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We present a mode-coupled weakly nonlinear model for the evolution of perturbations on cylindrical mul-
tilayered shells in a decelerating implosion. We show that nonlinear mode-mode interactions among large
wave-number fundamental modes are able to induce the growth of small wave number harmonic modes,
i.e., forming inverse cascade channels in the wave-number space. When uniform compression and interfacial
coupling are taken into consideration, the amplitude of some perturbation modes exhibits an oscillatory growth
pattern, which is beyond the intuition that perturbation amplitudes usually have a fast growth tendency in an
implosion dominated by the Bell-Plesset effect. Our model accounts well for the previous experiments of Hsing
et al. [Hsing et al., Phys. Rev. Lett. 78, 3876 (1997) and Phys. Plasmas 4, 1832 (1997)], which is among the
few experiments of multimode multiinterface perturbation development in a cylindrical implosion. In particular,
we find that the inverse cascade of modes is the origin of the excitation and growth of the wave number k = 2
harmonic mode on the inner interface. The observed decrease of the fundamental modes on the inner interface
is mainly attributed to the decreasing period of the oscillatory growth process. These results may afford further
insight into the distortion of hot spots in inertial confined fusion implosion near the final stage, and also help to
design multimode perturbation experiments in converging geometry in the coming future.
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I. INTRODUCTION

Hydrodynamic instability, especially the Rayleigh-Taylor
(RT) instability [1–3], is one of the major concerns in in-
ertial confined fusion (ICF) [4–9] and evolution of stars
[10–12]. For a multilayered ICF target [13,14], hydrodynamic
instability is significant at both acceleration and deceleration
phases of implosion, taking place near the outer and inner
interfaces of the fuel layer, respectively [15,16]. A profound
consequence of this instability [17–19] is that it triggers sym-
metry breaking of the hot spot, resulting in severe mixing
of cold components and hot fuel [20,21], and thus leads to
a significant reduction of core temperature. It has been long
conjectured that hydrodynamic instability is somehow under-
estimated in theories with some important physical factors
not well taken into consideration, as has been observed in
experiments that overall fusion yields [16,22] are systemati-
cally lower than those predicted by theoretical and numerical
calculations.

This inconsistency has motivated consecutive efforts from
both theoretical and experimental sides. Theoretical investiga-
tions have been focused on taking various physical effects into
consideration, including interfacial coupling [23–31], mode
coupling [32–35], compressibility [36–38], and even the ef-
fect of magnetic fields [29,39–42]. These theoretical models
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afford qualitative physical pictures from different perspec-
tives. However, it is still desirable to know which among these
effects are essential to account for experimental findings. On
the other side, corresponding experimental efforts have been
devoted to the improvements of diagnostics and designs of ex-
periments to provide discriminative experimental evidence to
assess the influence of various physical factors. These include
experiments based on the implosion platform of cylindrical
geometry, where high-quality images of distorted shells are
relatively easy to obtain [43–52], and are still essential to the
geometric contraction effect, i.e., the Bell-Plesset (BP) effect
[53,54], is well exhibited. In this context, it becomes attractive
to have a theoretical model in addition to direct numerical
simulations, which contains minimum necessary physical fac-
tors simultaneously, to account for available experiments and
to guide the design of future experiments. In this way, one
may have a better chance to gain further insight into the roles
played by various physical factors in the instability growth in
implosion processes.

In general, perturbations on a cylindrical interface can
be decomposed into a series of sine and cosine components
(modes). Note that the development of perturbations on the
cylindrical axial direction is not considered here, and thereby
the evolution of perturbations on the cylindrical interfaces
is actually reduced to a two-dimensional problem. Nonlinear
development of a given mode, e.g., the formation of bubbles
and spikes, as well as the interaction between various modes,
are two general features of nonlinear evolution of perturba-
tions on cylindrical interfaces. Both of them contribute to the
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probable turbulent mixing [55–58]. However, for cylindrical
implosion systems, most works so far have focused on the
nonlinear development of a single-mode initial perturbation
[45–52,59–64]. Theoretical modeling and experimental mea-
surements of nonlinear interactions between different modes
in cylindrical implosion or contraction are rarely reported
[43,44], partly because of the huge difficulties encountered in
theoretical analyses and experimental realizations. A theoreti-
cal analysis that takes into consideration interactions between
modes is thus of great help to reveal important physical
features in the evolution of multimode perturbations on cylin-
drical interfaces, and may also afford immediate support to the
design of prospective multimode experiments in cylindrical
implosions of multi-interfaces.

