the method to be applicable, the time-lagged independent
components must be uncorrelated and maximize the autoco-
variances at lag time τ [132,133]. If the system is reversible,
which would be the case if detailed balance holds, i.e., for
all x, y ∈ X one has π (x)pτ (x, y) = π (y)pτ (y, x), then the
TICA coordinates are the eigenfunctions of Kτ (or of Tτ ),
projected onto the space that is spanned by the linear basis
functions, ψ (x) = x. If we define a time-lagged covariance
matrix Ci j (τ ) = 〈Xt,iXt+τ, j〉t , then given the data vectors X
and Y, the estimators C0 and Cτ for the true covariance matri-
ces C(0) and C(τ ) are computed by

C0 = 1

m − 1

m∑
i=1

xix
T
i = 1

m − 1
XXT, (49)

Cτ = 1

m − 1

m∑
i=1

xiy
T
i = 1

m − 1
XYT. (50)

Note that the time-lagged independent components are the
solution of the eigenvalue problem, Cτ ξi = λiC0ξi. A mod-
ification of TICA, called temporal decorrelation source
separation (TDSEP), proposed by Ziehe and Müller [135],
utilizes several time-lagged correlation matrices, rather than
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one, and has been used heavily by those who utilize machine-
learning techniques.

2. Dynamic mode decomposition (DMD)

Schmid [136] proposed the DMD method for time se-
ries in fluid mechanical systems, to identify their coherent
structures. The algorithm, an effective method for capturing
the essential features of numerical or experimental data for
a flow field, computes a set of modes, each of which is
associated with a fixed oscillation frequency and decay and
growth rate, and represents approximation of the modes and
eigenvalues of the Koopman operator [127,128] for the basis
function ψ (x) = x. Several extensions of the method have
also been proposed [137–140], while Mezić [141] provides a
good review of the applications of Koopman operator to fluid
systems, where references to his earlier pioneering work are
also given. In particular, Jovanović et al. [140] developed a
sparsity-promoting variant of the original DMD algorithm in
which sparsity was induced by regularizing the least-squared
differences between the matrix of snapshots of a system and
a linear combination of the modes, with an additional term
that penalizes the L1-norm—the sum of the magnitudes of the
vectors in a space—of the vector of the DMD amplitudes.
As the name suggests, the only assumption of the algorithm
about the structure of the model is that, there are only a
few important terms that govern the dynamics of a system,
implying that the searched-for equations are sparse in the
space of possible functions, an assumption that holds for many
physical systems.

Given the data vectors X and Y described above, the main
idea in the DMD algorithm is that there exists a linear operator
MDMD, defined by, yi = MDMDxi, which, due to the nonlin-
earity of the system’s dynamics, cannot be solved exactly.
Thus, one computes MDMD in such a way as to minimize the
norm ‖Y − MDMDX‖ whose solution is

MDMD = YX+ = (YXT)(XXT)+. (51)

The eigenvalues and eigenvectors of MDMD—the DMD
eigenvalues and modes—are the solutions of

MDMDξi = λiξi. (52)

Equations (51) and (52) indicate clearly that there is a close
relationship between DMD and TICA algorithms. The modes
of the former are the right eigenvectors of MDMD, whereas
the TICA coordinates are defined to be the right eigenvectors
of the transposed TICA matrix, implying that the TICA coor-
dinates are the left eigenvectors of the DMD matrix, while the
DMD modes are the left eigenvectors of the TICA matrix.

3. Variational approach of conformation dynamics (VAC)

This method, developed by Noé and Nüske [142]
and Nüske et al. [143,144], is applicable to only re-
versible systems (see above), and allows use of ar-
bitrary basis functions. It computes the eigenfunctions
of the Koopman operator and utilizes the transformed
data matrices, �X = [ψ (x1), ψ (x2), · · · , ψ (xm)] and �Y =
[ψ (y1), ψ (y2), · · · , ψ (ym)], to compute the covariance matri-

ces C0 and Cτ defined by Eqs. (49) and (50). They are given
by

C0 = 1

m − 1

m∑
i=1

ψ (xi )ψ (xi )
T, (53)

Cτ = 1

m − 1

m∑
i=1

ψ (xi )ψ (yi )
T, (54)

which are completely similar to Eqs. (49) and (50). Let,
MVAC = C+

0 Cτ , where C+
0 is the Moore-Penrose pseudo-

inverse of C0 [145]. Then, MVAC represents a finite-
dimensional approximation of the Koopman operator Kτ (or
of Tτ ), and the eigenfunctions of the operator are approxi-
mated by the eigenvectors of MVAC.

4. Extended dynamic mode decomposition (EDMD)

This method, developed by Williams et al. [130,146], is
used to compute finite-dimensional approximations of the
Koopman operator and its eigenvalues, eigenvectors, and
eigenmodes. One minimizes ‖�Y − MEDMD‖, whose solu-
tion is

MEDMD = �X �+
Y = CT

τ C0
T. (55)

Thus, what EDMD does is that, instead of assuming a linear
relationship between the data X and Y, it develops a linear
relationship between �X and �Y , the transformed data. The
eigenfunctions of the Koopman operator are then obtained by

φi(x) = ξ ∗
i ψ (x). (56)

Example: Deca polyalanine. Polyalanine is a dipeptide
repeat protein that is believed to play an important role in the
development of such diseases as amyotrophic lateral sclerosis
and frontotemporal dementia [147,148]. Its properties, such
as its aggregation and folding, have been studied extensively
by molecular dynamics (MD) simulations [149,150]. Nüske
et al. [143,144] studied deca alanine, a short version of the
protein by equilibrium MD simulations using Amber03 force
field, which was then reanalyzed by Klus et al. [126]. An
important set of parameters for the analysis is the so-called
implied timescales ti that are independent of the lag time τ . If,
however, we define and estimate ti by

ti = − τ

log |λi| , i = 2, 3, · · · , (57)

where λi is the ith eigenvalue computed by the EDMD/VAC
approaches, then the error will decrease as a function of the
time lag [151]. The analysis is carried out in three steps:

(1) One extracts a set of internal molecular coordinates
from the simulation data, and applies the TICA algorithm
to it (see above). Klus et al. [126] selected all 16 diehedral
angles on the protein’s backbone as the internal molecular
coodinates. Figure 13(a) presents the first five ti as a function
of the time lag τ , estimated by the TICA.

(2) The data are projected onto the leading M eigenvectors
of TICA, thereby performing the first dimensionality reduc-
tion. M is the smallest number such that [152] the sum of
the first M squared eigenvectors is larger than 95 percent of
the total sum of the squared eigenvectors. Figure 13(b) shows
how M is selected as a function of τ .
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FIG. 13. The extended dynamic mode decomposition (EDMD)
workflow in molecular dynamics of deca alanine. (a) Leading im-
plied timescales tm (in nanoseconds) as estimated by time-lagged
independent component analysis (TICA) as a function of the lag
time. (b) Effective dimension M, selected such that the sum of the
first M squared eigenvectors is larger than 95% of the total sum of the
squared eigenvectors. (c) Leading implied timescales tm estimated
by a Markov state model after projecting the data onto the first M
TICA eigenvectors and discretizing the data set into 50 states using
k-means. (d) Visualization of effective coarse grained dynamics. All
the Markov state model states are assigned to two macrostates. Over-
lay of representative structures from both macrostates shows that the
dynamics between them corresponds to helix formation. Macrostates
are drawn proportionally to their stationary probability. Based on
Ref. [126].

