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Chord length sampling with memory effects for spatially heterogeneous Markov media:
Application to the rod model
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In this work we propose a modified Chord Length Sampling (CLS) algorithm, endowed with two layers of
“memory effects,” aimed at solving particle transport problems in one-dimensional spatially nonhomogeneous
Markov media. CLS algorithms are a family of Monte Carlo methods which account for the stochastic nature of
the media by sampling on-the-fly the random interfaces between material phases during the particle propagation.
The possibility for the particles to remember the last crossed interfaces increases the accuracy of these models
with respect to reference solutions obtained by solving the Boltzmann equation on a large number of realizations
of the Markov media. In previous investigations, CLS models with memory have been tested exclusively for
spatially uniform stochastic media: in this paper we extend this class of Monte Carlo methods to the case of
spatially nonhomogeneous configurations. The effectiveness and the robustness of the modified CLS are probed
considering several benchmark problems with varying material cross sections and Markov media densities. The
obtained results are a stepping stone towards a generalization to three-dimensional models.
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I. INTRODUCTION

In the last three decades, considerable efforts have been
devoted to modeling particle transport in stochastic mixtures
[1]. A stochastic mixture is a medium consisting of two or
more immiscible components,1 arranged randomly in space
according to given statistical laws [2]. The material properties
of the medium in which particles propagate are known only
statistically, and one is required to assign the probability pα (r)
of finding material α at position r.

Such complex systems occur in several applications of nu-
clear engineering, including inertial confinement fusion (ICF),
fission reactor physics, and radiation shielding problems. In
particular, the pioneering works on random media aimed at
providing a theoretical framework and numerical tools to in-
vestigate the transport of photons through the Rayleigh-Taylor
instabilities, in the context of ICF [1,3–8]. Stochastic media
have received attention in the modeling of neutron transport
within high-temperature gas-cooled reactors (HTGRs), where
microspheres of fissile material are randomly dispersed into
graphite pellets [9–12]. In the domain of neutron transport,
random media are also relevant in the modeling of fluid-vapor
mixtures in boiling water reactors (BWRs) [13], in radiation
shielding problems involving composite materials [14–16],
and in criticality safety issues, e.g., after severe accidents
[17,18].

Several models of random media have been proposed,
each with distinct features. In the field of particle transport
applications, a useful classification of stochastic mixtures is
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1Generally speaking, the mixture can be made of composite mate-

rials, or the same material in different physical states.

based on the distribution fα (s|r,�) of chord lengths s of each
model, generated by intersecting an arbitrary line in direction
� at position r placed into the medium with the interfaces of
the random regions of material α that compose the mixture.
Since particle transport is based on a series of flights having
exponentially distributed lengths between collision events, the
comparison between the distribution of the flight lengths and
the one of the chord lengths is an appropriate metric of the
impact of random media on the particle histories [1].

In this respect, a peculiar class of mixing statistics widely
used for particle transport problems is that of Markov media
[1,19], which are characterized by exponentially distributed
chord lengths

fα (s|r,�) = ρα (r + s�,�)e− ∫ s
0 ds′ρα (r+s′�,�), (1)

whose single free parameter is the total transition rate
ρα (r,�), which corresponds to the probability per unit length
of crossing the interface of material α. Note that ρα (r,�)
generally depends on both the direction � and the position
r, which corresponds to spatially heterogeneous and non-
isotropic Markov media. In the simpler case of spatially
homogeneous mixing statistics, transition rates take the form
ρα (r,�) = ρα (�), and if we further assume that the media
are isotropic ρα (�) = ρα are constant.

An exact approach to model particle transport in random
media consists in sampling a sufficiently large ensemble of
medium realizations from the mixing statistics and then solv-
ing the Boltzmann transport equation for each realization. The
ensemble average over all the obtained solutions provides an
unbiased estimate of the sought physical observables; how-
ever, this comes at the expense of a very high computational
effort. Therefore, the possibility of deriving homogenized
models enabling faster, albeit approximate results is of ut-
most importance for industrial applications. In order for such
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“effective” models to be robust and reliable, the bias with
respect to the exact approach must be carefully assessed: this
can be achieved by developing a solid theoretical framework,
and by performing extensive validation against reference so-
lutions.

For Markov media, a well-known effective transport model
is based on the Levermore-Pomraning (LP) equations [4,20],
which stem from taking the ensemble average of the Boltz-
mann equation over the random material realizations and
truncating the resulting infinite hierarchy of equations by as-
suming that the mean flux at the interface between two mate-
rial chunks in the mixture is equal to the mean flux within the
chunk. This assumption is formally exact for purely absorbing
media, but fails when scattering is present. The LP equa-
tions can be solved either by deterministic [21,22] or Monte
Carlo methods. The Monte Carlo algorithm which solves the
LP system is the so-called Chord Length Sampling (CLS)
method, proposed by Zimmerman and Adams [23,24]. CLS
closely resembles the regular flight-collision Markov process
associated to the Boltzmann equation, but particles are further
assigned a material index α that is switched on the fly by sam-
pling fictitious random material interfaces along the flights.

The memoryless nature of the material interfaces in the
standard CLS hinders the preservation of spatial correlations,
and accounts for the occurrence of a systematical bias with re-
spect to reference solutions. The strength of the bias depends
on the ratio ρα/�t,α , where �t,α is the total cross section for
material α. Pioneering works in one-dimensional implemen-
tations have shown that the introduction of “memory effects,”
with particles keeping partial track of the interfaces already
crossed along their history, can improve the accuracy of CLS
[22,23].

Over the last decade, significant progress has been made in
the analysis of Markov media. Algorithms enabling the Monte
Carlo sampling of spatially homogeneous three-dimensional
realizations have been proposed, based on a generalization
of the Switzer procedure, and their statistical properties
have been thoroughly investigated [25–27]. Due to these
advances, the key features of particle transport through three-
dimensional Markov media have been explored, and reference
(ensemble-averaged) solutions have been obtained for a va-
riety of configurations, encompassing a revisited version of
the celebrated Adams, Larsen, and Pomraning benchmark
[28,29]. Such solutions have been then used to assess the
accuracy of the CLS method [30]. Furthermore, in order
to overcome the limitations of the CLS approach, three-
dimensional CLS-like models including memory effects were
developed, such as Poisson-Box Sampling [31] and the Lo-
cal Realization Preserving [32], which rely on some form
of bookkeeping of the previously crossed material surfaces.
Both strategies have been shown to considerably decrease the
discrepancy with respect to reference solutions.