In this paper, we present a mode-coupled weakly nonlinear
model with uniform compression for the evolution of pertur-
bations on cylindrical multilayered shells in a decelerating
implosion. We show that the nonlinear mode-mode interac-
tion among large wave-number fundamental modes is able to
induce the growth of small wave-number harmonic modes,
i.e., forming an inverse cascade in the wave-number space. In
addition, when uniform compression and interfacial coupling
are taken into consideration, the amplitude of some pertur-
bation modes exhibits an oscillatory growth pattern, which
is beyond the intuition that perturbation amplitudes usually
have a fast growth tendency in an implosion dominated by
the BP effect. A careful comparison with the experiments of
Hsing et al. [43,44] shows that our model well reproduces the
evolution of perturbations before the arrival of the reflected
shock wave from the cylindrical center. In particular, we find
that the inverse cascade of modes is the origin of the excitation
and growth of the wave number k = 2 harmonic mode in
the inner interface. The observed decrease in the perturbation
amplitudes of fundamental modes on the inner interface is
mainly attributed to the decreasing period of the oscillatory
growth process. These features may afford further insight into
the distortion of hot spots in ICF implosion near the final stage
and also help to design multimode perturbation experiments in
the coming future.

The rest of this paper is composed of three sections. In
Sec. II, we show how to build the linear and third-order
mode-coupled weakly nonlinear model based on the potential
flow theory. A detailed comparison between calculation and
experimental results [43] is provided in Sec. III and, finally,
we conclude our work with a short summary in Sec. IV.

II. THEORETICAL MODEL

A. Implosion configuration and governing equations

The initial configuration of the multilayered cylindrical
shells considered in our theoretical model is schematically
displayed in Fig. 1, where a two-dimensional axisymmet-
ric geometry is assumed. In accordance with the experiment
[43,44], the whole system is composed of three different
fluids with different densities, and thus denoted as 1, 2, and
3, respectively with increasing radius. The undisturbed radii
of the inner and outer interfaces, which are time-dependent
functions, are denoted as Ri(t ) and Ro(t ), respectively, and
the symbol α is used to represent the ratio between Ro(t )

FIG. 1. Schematic illustration of the cylindrical shell. Two in-
terfaces separate three fluids of density ρ1, ρ2, and ρ3. Azimuth
perturbations at the inner and outer interfaces are represented
exaggeratedly.

and Ri(t ), i.e., α = Ro(t )/Ri(t ), following previous works
[30]. Disturbed inner and outer interfaces are then represented
as azimuthal angel θ dependent functions as ri,o(θ, t ) =
Ri,o(t ) + ηi,o(θ, t ), where ri,o are the radial coordinates of in-
terfaces and ηi,o are azimuthal perturbations at the interfaces.
Note that in the experiment [43], there was an additional
ablation layer outside fluid 3. Before the experimental results
started to be recorded, the perturbation amplitudes on the
outer interface had been introduced by the perturbations on
the ablation layer through coupling effects. However, during
the recording period, which is also the calculation time in-
terval of our model, the distance between the outer interface
and the ablation layer increases rapidly because of the fast
expansion of fluid 3, which makes the influence of the ablation
layer on the outer interface diminish quickly. So, the model
is simplified to the configuration displayed in Fig. 1 without
including the ablation layer.

For irrotational, inviscid, and homogeneous fluids, the con-
tinuity equation ∂ρ

∂t + ∇ · (ρu) = 0 can be recast with velocity
potential � as

1

ρ

∂ρ

∂t
= −∇u = −∇2�, (1)

where � is defined by u = ∇�, and ρ is the density. The
potential function of the internal fluid is denoted as �1,
the potential of the middle shell is �2, and the potential of
the external fluid is �3. The compressibility can then be taken
into account as a source of the potential function as [53]