(3) A clustering method is used to discretize the reduced
data. Klus et al. [126] used the k-means clustering method
[153] to partition the data into 50 discrete states, and a Markov
state model (solution of the master equation) [154,155] was
estimated from the discretized time series. Figure 13(c) shows
the first five implied timescales obtained from the Markov
state model. This completes the task of developing a con-
verged model.

Once such a model is obtained, the behavior of the system
can be analyzed furthur. In this particular example, the implied
timescale t2 turned out to be the slowest one, being larger
than the time lag used in the analysis. Thus, Klus et al. [126]
used an advanced version of the Perron cluster-cluster analysis
(PCCA) algorithm [156,157], namely, the PCCA+ algorithm,
to coarse grain all the Markov state models into only two
macrostates. When randomly selected trajectory frames from
the two macrostates were analyzed, it turned out that the slow
dynamical process in the data corresponded to the formation
of a helix. This is shown in Fig. 13(d).

5. Deep-learning approach (DLA)

This approach was proposed by Lusch et al. [158] for
extracting the eigenfunctions of the Koopman operator from
data; for earlier related works see Refs. [159,160]. According
to the universal approximation theorem (UAT) [161,162], a
neural network with sufficiently large number of hidden units

and a linear output layer (see above) is capable of representing
any arbitrary function. The UAT imposes limits on what neu-
ral networks can theoretically learn by establishing the density
of an algorithmically generated class of functions within a
given function space of interest. Such results typically concern
the approximation capabilities of the feedforward architecture
on the space of continuous functions between two Euclidean
spaces, with the approximation being with respect to the com-
pact convergence topology. It is, therefore, natural to use a
neural network to represent the Koopman eigenfunctions. In
the present context, the goal of the neural network [158] is to
identify a few key intrinsic coordinates (see above), y = φ(x),
spanned by a set of Koopman eigenfunctions φ : Rn → Rp, as
well as a dynamical system yk+1 = Kyk , where K represents
a finite-dimensional approximation of the Koopman operator.
As discussed by Lusch et al. [158], three types of the loss
or cost functions are used in training the neural network, for
which there are three requirements for the network, which are
as follows:

(1) One tries to identify a few intrinsic coordinates, y =
φ(x), which are useful for reconstruction, where the dynamics
evolve, along with x = φ−1(y) to be able to recover state
x, which is achieved using an autoencoder, with φ being is
the encoder and φ−1 the decoder. The dimension p of the
autoencoder subspace is treated as a hyperparameter of the
network, whose choice is guided by knowledge of the system.
To reconstruct the autoencoder accurately, the loss function
used is, ‖x − φ−1[φ(x)]‖.

(2) To discover the Koopman eigenfunctions, one also re-
quires linear dynamics. The neural network learns the linear
dynamics K on the intrinsic coordinates mentioned above, i.e.,
yk+1 = Kyk , for which the loss function used is, ‖φ(xk+1) −
Kφ(xk ). If the linear prediction is to be enforced over m
time steps, then the loss function used will be ‖φ(xk+m) −
Kmφ(xk )‖

(3) One, of course, requires the intrinsic coordinates to
predict the future step(s). To identify linear dynamics in the
matrix K, the loss function used for one step is ‖xk+1 − φ−1

[Kφ(x)]‖, and ‖xk+m − φ−1[Kmφ(xk )]‖ over m time steps.
As usual, trajectories are generated from random initial

conditions and are used in training the neural network. The
trajectories are divided into training, validation, and test sets.
Models are trained on the training set and compared on the
validation set, which is also used for early stopping to prevent
overfitting.

Example: High-dimensional nonlinear fluid flow [158].
Consider nonlinear fluid flow past a circular cylinder at
Reynolds number (based on the cylinder’s diameter), Re =
100, which is characterized by vortex shedding. Noack et al.
[163] showed that the high-dimensional dynamics of the flow
evolve on a low-dimensional attractor, given by a slow man-
ifold (a topological space that locally resembles Euclidean
space near each point) in the following model:

dx1

dt
= μx1 − ωx2 + Ax1x2, (58)

dx2

dt
= ωx1 + μx2 + Ax2x3, (59)

dx3

dt
= −λ

(
x3 − x2

1 − x2
2

)
, (60)
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FIG. 14. Learned Koopman eigenfunctions for the model of fluid
flow past a circular cylinder. (a) Reconstruction of trajectory by linear
Koopman model with two states. Modes for each of the state space
variables x are shown along the coordinate axes. (b) Koopman recon-
struction in eigenfunction coordinates y, along the eigenfunctions,
y = φ(x). (c) Examples of trajectories that begin off the attractor,
which the Koopman model reconstructs, given only the initial condi-
tion. Based on Ref. [195].

where μ is the damping rate, and ω is the frequency, with A
being a constant. This is a mean-field model with a stable limit
cycle that corresponds to von Kármán vortex shedding, and
an unstable equilibrium that corresponds to a low-drag fluid
system. Lusch et al. [158] generated trajectories of this model
by solving Eqs. (58)–(60) with μ = 0.1, ω = 1, A = −0.1,
and λ = 10 and used them to train the Koopman neural net-
work; see Ref. [158] for the details of the computations. If
R2 = y2

1 + y2
2, where y1 and y2 are the eigenfunction coordi-

nates, then during the training, μ and ω were allowed to vary
along level sets of the radius in the eigenfunction coordinates,
i.e., both parameters depended on R. The eigenvalues varied
continuously, and the computations indicated that ω is very
close to its true value of 1, but μ varies significantly. Figure 14
shows a sample of the results.

For application of Koopman operator to the problem of
controlling nonlinear systems, a difficult and very important
problem in industrial applications, see Kaiser et al. [164].
Since, as discussed above, the eigenfunctions of Koopman op-
erator provide intrinsic coordinates along which the dynamics
behave linearly, Kaiser et al. [164] developed a method by

which the control is formulated directly in the intrinsic coordi-
nates. The resulting control architecture was dubbed Koopman
reduced-order nonlinear identification and control (KRO-
NIC). The eigenfunctions were approximated by data-driven
regression and power series expansions, based on the partial
differential equation that governs the infinitesimal generator
of the Koopman operator. Kaiser et al. [164] argued that, (a)
one must first validate the eigenfunctions, (b) lightly damped
eigenfunctions can be extracted using the EDMD algorithm
(see above), and (c) such eigenfunctions are particularly rele-
vant for control because they correspond to nearly conserved
quantities that are associated with persistent dynamics.

6. Spectral and Galerkin methods

Giannakis [165] developed a framework for representing
the Koopman and Perron-Frobenius operators by a smooth or-
thonormal basis in the L2 space of the dynamical system under
study, which was obtained from time-ordered data through
the diffusion maps algorithm. A diffusion map [166,167]
(Laplace operator), a dimensionality reduction or feature ex-
traction algorithm, computes a family of embeddings of a
dataset into a low-dimensional Eulidean space, the coordi-
nates of which are computed based on the eigenvectors and
eigenvalues of a diffusion (Laplace) operator acting on the
data. We will come back to diffusion maps shortly. Using the
representation by the smooth orthonormal basis, Giannakis
[165] computed the Koopman eigenfunctions using a reg-
ularized convection-diffusion operator (a diffusion operator
augmented by a drift term). He then utilized the eigenfunc-
tions for dimension reduction maps for dynamic systems with
high smoothness for a given observation state, and consid-
ered several types of systems. One was those with pure point
spectra, for which he constructed a decomposition of the gen-
erator of the Koopman group into mutually commuting vector
fields that transform under changes of observation state, re-
constructed in the data space representing the pushforward
map (a linear approximation of smooth maps) in the Koopman
eigenfunction basis. The second type of systems studied by
Giannakis [165] was those with a noisy time series, i.e., one
in which each data point xi is given by, xi = x̃i + ζi, where
ζi are independent and identically distributed random variable
with zero mean, and finite second through fourth moments,
and x̃i is the noiseless data point.