Recently, attention has shifted towards the case of Markov
media with spatial gradients, which are key to real-world
applications. The one-dimensional case has been considered
in Refs. [33,34], and the three-dimensional case (including
a comparison with spatially heterogeneous CLS) has been
examined in Refs. [35,36]. In particular, these latter find-
ings showed the limited capability of CLS algorithm to
accurately approximate reference solutions in heterogeneous

configurations. Therefore, in view of the results obtained in
the spatially homogeneous case, it would be highly desirable
to add memory effects to CLS in the broader class of Markov
media with spatial gradients.

The goal of this paper is to propose a strategy to endow
CLS with memory effects in a general spatially heterogeneous
setting. In order to keep the implementation framework sim-
ple, and yet preserve all the relevant features of this class
of models, we choose to work with one-dimensional sys-
tems. For this purpose, a CLS-like algorithm including two
layers of memory effects will be developed and its accu-
racy will be tested against reference solutions obtained for
Markov media with arbitrary spatial gradients. The choice
of one-dimensional configurations is motivated by three con-
siderations. First, CLS-like algorithms with memory such as
the Poisson-Box Sampling or Local Realization Preserving
method heavily rely on the relative orientation of the material
surfaces kept in memory by the particles, which would lead
to a nontrivial interplay with the angular dependence of the
transition rates ρα (r,�) in spatially heterogeneous configura-
tions. In this respect, the one-dimensional rod model, where
particle directions can take only two values, allows probing
the proposed implementation for stochastic media with spatial
gradients without being hindered by the full complexity of the
angular dependence. Second, one-dimensional Markov media
allow finely tuning spatial gradients in both the color probabil-
ity and the spatial scale, contrary to higher-dimensional media
where explicit constructions based on stochastic tessellations
are inherently limited to gradients in the spatial scale [36]. Fi-
nally, it is widely acknowledged that standard CLS algorithms
are less accurate in one-dimensional problems: due to the in-
creased probability of back-scattering, particles can more of-
ten revisit material regions whose interfaces have been forgot-
ten because of the memoryless nature of the sampling. There-
fore, it is interesting to assess the positive impact brought by
the introduction of memory effects in these configurations.

This paper is structured as follows: in Sec. II we first re-
call the mathematical properties of one-dimensional Markov
media and the main algorithms for the sampling of random
configurations. The statistical features of the sampled Markov
media will be probed by comparison with theoretical predic-
tions. Particle transport in Markov media will be presented
in Sec. III, where we will discuss both reference solutions
based on ensemble averages and the CLS approach. For this
latter, we will detail a strategy enabling two layers of memory
effects with general space and direction-dependent transition
rates ρα (r,�). Then in Sec. IV we will compare the results of
CLS with and without memory effects against reference solu-
tions: simulations results will be reported for a few relevant
benchmark configurations. Conclusions will be finally drawn
in Sec. V.

II. ONE-DIMENSIONAL MARKOV MIXTURES

We begin by reviewing the main statistical properties of
one-dimensional Markov mixtures and the Monte Carlo meth-
ods used to sample the corresponding realizations. For the
purpose of probing the reliability of our implementation,
which is key for the generation of the reference solutions
needed for the verification of the CLS methods, we will com-
pare the probabilities pα and the transition rates ρα estimated
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from the sampled realizations to the exact results stemming
from the theory of Markov media. Special emphasis will be
given to the case of spatially heterogeneous media.

A. Statistical properties

The statistical properties of one-dimensional Markov me-
dia have been extensively examined [1,4,21,37]. For a recent
survey, see, e.g., [36]. In the following, we limit ourselves to
recalling the main theoretical results that are useful for our
purposes.

Markov media are defined in terms of a Markov jump
process over a collection of discrete states α = {0, 1, . . . },
with transition rates ρα,β (x,�±) representing the probabili-
ties per unit length to have a transition from material α to
material β �= α, at position x in the direction �±, and the
initial condition pα (x0). Clearly, in dimension d = 1, the only
allowed directions are either �− = −1 or �+ = +1. The total
transition rate reads

ρα (x,�±) =
∑
β �=α

ρα,β (x,�±), (2)

and the one-dimensional chord length distribution can be con-
sequently written as

fα (s|x,�±) = ρα (x + s�±,�±)e− ∫ s
0 ds′ρα (x+s′�±,�± ). (3)

Another relevant quantity is the color probability pα (x), de-
fined as the probability to find material α at position x (the
word “color” is used as synonym for material), which obeys a
set of coupled Chapman-Kolmogorov equations:

± ∂

∂x
pα (x) =

∑
β �=α

pβ (x)ρβ,α (x,�±) − pα (x)ρα (x,�±). (4)

Forward and backward rates are related to the color probabil-
ities by an elegant symmetry condition [37], namely,

pα (x)ρα,β (x,�±) = pβ (x)ρβ,α (x,�∓). (5)

For the special case of binary mixtures, Eq. (4) for direction
�+ has the simple solution

pα (x) = pα (x0)e− ∫ x
x0

ρ̂(u,�+ ) du

+
∫ x

x0

ρβ (z,�+)e− ∫ x
z ρ̂(u,�+ ) du dz, (6)

where

ρ̂(x,�±) = ρα (x,�±) + ρβ (x,�±), (7)

with α = {0, 1} and pα (x) = 1 − pβ (x), β �= α.