∇2�n = Fn(t ), (2)

where Fn(t ) = −ρ̇n/ρn is the source term and n = 1, 2, and 3
for each fluid. The density of each fluid can also be determined
as a function of Ri(t ) and Ro(t ) via the conservation law
of mass, and so does Fn(t ). For the internal fluid, ρ1

is determined by π (Ri )2ρ1(t ) = π (Ri
ini )

2ρ1(0) = const,
while the middle shell obeys π [(Ro(t ))2 − (Ri(t ))2]ρ2(t ) =
π [(Ro(0))2 − (Ri(0))2]ρ2(0) = const. For the expanding
outer fluid, the F3(t ) is not determined through the
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conservation law. Instead, it is inferred from the experimental
finding that the Atwood number of the outer interface, defined
as Ao

t = (ρ3 − ρ2)/(ρ3 + ρ2), is approximately a constant
around −0.15, and whereby F3(t ) ≈ 2Ȧo

t /[(Ao
t )2 − 1] + F2(t ).

Following the notations of Ref. [30], the governing equa-
tions are expressed as

∂ηs

∂t
+ 1

r2

∂ηs

∂θ

∂�n

∂θ
− ∂�n

∂r

= ∂ηs

∂t
+ 1

r2

∂ηs

∂θ

∂�n+1

∂θ
− ∂�n+1

∂r
= −Ṙs

at r = Rs + ηs, (3)

ρn+1

[
∂�n+1

∂t
+ 1

2

(
∂�n+1

∂r

)2

+ 1

2r2

(
∂�n+1

∂θ

)2
]

−ρn

[
∂�n

∂t
+ 1

2

(
∂�n

∂r

)2

+ 1

2r2

(
∂�n

∂θ

)2
]

= 0

at r = Rs + ηs, (4)

where s takes i for the inner interface and takes o for the
outer interface. Note that in Eq. (4), n varies with s, so we
have n = 1 for s = i and n = 2 for s = o. There are two
additional boundary conditions at the origin of the cylindrical
coordinates and at infinite distance, i.e.,

1

r

∂�1

∂θ
= 0 at r → 0, (5a)

1

r

∂�3

∂θ
= 0 at r → ∞ (5b)

Here Eq. (3) is actually the kinematic boundary condition,
which describes the continuity of normal velocities across
interfaces. Equation (4) is the dynamic boundary condition de-
rived from the integral of the Bernoulli equation. Note that we
have neglected the pressure inhomogeneity, which can be re-
placed by an equivalent interface perturbation when necessary
[25]. Equations (5a) and (5b) account for the disappearance of
perturbations at both r → 0 and r → ∞.

Following the experimental setup of Ref. [43], we consider
perturbations composed of both cosine and sine modes, which
implies that ηi,o = ∑

m am cos(mθ ) + bm sin(mθ ), where am

and bm are expansion coefficients with m = 1, 2, 3, ...

The expansion of ηi,o with two fundamental azimuthal
modes, represented by k1 and k2, respectively, can then be

expressed as

ηi,o = εηi,o
1,c1 cos k1θ + εηi,o

1,c2 cos k2θ + ε2ηi,o
2,0

+ ε2ηi,o
2,c1 cos (k1 + k2)θ + ε2ηi,o

2,c2 cos (k1 − k2)θ

+ ε2ηi,o
2,c3 cos 2k1θ + ε2ηi,o

2,c4 cos 2k2θ

+ ε3ηi,o
3,c1 cos (2k1 − k2)θ + ε3ηi,o

3,c2 cos (k1 − 2k2)θ

+ ε3ηi,o
3,c3 cos k1θ + ε3ηi,o

3,c4 cos k2θ

+ ε3ηi,o
3,c5 cos (2k1 + k2)θ + ε3ηi,o

3,c6 cos (k1 + 2k2)θ

+ ε3ηi,o
3,c7 cos 3k1θ + ε3ηi,o

3,c8 cos 3k2θ

+ εηi,o
1,s1 sin k1θ + εηi,o

1,s2 sin k2θ

+ ε2ηi,o
2,s1 sin (k1 + k2)θ + ε2ηi,o

2,s2 sin (k1 − k2)θ

+ ε2ηi,o
2,s3 sin 2k1θ + ε2ηi,o

2,s4 sin 2k2θ

+ ε3ηi,o
3,s1 sin (2k1 − k2)θ + ε3ηi,o

3,s2 sin (k1 − 2k2)θ

+ ε3ηi,o
3,s3 sin k1θ + ε3ηi,o

3,s4 sin k2θ

+ ε3ηi,o
3,s5 sin (2k1 + k2)θ + ε3ηi,o

3,s6 sin (k1 + 2k2)θ

+ ε3ηi,o
3,s7 sin 3k1θ + ε3ηi,o

3,s8 sin 3k2θ + O(ε4), (6)

where the parameter ε is used to indicate the order of per-
turbations only. The amplitudes of perturbations for various
orders of ε are represented by ηi,o