As discussed by Giannakis [165], the advantages of his
method are fourfold: (a) one is able to construct nonlinear
dimension reduction maps based on Koopman eigenfunctions
with projectible dynamics and small roughness on the data
manifold (a manifold is a topological space that locally resem-
bles Euclidean space near each point); (b) one can decompose
the dynamical vector field into a sum of mutually commuting
vector fields, which are reconstructed in the data space by
a spectral representation of the pushforward map for vector
fields on manifolds; (c) the method improves the efficiency
and noise robustness of the approaches for the Koopman
eigenvalue problem through delay-coordinate maps; and (d)
the algorithm predicts the dynamic evolution of arbitrary
probability densities and the expectation values of the observ-
ables. For the related work in which the orthonormal set is
constructed through eigenfunctions of the Laplace-Beltrami
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operator, and computed via sparse graph-theoretic algorithms,
see Giannakis and Majda [168]. The Laplace-Beltrami op-
erator is a generalization of the usual Laplace operator for
functions that are defined on a submanifold in Euclidean
space.

Let us point out that, studying the transport and mixing
properties of flows in a variety of systems, Froyland and Pad-
berg [169] succeeded in connecting the classical geometrical
approach via invariant manifolds with a probabilistic approach
via a transfer operator, which in their study was a Perron-
Frobenius operator described above. They demonstrated that
for nondivergent fluid flow, the eigenvectors of the transfer
operator efficiently decomposes the domain into invariant re-
gions. If the flow is dissipative and chaotic, however, then a
decomposition into invariant regions is nonexistent, but the
Perron-Frobenius transfer operator identifies almost-invariant
sets. They also demonstrated that, for a mixing, periodically
driven fluid flow, the sets bounded by stable and unstable
manifolds are almost invariant, and that the transfer operator
can identify such sets.

E. Diffusion maps

We already defined diffusion maps, and in this section we
provide the details of the algorithm for dimensionality reduc-
tion. A good review and description of the method is given
by Trstanova et al. [170]. A diffusion process is modeled by a
random walk between nearest-neighbor points [171], and the
method of diffusion maps exploits this by observing that a step
of the walk between two close data points is more likely than
one between two widely separated ones. As usual, suppose
that X is a set of data points, while D is their distribution in
X . We define the connectivity c between two data points x and
y as the probability of taking one step of the walk from x to
y, which is usually specified in terms of a kernel function of
the two points: c : X × X → R. One well-known example of
c(x, y) is a Gaussian distribution. Note that c(x, y) = c(y, x),
and that the choice of c(x, y) depends on the application. One
then constructs a normalized graph Laplacian, which is a
reversible discrete-time Markov chain on X , given by

d (x) =
∫

X
c(x, y)dD(y), (61)

and then one defines a new normalized kernel by, k(x, y) =
c(x, y)/d (x), so that

∫
k(x, y)dD(y) = 1. k(x, y) is the transi-

tion probability of one step from x to y.
In the next step, one constructs a transition matrix M for

the random walk (Markov chain) on the the data X . Then,
Mt is the transition matrix for a t-step walk on X . Defining
a diffusion matrix L whose entries are, Li j = c(xi, x j ), a new
kernel is introduced through

L(α)
i j = Li j

[d (xi )d (x j )]α
. (62)

The parametrization by α is necessary for tuning the influence
of the data point density on the infinitesimal transition of
diffusion. α = 0 reduces the algorithm to the classical graph
Laplacian normalization, representing maximal influence of
sampling density. α = 1/2 is used when one is interested in
describing the long-time behavior of the point distribution of

a system of stochastic differential equations, and the result-
ing Markov chain approximates the Fokker-Planck equation,
whereas if the sampling of the data is not related to the geome-
try of the manifold that one is interested in describing, one sets
α = 1, indicating no influence of sampling density, and the
diffusion operator approximates the aforementioned Laplace-
Beltrami operator. If D and D(α) are diagonal matrices whose
entries are given by Dii = ∑

j Li j and D(α)
ii = ∑

j L(α)
i j , then

L(α) = D−(α)LD−(α), and the transition matrix is given by

M = [D(α)]−1L(α), (63)

and k(x j, t |xi ) = Mt
i j . Having set up the random walk on the

data X , we define a cluster in the data set as a region for
which the probability of escaping is low within a given time
t , implying that t also plays the role of a scale parameter. The
eigenmode decomposition of Mt yields

Mt
i j =

∑
p

λt
pψp(xi )φp(x j ). (64)

Here, {λp} is the set of eigenvalues of M, and {ψp} and {φp}
are, respectively, its biorthogonal right and left eigenvectors.
The spectrum of the eigenvalues decays fast and, therefore,
only a few terms suffice for achieving a given relative accu-
racy in the sum.

Next, the diffusion distance dt (xi, x j ), which is a measure
of the closeness of data points xi and x j that are connected in
the observation space, is defined by

d2
t (xi, x j ) =

∑
y

[k(y, t |xi ) − k(y, t |x j )]2

φ0(y)
, (65)

where φ0(y), the first left eigenvector of M, is the stationary
distribution of the Markov chain. dt (xi, x j ) is computed by

d2
t (xi, x j ) =

∑
p

λ2t
p [ψp(xi ) − ψp(x j )]

2, (66)

so that the eigenvectors are used as a new set of coordinates
for the data. The diffusion map is then defined by

�t (x) = [
λt

1ψ1(x), λt
2ψ2(x), · · · , λt

pψp(x)
]
, (67)

where p is the number of terms that are used since, as
discussed above, the spectrum of the eigenvalues decays
and, therefore, one does not need to use a large number of
eigenvalues and eigenvectors. Equation (67) represents the
diffusion map obtained from the original data reduced to a
p-dimensional space, embedded in the original space and,
hence, dimensionality reduction of the system and its data has
been achieved. Nadler et al. [172] showed that

d2
t (xi, x j ) ≈ ‖�t (xi ) − �t (x j )‖2, (68)

Thus, the entire process may be summarized as follows. Given
the similarity matrix L, (i) normalize it using the parame-
ter α by L(α) = D−αLD−α; (ii) normalize M according to,
M = [D(α)]−1L(α); (iii) compute the p largest eigenvalues of
Mt and the corresponding eigenvectors, and (iv) compute the
embedding �t (x).
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1. Example: Large-scale connectivity in default-mode networks

Diffusion maps have found many applications. For ex-
ample, Margulies et al. [173] used the maps to analyze the
organization of large-scale connectivity in the default-mode
network at the opposite end of a spectrum from primary sen-
sory and motor regions. They used connectivity data for the
human and macaque monkey brains that are openly available,
and utilized diffusion maps to recover a low-dimensional em-
bedding from high-dimensional (original) connectivity data.
Cortical points that are strongly connected by either many
connections or few very strong connections are close in the
embedding space, whereas those without connections are far
apart, and diffusion maps can project such data onto a low-
dimensional embedding. The diffusion maps that Margulies
et al. [173] used corresponded to the parameter (see above)
α = 1/2, because the resulting diffusion maps (a) preserved
the global relations between data points in the embedded
space, (b) were more robust to noise in the connectivity matrix
(see above) than other techniques, and (c) were less sensitive
to the distribution of the connectivity data. In addition, (d)
the resulting decreasing eigenvalues are indicative of natural
ordering of the diffusion process, with the largest eigenvalues
corresponding to the slowest processes and, therefore, rep-
resenting the slowest variance in the connectivity patterns,
and (e) using local distances, the diffusion maps address the
curse of dimensionality (see above) problem, because smaller
distances are more meaningful than larger ones as the number
of dimensions increases.