B. Sampling and verification of Markov media

In order to sample one-dimensional Markov media by
Monte Carlo methods, we use the “sweeping” technique re-
called in [36]. Let us assume that the line has a finite length
L, say, in the interval [−L/2, L/2]. The sweeping in direction
�+ begins from the left boundary of the rod, x0 = −L/2: the
color of the first material chunk is sampled from the initial
condition pα (−L/2). For sake of simplicity, for all the config-
urations considered in this work, initial conditions are chosen
in order to preserve equilibrium at the left boundary, i.e.,

FIG. 1. Two realizations of one-dimensional Markov mixtures
on the segment [−L/2, L/2], sampled using the sweeping algorithm
described in Sec. II B. Top: Homogeneous Markov mixing of three
materials, with transition rates ρ0,1 = 100/99, ρ0,2 = 10/99, ρ1,0 =
100/11, ρ1,2 = 10/11, ρ2,0 = 100/55, and ρ2,1=10/55, and initial
conditions p0 = 0.833, p1 = 0.085, and p2 = 0.081, respectively.
Bottom: Homogeneous Markov mixing of two materials, with tran-
sition rates ρ0,1 = 100/99 and ρ1,0 = 100/11, and initial condition
p0(−L/2) = 0.9. In both cases the rod length is L = 20.

ensuring that pα remains constant in the right neighborhood
of −L/2: pα (−L/2) = pα (−L/2 + dx), with dx → 0. This is
achieved by choosing pα so that∑

β �=α

pβ (x)ρβ,α (x,�+) = pα (x)ρα (x,�+) (8)

for x = −L/2, which follows from Eq. (4). The length of
the first chunk is then sampled from the nonhomogeneous
exponential probability density in Eq. (3), with parameter
ρα (x,�+), e.g., using the “thinning” method [38]. The posi-
tion of the interface xα of color α is saved, and the color β �= α

of the next chunk is sampled from the transition probability

Pα→β (xα,�+) = ρα,β (xα,�+)

ρα (xα,�+)
. (9)

The process is repeated and segments are added until the
right boundary of the interval is reached. In the case of bi-
nary mixtures, ρα,β = ρα and Pα→β = 1, with β �= α. For
illustration, Fig. 1 shows two realizations of one-dimensional
homogeneous Markov media. The sweeping procedure can be
equivalently applied in the reversed direction, in which case
the initial condition would be assigned at the right boundary
of the segment.

For the purpose of testing the correct implementation of
the sweeping algorithm, we have compared the statistical fea-
tures of the sampled realizations to the theoretical predictions
reported in the previous section. A large collection of realiza-
tions is sampled and the ensemble averages of some relevant
observables are estimated at different positions xk of the rod.
Generally, the ensemble average of an observable O over M
realizations is estimated as

O = 1

M

M∑
m=1

Om, (10)

where Om is the value sampled on the mth realization. The
associated statistical uncertainty is

σ 2
G(O) = 1

M − 1

[
1

M

M∑
m=1

O2
m − O

2

]
. (11)

We have considered as observables the color probability and
the transition rates. For the former, we use as a natural
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FIG. 2. (a) Coloring probability and (b) forward transition rates
as a function of x along the rod. Dots and triangles represent the
values obtained from the sampling procedure, while lines represent
the expected theoretical values. The binary homogeneous Markov
mixture is characterized by rates ρ0,1 = 10/99, ρ1,0 = 10/11, with
initial condition p0(−L/2) = 0.9. Error bars are computed according
to Eq. (11).

estimator the marker function 1α (x), i.e., the function that
is equal to one if the material at position x is α, and zero
otherwise. Thus, the ensemble-averaged 1α (x), namely,

1α (x) = 1

M

M∑
m=1

(1α )m(x) (12)

yields a fair estimate of the coloring probability, which con-
verges to pα (x) for M → ∞. For the latter, an estimator is
built by dividing the rod into small segments of length dxk ,
centered at xk , and counting the number nα→β (xk,�±) of
oriented color transitions α → β falling within each segment.
The quantity

nα→β (xk,�±) = 1

M

M∑
m=1

(nα→β )m(xk,�±) (13)

yields a fair estimate of the transition rates weighted by the
coloring probability, which converges to ρα,β (xk,�±)pα (xk )
for M → ∞ and dxk → 0. If the Markov media
have been sampled by forward sweeping, the ratio of
nα→β (xk,�+)/1α (xk ) is directly compared with the
imposed ρα,β (x,�+), while sampled backward quantities
are compared with the ones obtained by means of the
symmetry property in Eq. (5).

Figure 2 shows the results obtained using M = 105 real-
izations for spatially homogeneous binary mixing statistics
for a rod of length L = 20 with transition rates ρ0,1 = 10/99
and ρ1,0 = 10/11, and initial condition p0(−L/2) = 0.9 cor-
responding to an equilibrium condition at the left boundary.
This mixing statistics is taken from Table II of Ref. [39]. A
very good agreement is found between the ensemble-averaged
and the theoretical values, both for coloring probabilities and
transition rates. Since the mixture is homogeneous and the
initial condition is set to the equilibrium condition, these
quantities are constant along the rod and do not depend on x.
Backward rates are not reported, for the sake of conciseness,
but their behavior is similar to direct rates.

In order to probe spatially heterogeneous mixtures, let us
now consider ramplike transition rates of the form

ρα,β (x,�+)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yα,β, x ∈ [− L
2 ,− L

2 + L
dα,β

)
yα,β + mα,β

(
L
2 − L

dα,β
+x

)
(

L−2 L
dα,β

) , x ∈[ − L
2 + L

dα,β
, L

2 − L
dα,β

)
yα,β + mα,β, x ∈ [

L
2 − L

dα,β
, L

2

]
.

(14)

We define a mixture over a rod of length L = 20, where
ρ0,1(x,�+) obeys Eq. (14) with the coefficients y0,1 = 10/99,
m0,1 = 0.5, and d0,1 = 5, respectively. The rate ρ1,0 = 10/11
is taken constant along the rod, and the initial condition
p0(−L/2) = 0.9 is chosen to ensure the equilibrium at the
left boundary. As before, 105 realizations are sampled, and the
estimated color probabilities and reaction rates are compared
to theoretical predictions. Results are reported in Figs. 3(a),
3(b), and 3(c). Overall, a good agreement is found between
the theoretical and ensemble-averaged values, confirming the
reliability and the robustness of the algorithm used to gener-
ate Markov media. In particular, ensemble-averaged forward
rates converge to the rates used for sweeping, and ensemble-
averaged backward rates converge to the values computed
from Eq. (5). Furthermore, Fig. 3(c) shows that forward and
backward transition rates for the case 1 → 0 dramatically
differ.