α,β with two subscripts on
the right-hand side of Eq. (6). The first subscript α denotes
the order of perturbation with respect to ε, and the second
subscript β represents the numeration of the term on the same
order of ε. When they are coefficients of cosine terms, a
prefix c is attached before the numeration and a prefix s is
attached for sine terms. Note that the two fundamental az-
imuthal modes together with their couplings are all included in
the expansions. To have a close comparison with experiments
[43], we shall consider the mode k1 = 10, corresponding to
the premachined surface ripple, and the mode k2 = 4 induced
by laser imprinting in the discussions hereinafter.

B. Linear instability

By keeping the first-order terms of ε, the velocity potentials
can be written in expansion forms as

�1 =
[

RiṘi − F1

2
(Ri )2

]
ln r + r2F1(t )

4
+ εa1(t )rk1 cos k1θ + εb1(t )rk2 cos k2θ + εc1(t )rk1 sin k1θ + εd1(t )rk2 sin k2θ, (7)

�2 =
[

RiṘi − F2

2
(Ri )2

]
ln r + r2F2(t )

4
+ εa2(t )rk1 cos k1θ + εb2(t )rk2 cos k2θ + εc2(t )r−k1 cos k1θ + εd2(t )r−k2 cos k2θ

+ εe2(t )rk1 sin k1θ + ε f2(t )rk2 sin k2θ + εg2(t )r−k1 sin k1θ + εh2(t )r−k2 sin k2θ, (8)

�3 =
[

RoṘo − F3

2
(Ro)2

]
ln r + r2F3(t )

4
+ εa3(t )r−k1 cos k1θ + εb3(t )r−k2 cos k2θ + εc3(t )r−k1 sin k1θ + εd3(t )r−k2 sin k2θ,

(9)
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where a1(t ) − d1(t ), a2(t ) − h2(t ), and a3(t ) − d3(t ) are
undetermined coefficients and will be expressed by the
expansion form of ηs in Eq. (6).

When Eqs. (7)–(9) are inserted into Eqs. (3) and (4), lin-
earized equations of ηi and ηo for mode k1, in terms of ηi

1,c1
and ηo

1,c1, can be arrived at as

η̈i
1,c1

BP term︷ ︸︸ ︷
+2

Ṙi

Ri
η̇i

1,c1 +

RT term︷ ︸︸ ︷(
1 − k1Ai

t

) R̈i

Ri
ηi

1,c1 +

Thin−shell correction I︷ ︸︸ ︷
k1

α2k1−2(α2 − 1)
(
Ai

t + 1
)(

Ao
t + 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) Ṙi

Ri
η̇i

1,c1 +

Thin−shell correction II︷ ︸︸ ︷
k1

Ai
t A

o
t

(
Ai

t + 1
)

α2k1 + Ai
t A

o
t

R̈i

Ri
ηi

1,c1

Thin−shell correction III︷ ︸︸ ︷
+k1

α2k1−2(α2 − 1)
(
Ai

t + 1
)(

Ao
t + 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) (Ṙi )2

(Ri )2
ηi

1,c1

Coupling term I︷ ︸︸ ︷
−k1

α3k1−3(α2 − 1)
(
Ai

t + 1
)(

Ao
t + 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) (Ṙi)2

(Ri)2
ηo

1,c1

Coupling term II︷ ︸︸ ︷
−k1

αk1−1(α2 − 1)
(
Ai

t + 1
)(

α2k1 + Ao
t

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) Ṙi

Ri
η̇o

1,c1 − k1
αk1−1

(
Ai

t + 1
)
Ao

t

α2k1 + Ai
t A

o
t

R̈i

Ri
ηo

1,c1

+
(
Ai

t − 1
)(

α2k1 − Ao
t

)
(Ḟ1Ri + F1Ṙi )