F. Kernel analog forecasting

Kernel analog forecasting (KAF) does not discover a gov-
erning equation for a dynamic system, given a set of data,
but make predictions for the future state of the system, given
some of its past history. Edward Norton Lorenz was the first
to introduce analog forecasting [174] for predicting dynamical
systems based on historical data. In his method, one identifies
an analog, the state in the historical data that resembles most
closely the current initial data. To make prediction for the
desired lead time, the historical evolution of that state is fol-
lowed, and the prediction is made for the quantity of interest
based on its value on the analog. Although, by construction,
analog forecasting has no model error, its predictions can-
not be continuous with respect to initial data and, thus, they
are not physical. Burov, Giannakis and coworkers [175,176]
developed and improved significantly Lorenz’s original
method, dubbed KAF, which we describe briefly following
Burov et al. [176].

As usual, we consider a set of n ordered data points
X = {xi} ∈ X , i = 0, 1, ·, n − 1. Here, X is a continuous-time
process, derived from Markovian dynamics for a coupled
pair (X,Y ) that evolve in the larger state space X × Y , and
xi = X (n�t ), with �t being the sampling rate. The prediction
lead time τ is assumed to be an integer multiple of �t , τ =
q�t . The data include the values of the associated prediction
observable F = { fn+q} advanced by τ time units, which is
defined by the Markovian dynamics through an unknown map
F : X × Y → R, with fn = F (xn, yn).

Given initial data X and lead time τ , the KAF algorithm
takes averages over values of the τ -shifted observable, pro-

vided in the training data and weighted by a kernel, p :
X × X → R, which determines how much weight should be
given to a time series, initialized at point xn, according to its
proximity to x, the desired initial point, and is constructed
from the data. Viewing the data-driven predictor as a map
Zτ : X → R, which takes initial condition x as the input, the
KAF computes the map by

Zτ (x) = 1

n

n−1∑
i=1

p(x, xi ) fi+q, (69)

with

p(x, xi ) =
�(τ )−1∑

j=0

ψ j (x)φ j (xn)√
λ j

. (70)

φ j are computed by an eigenvalue problem associated with a
data-driven approximation of a kernel integral operator (see
below) constructed from xn, which, in the limit of large data,
provides an orthonormal basis for the entire space. �(τ ) is
a truncation parameter with �(τ ) � L, L being the desired
maximum number of eigenvectors (see below). ψ j is an out-
of-sample extension of φ j , computed by the Nyström method
(usually called the quadrature method, which computes the
numerical solution of an integral equation by replacing the
integral with a representative weighted sum), orthonormalized
with respect to an underlying reproducing kernel Hilbert space
structure, a Hilbert space endowed with the inner product,
〈 f1, f2〉 = ∫

f1(x) f2(x)dx. Recall that a Hilbert space allows
one to generalize the methods of linear algebra and calculus
from finite-dimensional Euclidean vector spaces to infinite-
dimensional ones.

Note that an important issue addressed by KAF algorithm
is as follows. Because the Y component of the system is not
observed, the sequences {xi} and { fn+q} are non-Markovian,
as a result of which the idea of constructing a Markov chain
from the data, which is widely used, is not the most suitable.
However, the KAF algorithm evaluates a conditional expec-
tation of the forecast conditioned, using the observed data
{xi}, explicitly incorporating information loss that results from
unobserved Y .

In practice, as the first step, one must select a kernel
κn(x, x′). How this is done is discussed in detail by Alexander
and Giannakis [177]. One must also select L, the aforemen-
tioned desired maximum number of eigenvectors. Then, given
κn, one computes a matrix K with Ki j = κn(xi, x j )/n. Next,
one computes vn = KI, and wn = KV−1I, with V = diag(vn),
and determines a normalized kernel matrix, S = V−1KW−1/2,
where W = diag(wn). The L largest singular values of S
(i.e., the nonnegative square roots of the eigenvalues of SST),
σ0, σ1, · · · , σL−1, and the corresponding left singular vectors
φ0, φ1, · · · , φL−1 (i.e., the eigenvectors of SST) are deter-
mined. The eigenvectors are then stacked columnwise to form
a matrix � = [φ0, · · · , φL−1]. Setting λ j = σ 2

j , the diagonal
matrix � = diag(λ j ) is formed next. The basis functions ψ (x)
are then computed by

ψ j (x) = 1

n
√

λ j

n−1∑
i=0

κ (x, xi )φ j (xi ). (71)
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V. TYPE-III SYSTEMS

Next, we describe emerging approaches for analyzing
Type-III systems, which are those for which a large amount of
data for a complex phenomenon in the systems may be avail-
able, but little is known about the governing equations for the
phenomenon. Traditional approaches to analyzing such data
rely on statistical methods and calculating various moments
of the data, which in many cases are severely limited. There
are several emerging approaches to address this problem.

A. Symbolic regression

While regression of numerical data and fitting them to
an equation to better understand their implications is an old
method, discovering the governing equations that describe
the physics of a phenomenon for which data are available,
which are typically based on ordinary and partial differen-
tial equations (ODEs and PDEs), involves manipulation of
symbols and mathematical functions, such as derivatives and,
therefore, represents a new type of regression. These methods,
described in this and subsequent subsections, also involve
stochastic optimization for deriving the governing equations.

One of the first efforts for such systems was reported in the
seminal papers of Bongard and Lipson [178] and Schmidt and
Lipson [179]. As the former authors stated, “A key challenge
[to addressing the problem of having data but no governing
equation], however, is to uncover the governing equations
automatically, merely by perturbing and then observing the
system in intelligent ways, just as a scientist would do in the
presence of an experimental system. Obstacles to achieving
this lay in the lack of efficient methods to search the space of
symbolic equations and in assuming that precollected data are
supplied to the modeling process.” Since symbolic equations
are typically in the form of ODEs and PDEs, the search space
is quite large.

Bongard and Lipson [178] described a method dubbed
symbolic regression, which consisted of three key elements:
(a) partitioning, by which the governing equations that
describe each of the system’s variables are synthesized sep-
arately, even though their behaviors may be coupled, hence
reducing significantly the search space. (b) Automated probing
that, in addition to modeling, automates (numerical) exper-
imentation, leading to an automated scientific process, and
(c) snipping, which automatically simplifies and restructures
models as they are synthesized to increase their accuracy,
accelerate their evaluation, and make them more comprehen-
sible for users. An automated scientific process tries [180] to
mimic what many animals do, i.e., preserving the ability to op-
erate after they are injured by creating qualitatively different
compensatory behaviors

In the symbolic regression algorithm [178,179] the parti-
tioning is carried out by a stochastic optimization approach, of
which there are many [73], such as simulated annealing [181]
and the genetic algorithm [182]. Such methods are efficient
enough for searching a relatively large space composed of
building blocks of ODEs or PDEs, if the size of the dataset is
not exceedingly large. Bongard and Lipson [178] utilized the
hill climbing method [183] for the optimization, a technique
in which one begins the process with an arbitrary solution, and

then iterates it to generate a more accurate solution by making
incremental changes to the last iterate. When a differential
equation for a variable i is integrated numerically by, for
example, a Runge-Kutta method, references to other variables
are replaced by actual data. Bongard and Lipson [178] only
tried to discover a set of first-order ODEs that governed the
dynamics of the system that they studied.