A further test is conducted to understand the behavior of
the system when the spatial gradient becomes steep. For this
purpose, binary Markov media are sampled using the transi-
tion rates given by Eq. (14) in the limit dα,β → 2. We consider
in particular the “color flip” case, where ρ0,1 and ρ1,0 swap at
x = 0. Correspondingly, the transition rates read

ρ0,1(x,�+) =
{

10
99 , x ∈ [− L

2 , 0
)

10
11 , x ∈[

0, L
2

] , (15)

ρ1,0(x,�+) =
{

10
11 , x ∈ [− L

2 , 0
)

10
99 , x ∈[

0, L
2

] , (16)

given with the initial condition p0(−L/2) = 0.9 which en-
sures the equilibrium condition at x = −L/2. This case is
illustrated in Fig. 4: a good agreement is found between the
theoretical results and the sampled values.

In order to go beyond the special case of binary mix-
ing statistics, we have also explored N-ary Markov media.
An example with three different material phases has been
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FIG. 3. (a) Coloring probability, (b) transition rates 0 → 1,
(c) transition rates 1 → 0 as a function of the position x along the rod.
Dots and triangles represent the values obtained from the sampling
procedure, and lines represent the expected theoretical values. The
forward transition rates ρ0,1 (used for sweeping) follow the ramplike
function given in Eq. (14), with parameters y0,1 = 10/99, m0,1 = 0.5,
d0,1 = 5, and ρ1,0 is constant along the rod with value 10/11. Error
bars are computed according to Eq. (11).

tested for a segment of length L = 20 with ramplike transi-
tion rates as given in Eq. (14). The chosen parameters are
reported in Table I, and the corresponding initial conditions

TABLE I. Input parameters of Eq. (14) used to sample ternary
Markov media.

α, β 0,1 0,2 1,0 1,2 2,0 2,1

yα,β 100/99 100/88 100/11 100/77 100/22 100/11
mα,β 6 5 −6 5 −4 −5
dα,β 5 5 7 7 4 4

FIG. 4. (a) Coloring probability, (b) transition rates 0 → 1,
(c) transition rates 1 → 0 as a function of the position x along the rod.
Dots and triangles represent the values obtained from the sampling
procedure, and lines represent the expected theoretical values. The
input transition rates (used for sweeping) are given by Eqs. (15) and
(16). Error bars are computed according to Eq. (11).

have been chosen to preserve equilibrium at the left boundary
of the rod: solving the system of Eqs. (8) coupled with the
condition

∑
α pα = 1 yields the values p0(−L/2) = 0.777,

p1(−L/2) = 0.144, and p2(−L/2) = 0.079. As before, an
ensemble of M = 105 realizations is sampled. The estimated
coloring probability along the rod agrees well with the theo-
retical prediction from Eq. (4), as illustrated in Fig. 5.

III. ANALYSIS OF PARTICLE TRANSPORT
IN MARKOV MEDIA

After assessing the general features of Markov media, we
focus now on particle transport problems.

035302-5



A. TENTORI et al. PHYSICAL REVIEW E 109, 035302 (2024)

FIG. 5. Coloring probability as a function of the position x along
the rod. Dots, triangles, and squares represent the ensemble aver-
ages resulting from realizations, and lines represent the expected
theoretical values. The ternary heterogeneous Markov mixture is
characterized by the mixing statistics given by Eq. (14), whose coef-
ficients are reported in Table I. Error bars are computed according to
Eq. (11).

A. Reference solutions

A Monte Carlo code which solves the Boltzmann equa-
tion in one-dimensional Markov mixtures has been developed,
in order to provide reference solutions to be then compared
with CLS. Formally, for each realization m, this code solves
the time-independent Boltzmann equation{

�±
∂

∂x
+ �

(m)
t (x)

}
ϕ(m)(x,�±)

= �(m)
s (x)

2

(m)(x) + Q(m)(x,�±), (17)

where ϕ(x,�) is the angular particle flux, 
(m)(x) =
ϕ(m)(x,�+) + ϕ(m)(x,�−) is the scalar particle flux, �t and
�s are the total and scattering cross sections, respectively, and
Q the source term. We assume that particles are constrained
to move along the line, which means that their direction can
only take values �± = ±1. This corresponds to the well-
known “rod model” [40], whereupon Eq. (17) reduces to a set
of two coupled first-order ordinary differential equations for
ϕ(m)(x,�±). To simplify matters further, scattering has been
taken isotropic.

The code takes as input the cross sections �r,α for reaction
r within each material α and the source distribution Q. Within
each material chunk, material properties are constant, and par-
ticle tracking is standard. Flight distances are sampled from
exponential distributions with parameter �t,α; if the sampled
flight is shorter than the distance to the material interface,
the particle is displaced and a collision is sampled. In our
model, a collision can be either absorption (with probability
1 − �s,α/�t,α) or isotropic scattering. Otherwise, the particle
is moved to the interface and a tentative flight length in the
new material (keeping the same direction) is sampled. The
process is repeated until the particle is absorbed or leaks from
the boundaries.

For each realization m, transport-related observables are
estimated by simulating N particle histories. The average

value is estimated using

Om = 1

N

N∑
i=1

Om,i, (18)

with related statistical uncertainty

σ 2
O(Om) = 1

N − 1

[
1

N

N∑
i=1

O2
m,i − Om

2

]
. (19)

Finally, the ensemble average over the M Markov media
realizations is computed using Eq. (10), and the associated
uncertainty is estimated by summing the component due to
the statistical dispersion of stochastic particle contributions in
each realization (stemming from using Monte Carlo to solve
the Boltzmann equation) and the one due to the dispersion of
the realizations [41].

For our work, the observables of interest are the
ensemble-averaged scalar (i.e., direction-integrated) particle
flux 〈ϕα (x)〉 in each material α, and the particle current
through the boundaries of the domain. The flux is estimated
using track-length and collision-based estimators over a spa-
tial mesh; currents are estimated by counting the number of
flights across the boundaries.

Our Monte Carlo code has been benchmarked against the
results presented in Refs. [20,39], where the rod model was
solved for each realization using deterministic solvers, pro-
viding reference solutions for the transmission and reflection
coefficients in binary Markov mixtures with a point source at
the left boundary. We revisited the configurations proposed
in those works for several rod lengths, transition rates, and
material cross sections. For all the tested configurations, a
very good agreement was found between our simulations and
published results, with maximum discrepancy below 1%.