2
(
α2k1 + Ai

t A
o
t

)
Ri

ηi
1,c1 − αk1−1

(
Ai

t + 1
)(

Ao
t + 1

)
(α2Ḟ3Ri + F3Ṙi )

2
(
α2k1 + Ai

t A
o
t

)
Ri

ηo
1,c1︸ ︷︷ ︸

Compressibility term I

+F1
(
Ai

t − 1
)(

α2k1 − Ao
t

)
2
(
α2k1 + Ai

t A
o
t

) η̇i
1,c1 − F3α

k1+1
(
Ai

t + 1
)(

Ao
t + 1

)
2
(
α2k1 + Ai

t A
o
t

) η̇o
1,c1︸ ︷︷ ︸

Compressibility term II

−F2
(
Ai

t + 1
)( − (

k1α
2k1−2

(
Ao

t + 1
)) + α2k1

(
(k1 + 1)Ao

t + k1 − 1
) + α4k1 − Ao

t

)
2(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) η̇i
1,c1︸ ︷︷ ︸

Compressibility term III

−(
Ai

t + 1
)a2k1

(
F 2

2 k1
(
Ao

t + 1
)
Ri − F2Ṙi

(
3k1Ao

t + Ao
t + 3k1 − 1

) − Ḟ2
(
Ao

t − 1
)
Ri

)
2(α2k1 − 1)Ri

(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term IV

−(
Ai

t + 1
)−(

F2k1α
2k1−2

(
Ao

t + 1
)
(F2Ri − 3Ṙi )

) + α4k1 (F2Ṙi + Ḟ2Ri ) − Ao
t (F2Ṙi + Ḟ2Ri )

2(α2k1 − 1)Ri
(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term V

+F2α
k1−1

(
Ai

t + 1
)(

α2k1+2
(
Ao

t + k1 + 1
) − k1α

2k1 + α2
(
(k1 − 1)Ao

t − 1
) − k1Ao

t

)
2(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) η̇o
1,c1︸ ︷︷ ︸

Compressibility term VI

−(
Ai

t + 1
)αk1−1

(
2F2Ṙi

(
(k1 + 1)Ao

t + 1
) + 2Ḟ2k1Ao

t Ri − (
F 2

2

(
Ao

t + 1
)
Ri

))
4(α2k1 − 1)Ri

(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term VII

−(
Ai

t + 1
)αk1+1

( − 2F2k1Ao
t Ṙi + 2Ḟ2Ri

( − k1Ao
t + Ao

t + 1
) + F 2

2

(
Ao

t + 1
)
Ri

)
4(α2k1 − 1)Ri

(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term VIII

−(
Ai

t + 1
)α3k1−1

( − 2F2Ṙi
(
2k1Ao

t + Ao
t + k1 + 1

) − 2Ḟ2k1Ao
t Ri + F 2

2

(
Ao

t + 1
)
Ri

)
4(α2k1 − 1)Ri

(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term IX
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−(
Ai

t + 1
)α3k1+1

(
F 2

2 (k1 − 1)
(
Ao

t + 1
)
Ri + 2Ḟ2Ri

(
(k1 − 1)Ao

t − 1
) − 2F2k1Ṙi

)
4(α2k1 − 1)Ri

(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term X

+(
Ai

t + 1
)F2k1α

3k1−3
(
Ao

t + 1
)
(F2Ri − 4Ṙi )

4(α2k1 − 1)Ri
(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term XI

= 0 (10)

and

η̈o
1,c1 +

BP term︷ ︸︸ ︷
2

Ṙo

Ro
η̇o

1,c1 +

RT term︷ ︸︸ ︷(
1 − k1Ao

t

) R̈o

Ro
ηo

1,c1 +

Thin−shell correction I︷ ︸︸ ︷
k1

α2k1 (α2 − 1)
(
Ai

t − 1
)(

Ao
t − 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) Ṙo

Ro
η̇o

1,c1 +

Thin−shell correction II︷ ︸︸ ︷
k1

Ai
t A

o
t

(
Ao

t − 1
)