In symbolic regression a model consists of a set of nested
expressions in which each expression i encodes the equations
that describe the dynamic evolution of variable i. One also
provides a set of possible mathematical operators, such as
exp(·), sin(·), d/dx, etc., as well as operands that could be
used to compose equations. During the first time step of in-
tegrating the ODEs, each operand in each equation is set to
be the initial conditions and the expression is evaluated, with
the output being the derivative computed for that variable. The
number of times that each model is integrated is the same as
the number of times that the system has been supplied with
initial conditions, and all the models are optimized against all
the time series observed or collected for the system.

There are at least three problems associated with sym-
bolic regression. One is that it is computationally expensive
since, in general, optimization typically requires intensive
computations [73], unless certain “tricks” can be developed
to accelerate them [73]. The second problem is the limitation
of the approach by the number of mathematical operations
and their various combinations that it can carry out. The
third shortcoming of the approach is that it could be prone to
overfitting, unless one carefully balances model complexity
with predictive power.

B. Symbolic regression and genetic programming

Improvements to the original symbolic regression ap-
proach are emerging. In particular, a genetic programming
(GP) approach, dubbed GPSR, which is a form of symbolic
regression, has emerged recently that offers much promise.
The GPs represent a kind of genetic algorithm in which mod-
els are represented as (nested) variable-length tree structures
representing a program, instead of a fixed-length list of oper-
ators and values.

We first recall that the genetic algorithm uses concepts
from genetics and the Darwinian evolution to generate pos-
sible solutions for an optimization problem, and involves four
steps [73]: (a) selection for generating the solutions; (b) de-
sign of the “genome” to constrain the variables that define a
possible solution, and the generation of the “phenotype” (the
set of observable characteristics of a solution that result from
its interaction with the environment); (c) the crossover and
mutation operations that are used for generating new approxi-
mate solutions and approaching the true optimal state, and (d)
elitism, which selects the solutions that have the potential of
eventually leading to the global optimal state. A generation of
the computations is completed after the four steps of opera-
tions have been carried out.

Similar to the theory of evolution according to which
species that can adapt to their environment produce the next
generation of their offsprings—the updated species in genetic
algorithm—in an optimization problem solved by genetic al-
gorithm each species, which is the set of all the parameters or,
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in the present problem, the model represented by an ODE or
PDE to be discovered based on reproducing the given data, are
selected by evaluating the cost function or, more generally, a
fitness function, which is a measure of the quality and/or accu-
racy of the solution. Each possible solution is represented by a
string of numbers, or “chromosomes,” and after each round of
testing or simulation, one deletes a number of the worst pos-
sible solutions, and generates new ones from the best possible
solutions. Therefore, a figure of merit or fitness is attributed to
each possible solution that measures how close it has come to
meeting the overall specification. This is done by applying the
fitness function to the simulation results obtained from that
possible solution. The species with a smaller cost function,
or better fitness, has a higher probability of producing one
or more offsprings, i.e., possibly more accurate solutions in
the form of ODEs or PDEs, for the next generation, which is
usually referred to as the population.

Using the population of the species, one solves the pro-
posed ODE or PDE, computes the properties for which data
are given, and evaluates the cost or fitness function, to choose
the ODE or PDE that is more likely to produce more accurate,
next generation predictions for the data. Such candidates are
randomly recombined—the crossover step—and permuted—
the mutation step—to generate new candidate equations. The
candidates with the highest cost function, or the poorest fit-
ness, are eliminated from the population, a step that represents
natural selection in Darwinian evolution.

1. Example: Anomalous diffusion in heterogeneous media

An illuminating example is a very recent application of
GPSR [184] to anomalous diffusion [171,185] in the incipi-
ent percolation cluster at the percolation threshold [72,186],
which is a fractal and macroscopicaaly heterogeneous struc-
ture at all the length scales with a fractal dimension D f

whose values in 2D and 3D are, respectively, 91/48 � 1.9 and
≈ 2.53. The cluster has been used as a model of heteroge-
neous porous media. Diffusion in the cluster is anomalous
[185]; that is, the mean-squared displacement of diffusing par-
ticles grows with time as [171,185,187], 〈R2(t )〉 ∝ tα , where
α = 2/Dw, with Dw being the fractal dimension of the walk
with, Dw � 2.87 and 3.8 in 2D and 3D. An important, and
for over two decades controversial, issue was the governing
equation for P(r, t ), the average probability that a diffusing
particle is at position r at time t , for which various equations
[188–190] were suggested.

Using random walk simulation of diffusion on the incipient
percolation cluster in 2D, Im et al. [184] collected exten-
sive numerical data for P(r, t ). When they applied the GPSR
method to the data, they discovered that the governing equa-
tion for P(r, t ) is given by

∂0.62P

∂t0.62
= 0.82

r

∂P

∂r
+ ∂2P

∂r2
, (72)

where ∂α/∂tα indicates fractional derivative. Note that the
factor 1/r in the first term of the right-hand side of Eq. (72)
was discovered by the algorithm, and was not included in
the set of trial searches. The governing equation for P(r, t ),

derived by Metzler et al. [190], is given by

∂αP

∂tα
= 1

rds−1

∂

∂r

[
rds−1 ∂P(r, t )

∂r

]
= ds − 1

r

∂P

∂r
+ ∂2P

∂r2
,

(73)

where ds = 2D f /Dw, with α ≈ 0.7. Thus, the discovered
equation and one that is generally accepted to govern anoma-
lous diffusion in the incipient percolation cluster at the
percolation threshold are practically identical.

He et al. [191] showed that the dynamics of transport
processes in heterogeneous media that are described by a
fractional diffusion equation is not self-averaging, in that time
and ensemble averages of the observables, such as the mean-
squared displacements, do not converge to each other. This
is consistent with what is known for diffusion on the critical
percolation cluster at the percolation threshold [192,193], for
which the distribution of the displacements of the diffusing
particle does not exhibit self-averaging. The discovery of a
fractional diffusion equation for diffusion on the critical per-
colation cluster at the percolation threshold is fully consistent
with this picture, and indicates the internal consistency accu-
racy of the approach.

The GPSR has also been used to discover morphology-
dependent plasticity models for additively manufactured In-
conel 718 [194]. Although the genetic algorithm is amenable
to parallel processing and computations, at this point the
GPSR is not since it involves numerically solving a population
of ODEs or PDEs. Thus, one needs to develop more efficient
ways of solving them to turn GPSR into a powerful and reli-
able tool for discovering the governing equations for complex
phenomena in highly heterogeneous media.