B. A modified CLS method with memory effects

The Levermore-Pomraning equations are a set of coupled
Boltzmann-like transport equations describing the ensemble-
averaged angular particle flux ψα (x,�±) in material α [4]. It
has been shown that the ensemble-averaging procedure leads
to an infinite hierarchy of increasingly singular equations for
the moments of the angular flux: the Levermore-Pomraning
(LP) equations are established by truncating the hierarchy
at the first order, under the assumption of Markov mixing
statistics. For the rod model with isotropic scattering, this
procedure yields{
�±

∂

∂x
+ �t,α (x) + ρα (x,�±)

}
ψα (x,�±)

= �s,α

2
�α (x) +

∑
β �=α

ρβ,α (x,�±)ψβ (x,�±) + Qα (x,�±),

(20)

where �α (x) = ψα (x,�+) + ψα (x,�−) is the ensemble-
averaged scalar particle flux. The LP equations are approxi-
mate, unless the medium is purely absorbing, in which case
they are known to be exact [4]. It has been shown that
Eqs. (20) can be given a probabilistic meaning [42], which in
turns leads to the CLS approach [24]. The LP equations for-
mally describe the average density of particles having an
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additional phase-space coordinate α, assigned at the source.
Particles undergo flights with a modified total cross sec-
tion �∗

t,α (x,�±) = �t,α (x) + ρα (x,�±) and can switch color
label with probability ρα (x,�±)/�∗

t,α (x,�±) at the end of
each flight. This interpretation lends itself to a Monte Carlo
sampling strategy. Since the color switch is memoryless, due
to the Markov nature of the underlying stochastic process,
the CLS approach (and equivalently the LP equations) can-
not preserve the spatial correlations of the media, which is
ultimately responsible for the discrepancy with respect to the
reference ensemble-averaged solutions [22,30]. This is par-
ticularly relevant for diffusing media, where particles can be
back-scattered and “see” a material interface that had already
been crossed.

For the special case of spatially homogeneous Markov
media, the pioneering work of Adams and Zimmerman in-
troduced a CLS algorithm featuring three different layers of
memory effect: instead of immediately forgetting the position
of the sampled interface between colors during a flight, the
past interface or the two past interfaces are preserved and re-
sampled only when the particle first leaves the current material
chunk [23,24]. Strategies characterized by one or two levels
of memory were called algorithms B and C, respectively.
Recently, algorithms B and C have been extended to three-
dimensional spatially uniform settings, using the Poisson-Box
Sampling [31] and the Local Realization Preserving [32]
methods.

The accuracy of standard CLS in spatially heterogeneous
media has been probed both in one-dimensional [33,34] and
three-dimensional configurations [35]. As a stepping stone
towards the development of a general CLS-like algorithm
including memory effects and adapted to spatially heteroge-
neous media in arbitrary dimension, in this work we examine
the simpler case of one-dimensional heterogeneous configu-
rations.

For this purpose, a Monte Carlo code has been developed,
whose implementation is briefly discussed in the following.

1. Algorithm A

For the sake of comparison, our code can also sample Al-
gorithm A, i.e., the standard version of CLS without memory
effects. The sampling strategy closely follows [24], the main
difference being that the rates ρα,β (x,�±) are now space and
direction-dependent, and is here recalled since it provides the
basis for algorithms with memory:

(1) The initial coordinates of the particle are sampled from
Qα: in addition to choosing the starting position and direction,
the particle is also assigned a color α.

(2) An interaction distance l is sampled from a non-
homogeneous exponential probability density function with
modified total cross section:

�∗
t,α (x,�±) = �t,α + ρα (x,�±). (21)

The total transition rate ρα (x,�±) appearing in the modified
total cross section accounts for the effects of the random me-
dia on the particle displacements, and depends on the particle
direction �±.

(3) The particle is moved to the interaction point and a
collision event is sampled. The collision can be either absorp-

tion, isotropic scattering or color change. The probability for
one of these events to happen is given by the ratio �r,α/�∗

tα ,
where �r,α is the cross section for the event r. For the color
change, this corresponds to ρα (x,�±): the particle disappears
as α and reappears as β �= α at the same location and with the
same direction. The color β is sampled according to

Pα,β (x,�±) = ρα,β (x,�±)

ρα (x,�±)
. (22)

(4) The process is repeated until the particle is either ab-
sorbed or leaves the viable domain.

The correct implementation of the algorithm has been ver-
ified against the benchmark results reported in Refs. [20,39]
(see “model” or “phenomenological results” in the quoted
references). Discrepancies lower than 1% with respect to pub-
lished results confirmed the reliability of our code.

2. Algorithm B

Algorithm B stems from Algorithm A with the addition of
one level of memory, and works as follows:

(1) The initial coordinates of the particle are sampled from
Qα: in addition to choosing the starting position and direction,
the particle is also assigned a color α.

(2) Two spatial coordinates, x− and x+, are sampled from
two nonhomogeneous exponential distributions centered on
the starting position and having parameters ρα (x,�−) and
ρα (x,�+), respectively. These coordinates represent the two
boundaries of the “box” (of material α) surrounding the initial
particle position.

(3) An interaction distance l is sampled from an exponen-
tial probability density function with total cross section �t,α;
at the end of a flight, the particle can either be absorbed or
undergo scattering. The probability for one of these events to
happen is given by the ratio �r,α/�tα , where �r,α is the cross
section for the event r. This procedure is repeated until the
particle is absorbed, leaks from the domain, or leaves the box
boundaries (x− or x+).

(4) If the particle leaves the box boundaries, a new color
β is sampled from the space and direction-dependent proba-
bility given in Eq. (22), and a new box boundary is sampled
using the total transition rate of the new color ρβ (x,�±). For
instance, if the particle reaches the right boundary x+, x− is
set equal to x+ and a new x+ is sampled using ρβ (x,�+). The
previous boundary is deleted from the memory.

(5) The transport process is repeated in the new box.
We stress that this version of algorithm B requires min-

imal modifications with respect to the version proposed by
Zimmerman and Adams for spatially homogeneous media:
the key point is that all the rates ρα,β (x,�±) are now space
and direction-dependent, which allows entirely preserving the
strategy for the sampling of the box interfaces proposed in
Refs. [23,24].