α2k1 + Ai
t A

o
t

R̈o

Ro
ηo

1,c1

+

Thin−shell corrections III︷ ︸︸ ︷
k1

α2k1 (α2 − 1)
(
Ao

t − 1
)(

Ai
t − 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) (Ṙo)2

(Ro)2
ηo

1,c1

Coupling term I︷ ︸︸ ︷
−k1

α3k1+1(α2 − 1)
(
Ai

t − 1
)(

Ao
t − 1

)
(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) (Ṙo)2

(Ro)2
ηi

1,c1

+

Coupling term II︷ ︸︸ ︷
k1

αk1−1(α2 − 1)
(
α2k1 − Ai

t

)(
Ao

t − 1
)

(α2k1 − 1)
(
α2k1 + Ai

t A
o
t

) Ṙo

Ro
η̇i

1,c1 + k1
αk1+1Ai

t

(
Ao

t − 1
)

α2k1 + Ai
t A

o
t

R̈o

Ro
ηi

1,c1

−αk1−1
(
Ai

t − 1
)(

Ao
t − 1

)
(α2Ḟ1Ro + F1Ṙo)

2
(
α2k1 + Ai

t A
o
t

)
Ri

ηi
1,c1 −

(
Ao

t + 1
)(

α2k1 + Ai
t

)
(Ḟ3Ro + F3Ṙo)

2
(
α2k1 + Ai

t A
o
t

)
Ro

ηo
1,c1︸ ︷︷ ︸

Compressibility term I

−F1α
k1−1

(
Ao

t − 1
)(

Ai
t − 1

)
2
(
α2k1 + Ai

t A
o
t

) η̇i
1,c1 − F3

(
Ao

t + 1
)(

α2k1 + Ai
t

)
2
(
α2k1 + Ai

t A
o
t

) η̇o
1,c1︸ ︷︷ ︸

Compressibility term II

−F2α
k1−1

(
Ao

t − 1
)( − (

α2k1
(
Ai

t + k1 − 1
)) + k1α

2k1+2 − α2k1Ai
t + (k1 + 1)Ai

t − 1
)

2(α2k1 − 1)
(
α2k1 + Ai

t A
o
t

) η̇i
1,c1︸ ︷︷ ︸

Compressibility term III

−αk1−1
(
Ao

t − 1
) (α2 − 1)F 2

2 ((k1 + 1)α2k1 + k1α
2k1+2 − 1)

(
Ai

t − 1
)

4(α2k1 − 1)
(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term IV

+αk1−1
(
Ao

t − 1
)F2Ṙoα2k1+2

( − 2k1Ai
t + Ai

t + k1 − 1
)

2(α2k1 − 1)Ro
(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term V

−αk1−1
(
Ao

t − 1
)2F2Ṙok1α

2k1+4
(
Ai

t − 1
) + F2Ṙok1α

2k1 + F2Ṙoα2
(
(k1 − 1)Ai

t + 1
) − F2Ṙok1Ai

t

2(α2k1 − 1)Ro
(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term VI

+αk1−1(Ao
t − 1

) Ḟ2(α2k1 − 1)
(
(α2k1 − k1 − 1)Ai

t + 1
)

2(α2k1 − 1)
(
α2k1 + Ai

t A
o
t

) ηi
1,c1︸ ︷︷ ︸

Compressibility term VII

+F2
(
Ao

t − 1
)(

α2k1
(
(k1 − 1)Ai

t − k1 − 1
) − k1α

2k1+2
(
Ai

t − 1
) + α4k1 + Ai

t

)
2(α2k1 − 1)

(
α2k1 + Ai

t A
o
t

) η̇o
1,c1︸ ︷︷ ︸

Compressibility term VIII
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−(
Ao

t − 1
)α2k1

(
F 2

2 k1
(
Ai

t − 1
)
Ro + F2Ṙo

( − 3k1Ai
t + Ai

t + 3k1 + 1
) + Ḟ2

(
Ai

t + 1
)
Ro

)
2(α2k1 − 1)Ro

(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term IX

+(
Ao

t − 1
)F2k1α

2k1+2
(
Ai

t − 1
)
(F2Ro − 3Ṙo)

2(α2k1 − 1)Ro
(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term X

+(
Ao

t − 1
)α4k1 (F2Ṙo + Ḟ2Ro) + Ai

t (F2Ṙo + Ḟ2Ro)