C. Sparse identification of nonlinear dynamics

As an important improvement and extension to the original
symbolic regression algorithm, Brunton et al. [195] proposed
a method, the sparse identification of nonlinear dynamics
(SINDy). Sparse regression, used for discovering the fewest
terms in the governing equations that are required for ac-
curately representing the data, avoids overfitting that often
occurs in such approches. Brunton et al. [195] considered
dynamical systems of the type expressed by Eq. (23). One
then collects [195] a time history of the state x(t ) and either
measures the derivative dx(t )/dt = ẋ(t ) or approximates it
numerically. The data are then sampled at several times t1,
t2, · · · , tm and organized into two matrices, given by

X =

⎡
⎢⎢⎣

x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

...
...

x1(tm) x2(tm) · · · xn(tm)

⎤
⎥⎥⎦ (74)

and

Ẋ =

⎡
⎢⎢⎣

ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

...
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

⎤
⎥⎥⎦. (75)

One then sets up a library L(X) of candidate nonlinear func-
tions of the columns of X, with each column representing a
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candidate function for the right-hand side of Eq. (23). There
is, of course, complete freedom in selecting the candidate
functions. For example,

L(X) = [1 X X(2) X(3) · · · sin(X) cos(X) · · · ], (76)

where X(n) denotes a polynomial of order n. Thus, for exam-
ple,

X(2) =

⎡
⎢⎢⎢⎢⎣

x2
1 (t1) x1(t1)x2(t1) · · · x2

2 (t1) · · · x2
n (t1)

x2
1 (t2) x1(t2)x2(t2) · · · x2

2 (t2) · · · x2
n (t2)

...
...

...
...

...
...

x2
1 (tm) x1(tm)x2(tm) · · · x2

2 (tm) · · · x2
n (tm)

⎤
⎥⎥⎥⎥⎦.

(77)

If we know, for example, that only a few of the nonlinearities
are active in each row of the f (x) in Eq. (23), then we set up a
sparse regression problem to determine the sparse vectors of
the coefficients, � = [χ1,χ2 · · ·χn], which determine which
nonlinearities are active:

Ẋ = L(X)�. (78)

Each column of χk is a sparse vector of coefficients that
determines the terms that are active on the right-hand side of
Eq. (23). After � is determined, a model for each row of the
governing equations is constructed by

dx
dt

= fk (x) = L(xT)χk . (79)

In Eq. (79) L(xT) is a vector of symbolic functions of elements
of x, whereas L(X) is the data matrix. In other words,

dx
dt

= f (x) = �T[L(xT)]T. (80)

Note that each column of Eq. (79) requires a separate
optimization to determine the sparse vector χk for the kth-row
equation. In general, L(X) is a m × p matrix, with p being
the number of candidate functions. Naturally, m � p because,
typically, there are far more data than functions. Since the
number of functional forms can be very large, one tests many
different function bases and uses the sparsity and accuracy
of the resulting model as the criterion for determining the
correct basis to represent the data. The testing can be guided
by knowledge about the physics of the problem.

It should be clear that the success of the application of the
method to any phenomena and the accuracy of the resulting
model depend on the choice of measurement variables, quality
of the data, and the sparsifying function basis. While it may
be difficult to know the correct variables a priori, time-delay
coordinates often provide useful variables from a time series
[196,197]. In this method, vectors in a new space, referred to
as the embedding space, are formed from time-delayed values
of the measurements,

sm = [sn−(d−1)τ , sn−(d−2)τ , · · · , sn], (81)

where d is the embedding dimension, and τ is the time lag or
delay. According to Takens [196], if a sequence {sm} consists
of measurements of the state of a dynamical system, then,
under certain generic assumptions, the time-delay embedding
provides a one-to-one image of the original set, if d is large

enough. If one has m available measurements, then the num-
ber of embedding vectors is only m − (d − 1)τ . Of course,
knowledge about the physics of the phenomena of interest also
helps one to identify reasonable choices of the nonlinear func-
tions and measurement coordinates. For example, problems in
hydrodynamics have to do with the momentum conservation
equation, and for Newtonian fluids with the Navier-Stokes
equations.

For many important problems in science and engineering,
such as those in hydrodynamics and transport and deforma-
tion in heterogeneous materials, the phenomena of interest
are represented by PDEs that contain a few spatial vari-
ables, and involve either a very large number of measured
data, or numerical data obtained from microscale simulations.
Straightforward application of the method to such problems
will be impractical, since the factorial growth of the library L
with m in Eq. (77) and the required number of separate opti-
mizations would make such applications impractical. But a so-
lution has also been developed. Consider, for example, a fluid
flow problem in 3D space, governed by the Navier-Stokes
equations. One can use the proper orthogonal decomposition
technique [198] that reduces the complexity of intensive nu-
merical simulations that, in the present context, implies that
the Navier-Stokes equations are replaced by simpler models
that require much less computations to solve numerically; see
also the above section on reduced dimensionality.

1. Example: Vortex shedding behind a cylinder

An illuminating application of the SINDy was made by
Brunton et al. [195] to the classical problem of vortex
shedding—oscillatory flow that occurs when a fluid flows
past a bluff body at certain velocities, which depend on the
body’s size and shape—behind a cylinder. It was suggested
a long time ago [199] that turbulent flow arises as a result
of a series of Hopf bifurcations—a critical point at which, as
a parameter changes, a system’s stability switches and a peri-
odic solution emerges—representing cubic nonlinearities. The
cubic nonlinearity was puzzling because the Navier-Stokes
equations contain only quadratic nonlinearity (the equations
are second-order PDEs). When the first Hopf bifurcation was
actually discovered [200,201] during the transition from a
steady laminar wake to laminar periodic vortex shedding at
Reynolds number, Re = 47, it was shown [202] that a cou-
pling between oscillatory modes and the base flow gives rise
to a slow manifold that results in algebraic terms that approx-
imate cubic nonlinearities on slow timescales.

Using data obtained by numerical simulation of the Navier-
Stokes equations past a cylinder at a Reynolds number
Re = 100 reported by Colonius and Taira [202], Brunton et al.
[195] showed that their approach recovers the Hopf normal
form, a problem that had taken 30 years to resolve. Since
the Navier-Stokes equations contain quadratic nonlinearity,
Brunton et al. had to use a mean-field model with a separation
of timescales, such that a fast mean-field deformation was
slave to the slow vortex shedding dynamics. Thus, they used
a reduced-order mean-field model for the cylinder dynamics,
proposed by Noack et al. [163], given by Eqs. (58)–(60), with
(x1, x2, x3) → (x, y, z). For large values of λ in Eq. (60), the z
dynamics would be slow and, therefore, the mean flow would
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FIG. 15. The vortex shedding past a cylinder is the result of a Hopf bifurcation. Because the Navier-Stokes equations have quadratic
nonlinearity, one must use a mean-field model with a separation of timescales, where a fast mean-field deformation is slave to the slow vortex
shedding dynamics. The parabolic slow manifold is shown (left), with the unstable fixed point (C), mean flow (B), and vortex shedding (A). A
proper orthogonal decomposition (POD) basis and shift mode were used to reduce the dimension of the problem (middle right). The identified
dynamics closely match the true trajectory in the POD coordinates, and capture the quadratic nonlinearity and timescales associated with the
mean-field model. Based on Ref. [195].

rapidly correct and be on the slow manifold, z = x2 + y2,
given by the amplitude of vortex shedding. The Hopf normal
form is recovered by substituting the algebraic forms into
Eqs. (58) and (59).

Given the time history of the three coordinates, the SINDy
algorithm correctly identified quadratic nonlinearities (in the
Navier-Stokes equations) and reproduced a parabolic slow
manifold. Equations (58)–(60) involve the derivatives whose
measurements were not available, but were computed from the
state variables. More importantly, when the training data do
not include trajectories that originate off of the slow manifold,
the algorithm incorrectly identifies cubic nonlinearities, hence
failing to identify the slow manifold.