3. Algorithm C

Algorithm C includes two levels of memory, and works as
follows:

(1) The initial coordinates of the particle are sampled from
Qα: in addition to choosing the starting position and direction,
the particle is also assigned a color α.
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(2) Two spatial coordinates, x− and x+, are sampled from
two nonhomogeneous exponential distributions centered on
the starting position and having parameters ρα (x,�−) and
ρα (x,�+), respectively. These coordinates represent the two
boundaries of the “box” (of material α) surrounding the initial
particle position.

(3) An interaction distance l is sampled from an exponen-
tial probability density function with total cross section �t,α;
at the end of a flight, the particle can either be absorbed or
undergo scattering. The probability for one of these events to
happen is given by the ratio �r,α/�tα , where �r,α is the cross
section for the event r. This procedure is repeated until the
particle is absorbed, leaks from the domain, or leaves the box
boundaries (x− or x+).

(4) If the particle leaves the box boundaries, a new color
β is sampled from the probability in Eq. (22), and a new set
of interfaces x± is sampled using ρβ (x,�±), which yields
another box [x−, xc] or [xc, x+]; here xc denotes the coordinate
of the interface of the box through which the particle has left
the material chunk α. More precisely, if the particle reaches
the boundary x−(x+), x−(x+) is set equal to xc and a new
position x−(x+) is sampled using ρβ (x,�−(+) ). The opposite
boundary x+(x−) is retained in memory. As such, the first box
is not deleted from the memory, resulting in the preservation
of two separate boxes [x−, xc] and [xc, x+], each distinguished
by its own material properties.

(5) Within the two boxes, the particle scatters or is ab-
sorbed according to the material properties of each. If the
particle crosses the internal box interface xc, it will switch
color and resample a new distance to collision. If the particle
crosses the external boundaries x− or x+, another box bound-
ary is sampled, deleting the box on the opposite side.

Similarly as for algorithm B, algorithm C also requires
minimal modifications with respect to the version proposed
by Zimmerman and Adams for spatially homogeneous media:
the strategy for the sampling of the box interfaces is preserved,
but the rates become space and direction-dependent.

IV. SIMULATION RESULTS

In order to assess the accuracy of the modified CLS method
proposed in the previous sections, we compare it to reference
solutions. For this purpose, we choose as fiducial quantities
the scalar material fluxes 〈ϕα〉 and the reflection 〈R〉 and
transmission 〈T 〉 coefficients. We consider different config-
urations, with and without spatial gradients, and with and
without absorption.

The first configuration is the spatially heterogeneous
Markov binary mixture used in the benchmark presented in
Sec. II B, whose ramplike transition rates ρ0,1(x,�+) are
given by Eq. (14), with parameters y0,1 = 10/99, m0,1 = 0.5,
d0,1 = 5; the rate ρ1,0(x,�+) = 10/11 is taken constant along
the rod. Figure 3 shows the direct and inverse transition rates
as a function of x (inverse rates are obtained from Eq. (5)). The
equilibrium initial condition is p0 = 0.9, and the rod length
is L = 20. The total cross sections of the two materials are
�0,t = 10/99 and �1,t = 100/11, and two different cases are
investigated:

FIG. 6. (a, b) Scalar flux in material 0 (red, upper lines) and 1
(blue, lower lines) as a function of x along the rod, for cases I and
II, respectively. Solid line: Reference solutions; dots: algorithm A
(memoryless); triangles: algorithm B (one layer of memory effect);
crosses: algorithm C (two layers of memory effect).

(1) Case I: material 0 is purely scattering, i.e., �0,s =
�0,t = 10/99, while material 1 has �1,a = 30/11 and �1,s =
70/11.

(2) Case II: material 0 is purely absorbing, i.e., �0,a =
�0,t = 10/99 and material 1 is the same as in case I.

For both cases, particles start at the left boundary of the rod
(x = −10) with initial direction � = +1. For x < −5 the total
transition rate of material 0 is of the same order of magnitude
as the total cross section, while for x > −5 the total transition
rate increases and the atomic-mix limit is approached. Con-
versely, in material 1 the total transition rate is much smaller
that the total cross section. For the reference solutions, we
sampled M = 105 material realizations, and N = 106 histories
per realization were simulated. The three CLS algorithms
were run with N = 108 particles.

Simulation results for 〈R〉 and 〈T 〉 are reported in Table II,
while the scalar fluxes in the two materials are shown in
Fig. 6. In order to quantify the discrepancy between the CLS
algorithms and the reference solutions for the scalar fluxes, we
use the chi-square

χ2
α =

∑
k

[〈ϕα〉(xk ) − ψα (xk )]2

〈ϕα〉(xk )
, (23)

taken over the spatial bins where the quantities have been
tallied. The resulting values are reported in Table II.

Overall, memory effects considerably increase the accu-
racy of CLS. In fact, for both configurations the discrepancy
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TABLE II. Results obtained for cases I and II. The first two columns report the ensemble averages of 〈R〉 and 〈T 〉, obtained by the
simulations on geometric realizations (reference values) and by the CLS algorithms (A, B, and C). The error between CLS and reference is
also reported. The third and fourth columns report the values of the chi-square function [Eq. (23)] used to evaluate the discrepancy between
the reference and the CLS scalar fluxes in materials 0 and 1, respectively.

〈R〉 〈T 〉 χ 2
0 χ 2

1

Case I

Ref. 0.4059 ± 0.0005 0.00147 ± 0.00007

A
0.22634 ± 4 × 10−5

Err[%] = 44.24 ± 0.14
0.001383 ± 4 × 10−6

Err[%] = 5.92 ± 4.85
0.2637 0.0234

B
0.34074 ± 5 × 10−5

Err[%] = 16.06 ± 0.13
0.001679 ± 4 × 10−6

Err[%] = 14.21 ± 4.89
0.0308 0.0030

C
0.39519 ± 5 × 10−5

Err[%] = 2.65 ± 0.13
0.001436 ± 4 × 10−6

Err[%] = 2.31 ± 4.84
0.0009 0.0001

Case II

Ref. 0.1232 ± 0.0004 0.00036 ± 0.00002

A
0.05420 ± 2 × 10−5

Err[%] = 56.01 ± 0.39
0.000435 ± 2 × 10−6

Err[%] = 18.14 ± 6.82
0.0291 0.0117

B
0.10013 ± 3 × 10−5

Err[%] = 18.74 ± 0.34
0.000441 ± 2 × 10−6

Err[%] = 19.81 ± 6.84
0.0026 0.0013

C
0.12028 ± 3 × 10−5

Err[%] = 2.39 ± 0.34
0.000369 ± 2 × 10−6

Err[%] = 0.17 ± 6.71
0.0001 0.0001

between reference solutions and CLS for 〈R〉 decreases from
∼50% (algorithm A) down to ∼2% (algorithm C), as shown
in Table II. The behavior of scalar fluxes is also better re-
produced: the chi-square values decrease by two orders of
magnitude between the algorithms A and C, as shown in
Table II. Improvements are also seen in the coefficient 〈T 〉,
although this quantity is much smaller than 〈R〉 because of
absorption, and thus the error is larger (see Table II).