2(α2k1 − 1)Ro
(
α2k1 + Ai

t A
o
t

) ηo
1,c1︸ ︷︷ ︸

Compressibility term XI

= 0, (11)

where Ai
t = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number at

inner interface. The driving forces for the growth of perturba-
tions are divided into five categories similar to Ref. [30]. The
BP term is attributed to the acceleration effect of geometric
convergence and the RT term is attributed to the interfa-
cial acceleration. The coupling effect between interfaces is
represented by the two coupling terms, which are roughly
proportional to α−k1 for large α. The thin-shell corrections
play a significant role when α → 1 and their contribution
quickly decreases on the order of α−2k1 with increasing α. At
the thick-shell limit α → ∞, both coupling terms and thin-
shell corrections can be neglected. Since the compressibility
of fluid 1, i.e., of the innermost fluid, are represented by F1

and Ḟ1, which appear in the coefficients of ηi
1,c1 and η̇i

1,c1 at
both inner and outer interfaces, its effects are negligible at the
early stage of the compression, when both ηi

1,c1 and η̇i
1,c1 are

still small.
The linearized governing equations of the sine mode of k1,

i.e., ηi,o
1,s1, and both the sine and cosine modes of k2, i.e., ηi,o

1,c2

and ηi,o
1,s2, have the same form as those in Eqs. (10) and (11),

and thus do not need to consider separately.

C. Mode-coupled weakly nonlinear instability and justification
of the model

When one keeps higher-order ε terms of velocity potentials
in Eqs. (7)–(9) and solves Eqs. (3) and (4) order by order with
respect to ε, a mode-coupled weakly nonlinear solution can
also be achieved in a similar way as getting the linear solution.
Details of the mode-coupled weakly nonlinear solution up to
the third-order of ε together with the corresponding higher-
order expressions of velocity potentials can be found in the
Supplemental Material [65]. The fourth- or higher-order terms
are not kept as they turn out to have negligible effects to
account for experiments even at the final stage of the mea-
surements [66].

It should be stressed that in our mode-coupled weakly
nonlinear solution, only higher-order modes of the two fun-
damental modes and induced modes caused by the interaction
between the two fundamental modes are considered, as shown
in Eq. (6). The validity of this treatment is not obvious consid-
ering other modes are also unstable and grow simultaneously
during the cylindrical implosion. The validity is based on the
assumption that perturbations of other modes are sufficiently
small initially, so they keep small enough (compared to the

two fundamental modes and induced higher-order modes)
during the experimental period, taking into consideration the
fact that their amplitudes also grow with time. As we shall
show in the next section, this assumption is justified by the
experimental results a posterior.

To provide an additional examination of the validity of
our mode-coupled weakly nonlinear model, we also apply the
model to a two-dimensional two-phase incompressible cylin-
drical implosion process, with both reference flow and the
evolution of perturbations calculated using classical numer-
ical hydrodynamical simulation, where initial perturbations
of mode k = 4 and k = 10 are added in the outer interfaces
of a ring-shaped liquid layer, and the implosion of the entire
system consists of an acceleration and a deceleration stage,
similar to the experimental configuration of Hsing et al. [43],
but with a simplified treatment to the initial and boundary
conditions. Our results show that the model is capable of
capturing the main feature of the nonlinear evolution of mul-
timode perturbations with mode-mode interaction. Details of
the simulation and comparison with our model can be found
in the Supplemental Material [65].

III. COMPARISON WITH THE EXPERIMENT

A. Reference flow and initial perturbations

To have a close comparison with experimental results [43],
the reference flow has to be determined first. It amounts to de-
termining Ro(t ), Ri(t ), Ai

t (t ), and Ao
t (t ). In the experiment, the

middle layer, i.e., fluid 2 in Fig. 1, consisted of dichlorostyrene
(C8H6Cl2), which was less transparent to the x-ray back-
lighter than adjacent layers. So, the trajectories of Ro(t ) and
Ri(t ) were recorded as the average radii of the outer and inner
boundaries of the middle layer, respectively, as displayed in
Fig. 2(a) as triangular markers. In the theoretical calculations,
fitted Ro(t ) and Ri(t ) of the experimental values are used, as
shown as solid curves in Fig. 2(a), which help determine the
time derivatives Ṙi,o(t ) and R̈i,o(t ) for both interfaces, together
with the parameter α(t ) accounting for the degree of coupling
between the two interfaces.