Figure 15 presents the results and compares them with full
simulations. The parabolic slow manifold is shown on the left-
hand side of Fig. 15, which contains vortex shedding indicated
by A, the mean flow indicated by B, and an unstable fixed
point, denoted by C. A proper orthogonal decomposition basis
and shift mode were used to reduce the dimension of the prob-
lem, shown in the middle right of the figure. The agreement
between the identified dynamics and the true trajectory in
the proper orthogonal decomposition coordinates is excellent.
The identified dynamics also captures the quadratic nonlinear-
ity and timescales associated with the mean-field model.

The open source software package [203] PySINDy [Pyton
SINDy] has been developed in Python to integrate the various
versions of SINDy [204]. Note that by promoting sparsity,
SINDy solves an over-determined set of equations, Ax = b,
making it modular and, hence, amenable to computational
innovations. Compared with the original symbolic regression
described above, SINDy is extremely efficient computation-
ally, requiring orders of magnitude less computation time.
It may also be used with neural networks that provide auto-
matic differentiation [205,206], and learning coordinates and
models jointly [207,208]. Even though the approach has been
applied to a wide variety of problems [117,209–230] over the

past few years, and certain improvements have been made in
it [231,232], it is still evolving to make it applicable to a wider
class of problems, as well as making it faster computationally.

A distinct version of SINDy, weak sparse identification of
nonlinear dynamics (WSINDy), first proposed by Schaeffer
and McCalla [233] and improved significantly by Messen-
ger and Bortz [234], attempts to bypass computations of the
derivatives required by SINDy, hence increasing significantly
the speed of the computations. The approach assumes that the
function f (x) in Eq. (23) can be accurately represented by
polynomials, F (x) = x j−1, and utilizes a number of feature
vectors that are large enough to include all the terms present
in the underlying system. Each feature vector v j (x, tk ) is ap-
proximated by using piecewise constant quadrature,

v j (x, tk ) =
∫ tk

0
Fj[x(t )]dt ≈ �t

k∑
l=1

Fj[x(tl )], (82)

with k = 1, 2, · · · , K , v j (x, t0) = v j (x, 0) = 0, and K and �t
being, respectively, the number of discrete time steps, and the
size of time steps. The quadrature yields a close approxima-
tion to the noiseless x(t ) without smoothing, and effectively
calculates a scaled expectation E for a sum of random vari-
ables of the form, xnηp, E (xnηp) = E (xn)E (ηp). Decoupling
the two expected values is permitted since the noise is sampled
independently of the data. Thus, many of the noise-dependent
cross terms are essentially zero, if piecewise constant quadra-
ture is used to approximate the feature vector.

By eliminating pointwise derivative approximations, one
obtains estimates for the model’s coefficients from noise-free
data with machine precision, as well as robust identification of
the PDEs with large noise in the data. One discretizes a con-
volutional weak form of the PDE, and utilizes separability of
the test functions for efficient model identification using fast
Fourier transform. Messenger and Bortz [234] showed that
WSINDy algorithm has, at worse, a computational complexity
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on the order of O(Nd+1 log N ) for N data points in each of
d + 1 dimensions, i.e., O(log N ) operations per data point.
The approach has been used to study a number of important
problems involving complex phenomena [235–238].

Even though the applications of SINDy have so far mostly
remained limited to those systems that do not have spatial
heterogeneities, the approach does have applications to such
systems. Turbulent flow in porous media is one example in
which the interplay between the spatial heterogeneities and
vortical structures gives rise to a rich variety of behavior
[239]. The key question is, what is the governing equation for
turbulent flow, or more generally nonlinear flows (as opposed
to Darcy flow at very low Reynolds numbers that is linear), in
heterogeneous porous media? This problem has yet to find a
solution. Another possible application is modeling of dynamic
iEEG data (see above) for brain, a system with highly complex
spatial structure.

D. Machine-learning approaches

We already described the work of Lusch et al. [156]
that used deep learning to extract the eigenfunctions of the
Koopman operator. In addition, there is an emerging class of
data-driven approaches for discovering the governing equa-
tions for complex phenomena that relies partly on such
algorithms. A good discussion of the issues that one must ad-
dress when using machine learning to discover the governing
equation for a dynamical system is given by Qin et al. [240].

One example of such approaches is the work of DiPeitro
et al. [241], who introduced a model for deriving the Hamil-
tonian of a dynamical system based on data. Suppose that
the Hamiltonian is described by q = (q1, q2, · · · , qn) and
p = (p1, p2, · · · , pn), where q and p represent, respectively,
the position and momentum of “object” i in the system. As
usual, the evolution of the system is described by, dp/dt =
−∂H/∂q and dq/dt = ∂H/∂p, where H is the Hamiltonian,
or total energy, of the system, subject to the initial condi-
tions q0 and p0. The time evolution is symplectomorphic,
i.e., it conserves the volume form of the phase space and
the symplectic 2-form wedge product dp ∧ x. DiPietro et al.
[241] assumed that the Hamiltonian is separable, i.e., it can be
written as, H = Ep + Ek , with Ep and Ek being the potential
and kinetic energy.

Their approach, which they dubbed sparse symplectically
integrated neural network, utilizes two neural networks, NEp

and NEk , which parametrize the potential and kinetic energies
of the total Hamiltonian. Each network carries out a sparse
regression (see above) within a search space specified by the
user, which can include various functional forms, such as mul-
tivariate polynomials, trigonometric functions, and others, and
computes the terms of the basis functions within the forward
pass. The transformation must happen within the networks
to enable the user to automatically compute gradients with
respect to q and p. The basis terms are then passed through a
single fully connected layer, which learns its necessary terms
by making the trainable parameters to be the coefficients of
each basis term, which are learned linearly with respect to
each term in the basis. Depending on the spacified function
space, one can modify the architecture of the networks. For
example, one may employ an additional layers with bias if
parametrizing using trigonometric functions

For the purpose of training, as well as making predictions,
the two networks are coupled with a symplectic integration
scheme, which can be of any order, depending on how much
computing time one is willing or can afford to spend. DiPietro
et al. [241] used a fourth-order integration scheme. Each time
the gradients of the Hamiltonian (see above) are required, it
is propagated through the networks, the necessary gradients
are automatically computed, and are sent to the symplectic
integrator. Since, depending on the size of the time step,
fourth-order symplectic integration often requires many it-
erations, one frequently has multiple passes through each
network before the loss or cost function is computed. After the
next state has been calculated, one computes the L1-norm be-
tween the predicted and the actual next state. L1-regularization
is also incorporated so that only the essential terms of the
Hamiltonian are preserved. One can also achieve the same by
using thresholding that completely eliminates the nonessential
terms. The loss function is then defined and computed, and the
optimization process for minimizing it is carried out.

Another approach is based on deep operator networks,
DeepONets [242], which learn operators accurately and ef-
ficiently from a relatively small dataset in a supervised
data-driven manner. DeepONets consist of two subnetworks,
one for encoding the input function at a fixed number of
sensors xi, i = 1, · · · , m, which represents the branch net,
and a second subnetwork for encoding the locations for the
output functions, the trunk net. One performs systematic sim-
ulations for identifying the PDE that governs the data. It has
been demonstrated that DeepONet significantly reduces the
generalization error, when compared with the fully connected
neural networks.