To complete our analysis, we consider the limit case of
purely scattering mixing statistics, where the discrepancy be-
tween standard CLS and reference solutions is expected to
be amplified. We assume cross sections �0,t = �0,s = 10/99
and �1,t = �1,s = 100/11. We examine four different config-
urations:

Case III: spatially homogeneous Markov mixing with
transition rates ρ0,1 = 10/99 and ρ1,0 = 10/11, and equilib-
rium initial condition p0 = 0.9. The rod length is L = 20. This
configuration has been used in Sec. II B (see Fig. 2), and it is
taken from Table II of Ref. [39].

Case IV: spatially heterogeneous Markov mixing with
rates equivalent to the ones used in cases I and II.

Case V: spatially heterogeneous Markov mixing with
ρ0,1(x,�+) and ρ1,0(x,�+) given by Eq. (14), with param-
eters y0,1 = 10/99, m0,1 = 0.5, d0,1 = 5, and y1,0 = 10/11,
m1,0 = 10, d1,0 = 5 (p0 = 0.9 to assign equilibrium at x =
−L/2).

Case VI: spatially homogeneous Markov mixing charac-
terized by constant transition rates whose values are set to the
maximum of the rates of case V, i.e., ρ0,1 = 0.60 and ρ1,0 =
10.90, with initial condition p0 = 0.947 to ensure equilibrium
at x = −L/2.

The simulation results are reported in Table III: memory
effects significantly reduce the discrepancy between reference
solutions and CLS for 〈R〉 and 〈T 〉 in cases III, IV, and V. In
case III, the total transition rate of material 0 is comparable

to the total cross section, while the ones of material 1 are
smaller. Thus, particles have a high probability of being
back-scattered and the impact of memory effects is expected
to be larger. In cases IV and V, the material chunk size
decreases as x increases, approaching the atomic-mix limit
for x > 5. In particular, in case IV a spatial gradient is
imposed in the transition rates of material 0, reducing the
chunk size along x [see Fig. 3(b)]. This reduces the probability
for scattering to happen in material 0, but it increases the
probability of finding material 1, which is a strong scatterer.
Therefore, similarly as for case III, memory effects are highly
beneficial, especially for the transmission coefficient, whose
error decreases from 195.61% (algorithm A) down to 38.92%
(algorithm C). Analogous considerations apply to case V,
where a strong gradient is imposed to material 1. For large
x the chunk size of material 1 decreases (making scattering
less probable); for smaller x, scattering remains important
and memory effects play an essential role in improving
the accuracy of CLS. A significant improvement can be
also noticed in the behavior of the scalar fluxes in material
0, as shown in Fig. 7 and by the values of the chi-square
in Table III. On the contrary, memory effects seem to be
ineffective in increasing the accuracy of the scalar flux in
material 1. However, it is important to notice that, in these
configurations, the scalar flux in material 1 is of the order
of ∼10−2 (in arbitrary units), a value comparable to the
deviation between the fluxes predicted by Algorithm A and
C for material 0. Memory effects do not enhance the model
accuracy at this scale. Finally, in case VI memory effects have
also a positive contribution, although their impact is smaller
than in the previous cases. This is consistent with the fact that
here cross sections are smaller than total transition rates, for
both material 0 and 1 along the entire rod. Therefore, in this
configuration the atomic mix limit is approached, and CLS
becomes closer to the reference solutions. Our findings are
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TABLE III. Results obtained for cases III, IV, V, and VI. The first two columns report the ensemble averages of 〈R〉 and 〈T 〉, obtained by
the simulations on geometric realizations (reference values) and by the CLS algorithms (A, B, and C). The error between CLS and reference
is also reported. The third and fourth columns report the values of the chi-square function [Eq. (23)] used to evaluate the discrepancy between
the reference and the CLS scalar fluxes in materials 0 and 1, respectively.