Note that DeepONet is different from PIML algorithms
described above, which are used to make predictions for
various phenomena in complex media in which the solution
of a known PDE is modeled by a deep convolutional neural
network whose parameters, together with other parameters
of the model, are learned, since the fundamental underlying
physics is established a priori. For example, Reyes et al.
[243] used a PIML algorithm to discover viscosity models
for two non-Newtonian systems, namely, polymer melts and
suspensions of particles, in which they used only the data for
the fluid velocity.

A hybrid method, DeepM&Mnet, a composite supervised
neural network, has also been proposed that combines Deep-
ONets with the physics encoded by PIMLs, to obtain faster
and more accurate solutions for complex problems. For ex-
ample, Cai et al. [244] developed the approach to study
electroconvection that results from coupling of a flow field
with an electric field, as well as the concentration distributions
of the cations and anions. In their approach, given general
inputs from the rest of the fields, one first pretrains DeepONets
that each field predicts independently.

In another application, Mao et al. [245] used the same
hybrid approach to study high-speed flow past a normal shock.
In this phenomenon the temperature of the fluid increases
rapidly, triggering chemical dissociation reactions down-
stream. The species give rise to appreciable changes in the
properties of the fluid. Hence, one has a coupled multiphysics
multiscale dynamic phenomenon. Carrying out standard nu-
merical simulation of the phenomenon is extremely difficult,
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whereas the hybrid DeepM&Mnet can integrate seamlessly,
given sparse measurements of the state variables in the simu-
lation algorithm.

VI. POSSIBLE FUTURE DIRECTIONS

The world that we live in is constantly grappling with many
highly difficult but also tremendously important problems for
which vast amount of data are either already available, or are
becoming so, but the physical laws or, more precisely, the
equations that govern them, remain elusive. They include, but
not limited to, understanding the neural basis of cognition
and other biological systems, predicting large earthquakes,
predicting the fate of contaminants in groundwater aquifers,
extracting and predicting coherent changes in the climate,
understanding and predicting global soil salinization [246] as
severe drought and many other factors afflict large parts of
the world, managing the spread of such emerging diseases as
COVID-19, controlling turbulence, and many more.

The goal of this perspective was to describe recent progress
in developing theoretical and computational approaches that
can meaningfully analyze complex systems in which a phys-
ical phenomenon of interest, for which some data are given,
occurs. In particular, we considered those systems for which
large amounts of data are available, but the governing equa-
tions for the physical phenomena of interest at the macroscale
are either not known, or only partially known. As this perspec-
tive has hopefully demonstrated, many approaches have been
developed. But, although the “buzzword” is that machine-
learning algorithms and artificial intelligence are going to
solve many, if not all the problems listed above, that is not
the case, at least not for the short and intermediate timescales.
Artificial intelligence is not a panacea for all problems in
science and engineering, and if it is not used the right way,
it can even create the misguided illusion that all the problems
listed above and many more are going to be solved over the
next 5–10 years, which is not the case, hence setting science
back.

At the same time, as this perspective has hopefully made it
clear, there has been great progress in developing approaches
that not only do not rely on machine learning, but have also
provided new routes for dealing with big data that are becom-
ing available all across science and engineering. Thus, the
question of which route to take is by itself a critical one to
address. In some cases, such as climate modeling that involves
multiple, widely disparate length scales, as well as extremely
long times, the current computational power does not allow
carrying out numerical simulations over all the relevant length
and timescales. Therefore, a combination of machine-learning
algorithms and highly resolved, but affordable simulations,
is perhaps the best route. Other cases represent “either” or
“or” system, whereby one can still deal with big data without
resorting to machine learning, or the training a neural network
with suitable architecture may be the only hope.

Even when it comes to the approaches that are currently
available, while it is true that tremendous progress has been
made in about a decade or so, many problems remain. Some
are purely theoretical, while many are practical issues that
involve the speed of the computations, the range of parameter
space that can be accessed, etc. For example,

(i) although machine-learning-based approaches have en-
joyed tremendus success, a rigorous theoretical foundation
as to why they are successful, or when they may fail, is
still lacking. Thus, one needs new theories, and perhaps new
mathematics, to analyze the limitations, as well as capabilities
of physics- and data-informed algorithms.

(ii) When one uses a machine-learning algorithm, the neu-
ral network is trained with some data, so that it can predict
the “future” of the system if a suitable training data set is
provided. But, what if one is interested in predicting the
behavior of the system under circumstances for which no
data are available to train the neural network? For example,
suppose that the neural network is trained for predicting prop-
erties of laminar flow in a system, but one is interested in
understanding and predicting how the transition from laminar
flow to the turbulent regime occurs in the same system, but
no data for the transition, or for the turbulent regime is used
in the training, since they are not available. This is a crucial
question to address, since one criticism of machine-learning
approaches is that they may not be able to predict dynamics
that they have never “seen.” Although some progress has been
made [247] based on echo state networks, much remains to be
done. An echo state network uses a recurrent neural network
with a sparsely connected hidden layer with typically one
percent connectivity. The connectivity and weights of hidden
neurons are randomly assigned, while the weights of the out-
put neurons are learned in such a way that the network can
produce or reproduce specific temporal patterns.

(iii) When it comes to the Mori-Zwanzig approach, the
question of how to efficiently and accurately construct the
kernel and other terms of the formulations is still very much
open.

(iv) Discovering the governing equations from sparse iden-
tification of nonlinear dynamical systems still has many
hurdles to overcome. One must, for example, address [176]
the issue of the correct choice of measurement coordinates
and of sparsifying function basis for the dynamics. There is
no simple solution to this problem [195] and, therefore, a
coordinated effort to incorporate expert knowledge, feature
extraction, and other advanced methods is needed.

(v) Since many of the methods that were described,
including symbolic regression, and machine-learning-based
algorithms, involve use of stochastic optimization algorithms,
one important question is whether it is possible to have no, or
extremely small, training loss, when an optimization method
is used. Other errors that need to be rigorously analyzed in-
clude those involved in the approximate solution of PDEs, as
well as the question that is often asked, namely, does a smaller
training error imply more accurate predictions?

(vi) Many multiphysics and multiscale complex phenom-
ena occur in systems with complicated geometry that must be
incorporated into the algorithms, which is not an easy task
due to the required computation time. Although some efforts
have been made to address such questions [248–251], much
remains to be explored.

(vii) Even when it is clear that one needs a synthesis of two
or more approaches, say a combination of a machine-learning
algorithm and intensive numerical simulation, one needs to be
equipped with, for example, optimization theory and theory
of PDEs. In addition, there is always tremendous need for yet
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faster numerical simulation and analysis. The combination of
such branches of science is openning up new research venues.

In addition, every new approach or algorithm requires
benchmarks for checking its accuracy and efficiency. When
dealing with huge amounts of data for complex phenomena
and systems, such benchmarks must provide a meaningful
evaluation of the algorithms. Selecting such benchmarks is
also not an easy task and requires careful considerations, as
does the task of selecting the way by which such data should
be made publicly available, a way that is accessible to a larger
number of potential users.

In terms of moving in the direction of much wider use
of such algorithms, we recall that one reason that platforms
for conventional computations, such as OpenFOAM [252]
for simulating fluid flow and transport processes, the FEn-
iCS [253] that solves differential equations by finite-element
method and the Community Atmospheric Model (CAM)
[254] that is an atmospheric general circulation model, popu-
lar is that they are user-friendly. Thus, for example, in the area
of applications of the physics- and data-informed algorithms
or symbolic regression methods, to make such approaches

“everyday tools” of research and development, they must also
be user-friendly, and provide easy-to-use tools of visualization
and tracking the variables as they evolve in space and time.
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