〈R〉 〈T 〉 χ 2
0 χ 2

1

Case III

Ref. 0.8253 ± 0.0005 0.1746 ± 0.0005

A
0.68353 ± 4 × 10−5

Err[%] = 17.18 ± 0.07
0.31646 ± 4 × 10−5

Err[%] = 81.21 ± 0.44
0.3606 0.0192

B
0.75417 ± 4 × 10−5

Err[%] = 8.62 ± 0.07
0.24582 ± 4 × 10−5

Err[%] = 40.76 ± 0.37
0.0990 0.0295

C
0.80953 ± 4 × 10−5

Err[%] = 1.92 ± 0.07
0.19046 ± 4 × 10−5

Err[%] = 9.06 ± 0.34
0.0043 0.0110

Case IV

Ref. 0.9480 ± 0.0002 0.05195 ± 0.0002

A
0.84641 ± 4 × 10−5

Err[%] = 10.72 ± 0.03
0.15358 ± 3 × 10−5

Err[%] = 195.61 ± 1.05
0.4211 0.0194

B
0.88783 ± 3 × 10−5

Err[%] = 6.35 ± 0.03
0.11216 ± 3 × 10−5

Err[%] = 115.88 ± 0.73
0.1865 0.0191

C
0.92782 ± 2 × 10−5

Err[%] = 2.13 ± 0.03
0.07217 ± 3 × 10−5

Err[%] = 38.92 ± 0.51
0.0323 0.0234

Case V

Ref. 0.8391 ± 0.0004 0.1608 ± 0.0004

A
0.75390 ± 4 × 10−5

Err[%] = 10.16 ± 0.05
0.24609 ± 4 × 10−5

Err[%] = 53.03 ± 0.31
0.3520 0.0481

B
0.78264 ± 4 × 10−5

Err[%] = 6.74 ± 0.05
0.21735 ± 4 × 10−5

Err[%] = 35.15 ± 0.29
0.1401 0.0360

C
0.80662 ± 4 × 10−5

Err[%] = 3.88 ± 0.05
0.19337 ± 4 × 10−5

Err[%] = 20.24 ± 0.28
0.0345 0.0214

Case VI

Ref. 0.8385 ± 0.0004 0.1614 ± 0.0004

A
0.78816 ± 4 × 10−5

Err[%] = 6.01 ± 0.05
0.21183 ± 4 × 10−5

Err[%] = 31.24 ± 0.26
0.0384 0.0008

B
0.80103 ± 4 × 10−5

Err[%] = 4.48 ± 0.05
0.19896 ± 4 × 10−5

Err[%] = 23.26 ± 0.25
0.0220 0.0013

C
0.81231 ± 4 × 10−5

Err[%] = 3.13 ± 0.05
0.18768 ± 4 × 10−5

Err[%] = 16.28 ± 0.25
0.0098 0.0017

consistent with those reported by Zimmerman for spatially
homogeneous configurations [Figs. 1(a) and 1(b) of
Ref. [23]]: the relative error between CLS and reference
solutions in 〈R〉 and 〈T 〉 decreases from tens of percents
(algorithm A) down to a few percents (algorithm C).

The accuracy of CLS algorithms with respect to the en-
semble averages 〈R〉 and 〈T 〉 over Markov media should be
put in perspective by considering the full distribution of the
observables. For this purpose, in Fig. 8 we display the nor-
malized distributions of the coefficients R and T stemming
from Monte Carlo simulations for the benchmark cases I,
III, and VI. As a general consideration, highly nonsymmet-
rical shapes can be observed, especially in cases I and III
where bimodality and cutoff effects appear. The behavior
of the full distributions aligns with previous findings [29]
and is not straightforwardly related to the physical proper-
ties and the mixing statistics of the explored configurations.
This allows concluding that the average values predicted

by CLS-like algorithms, although relatively close to the
ensemble-averaged values, may fail to be representative, sim-
ilarly as observed in spatially homogeneous low-dimensional
configurations [1,29]. A possible way of overcoming this is-
sue would be to establish CLS-like equations for the higher
moments of the observables, and in particular the variance: it
should be noted, however, that such attempts have met only
limited success for the simpler case of spatially homogeneous
media [43].

V. CONCLUSIONS

In this paper we have proposed a class of modified CLS-
like algorithms for particle transport in Markov media. These
methods are capable of taking into account memory effects
in general spatially heterogeneous settings. The effectiveness
and the robustness of the developed models have been evalu-
ated against reference solutions obtained by taking ensemble
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FIG. 7. (a)–(d) Scalar flux in material 0 (red, upper lines) and 1 (blue, lower lines) as a function of x along the rod, for the four simulation
cases III, IV, V, and VI, respectively. Solid line: Reference solutions; dots: algorithm A (memoryless); triangles: algorithm B (one layer of
memory effect); crosses: algorithm C (two layers of memory effect).

averages over a large collection of Markov media realizations
for one-dimensional rod model problems.

We have briefly reviewed the key statistical features of
Markov media, which have been then used to probe the relia-
bility of the sampled realizations used for reference solutions.
Then we have illustrated how the B and C algorithms of
CLS, originally conceived for spatially homogeneous me-
dia, can be quite naturally extended to the case of spatially
heterogeneous media. In particular, we have shown that the
key idea of algorithms B and C, i.e., the use of fictitious
“boxes” (one for algorithm B, and two for algorithm C) to
preserve partial memory of the past traversed material inter-
faces, can be straightforwardly adapted to the case of spatially
heterogeneous media: the only required modification consists
in replacing the constant transition rates with position and
direction-dependent rates.

The behavior of the modified CLS was tested against
reference solutions for a few relevant benchmark configu-
rations encompassing spatially heterogeneous and spatially
homogeneous cases, with and without absorption. The fiducial
quantities of the benchmarks were the reflection and transmis-
sion coefficients and the material scalar fluxes. Overall, the
proposed algorithms perform well, and the presence of mem-

ory effects is beneficial to increase the accuracy of CLS with
respect to reference solutions, even in the limit case of config-
urations without absorption. In this respect, the rod model is
particularly challenging, in that the particles have an increased
probability of re-crossing the same material interface when
they are back-scattered. The effectiveness of modified CLS
was evaluated with regard to binary Markov mixtures. Nev-
ertheless, in a forthcoming study will examine how well this
algorithm performs in scenarios involving multiple materials.

The Conditional Point Sampling (CoPS) model has been
recently proposed as an effective alternative to CLS for one-
dimensional Markov media [44–46]. It would be interesting
to explore the behavior of CoPS for spatially heterogeneous
configurations and compare its performances to those of the
modified CLS-strategy discussed here.

Furthermore, future work will focus on extending the
strategy presented in this paper to three-dimensional configu-
rations: the idea is to make the Poisson-Box Sampling and the
Local Realization Preserving algorithms work in the presence
of position and direction-dependent rates. Contrary to one-
dimensional configurations, where the particle displacements
are trivially aligned with the material interfaces (chords and
volumes coincide), in three dimensions the sampling of a
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FIG. 8. Analysis of the normalized distribution �(R) of the reflection coefficient R and of the normalized distribution �(T) of the
transmission coefficients T , for the benchmark cases I (top), III (center), and VI (bottom). Distributions have been obtained from the reference
simulations over the ensemble of sampled stochastic media. Left column: �(R); right column: �(T). The vertical lines denote the average
values: blue solid line reference value, red dashed line CLS A, green dotted line CLS B, violet dash-dotted line CLS C.

fictitious box to include memory effects requires some care.
The possibility of addressing real-world configurations is of
utmost importance in view of the industrialization of these
methods in the production Monte Carlo code TRIPOLI-4
[47], developed at CEA, which would pave the way, e.g., to
applications in the context of ICF [48–50].

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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