Figure 2(b) displays the evolution of αk for the two fun-
damental modes k1 = 10 and k2 = 4 with the criterion of
αk = 36 (dashed horizontal line, which is considered as the
threshold of whether coupling between inner and outer inter-
faces for the given mode should be kept according to Zhang
et al. [30]). Figure 2(b) shows that the decoupling of mode
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FIG. 2. (a) The recorded values of inner and outer radii from
Ref. [43] and fitted trajectories Ri(t ) and Ro(t ) versus time. (b) The
evolution of αk1 and αk2 , where α = Ro/Ri. k1 and k2 are wave
numbers of the modes. αk is an indication of the coupling strength
between two interfaces. Note that the coupling strength is inversely
proportional to the value of αk . The position of αk = 36, which is the
threshold to regard two interfaces as not coupled, is marked with a
dashed horizontal line. The shade of the pink background represents
the strength of the coupling.

k1 = 10 takes place at t ≈ 2.48 ns, and at t ≈ 2.93 ns for
mode k2 = 4, which suggests that coupling effects between
the two interfaces shall play important roles for the evolution
of perturbations.

Then, ρ1(t ) of the inner fluid, i.e., fluid 1 in Fig. 1, is
determined from Ri(t ), and the ρ2(t ) is determined from
Ri(t ) and Ro(t ) with the assumption of uniform compression.
Note that initially Ri(t = 2.21) = 155.02 µm, Ro(t = 2.21) =
188.38 µm, ρ1(t = 2.21) = 0.45 g/cc, and ρ2(t = 2.21) =
0.8 g/cc. Here, t = 2.21 ns is the initial time of the exper-
imental recording and also the initial time of the theoretical
calculation. With these two densities, Ai

t (t ) can be readily
calculated through Ai

t (t ) = [ρ2(t ) − ρ1(t )]/[ρ2(t ) + ρ1(t )]. It
was difficult to determine ρ3(t ) in experiments because its
density varied significantly along the radial axis. However,
as was revealed by Hsing et al. [43] through hydrodynamic
simulations, the ratio of ρ2 and ρ3 at the interface was kept
roughly a constant, and so was the Atwood number during the
observation period, i.e., from about 2.21 ns to 3 ns. So, we
take Ao

t (t ) ∼ −0.15 here, following experimental results.
Since the experimental data were not recorded from the

beginning of the experiment, i.e., not from t = 0, as displayed
in Fig. 2(a), one has to figure out ηi,o

α,β and their derivatives

η̇i,o
α,β at the time when the data started to record and use them

as initial conditions to advance the calculation of ηi,o
α,β , e.g.,

in linear stability analysis, ηi,o
1,c1(t ) in Eqs. (10) and (11). To

get the initial conditions, we first extract the two boundaries
ri,o(θ ) of the middle fluid layer in the first recorded x-ray
image (at t = 2.21 ns) as displayed in Fig. 3(a) with dashed
curves, and then expand them as Fourier series in the form of
ri,o(θ ) = Ri,o + ∑

m am cos(mθ ) + bm sin(mθ ). The ηi,o
α,β are

determined as the coefficients of the corresponding modes
included in Eq. (6).

The derivatives η̇i,o
α,β are obtained with the help of the

second recorded x-ray image at t = 2.26 ns, as displayed in
Fig. 3(b), where ηi,o

α,β are first determined in the same way as
for the first x-ray image, and then the derivatives are obtained
from the differences �ηi,o

α,β/�t of the two images in a finite
difference style. Considering that the measurement of �ηi,o

usually suffers from large random errors, a small adjustment
to �ηi,o may also be added manually to make the calculation
result reasonable. A complete list of ηi,o

α,β and their derivatives

η̇i,o
α,β can be found in the Supplemental Material [65].

B. Evolution of perturbations

With all the above issues settled, the time development of
ηi,o

α,β can be integrated with a second-order center-difference
scheme. Figure 3 displays calculated evolution profiles of the
perturbation from t = 2.21 ns to t = 3.05 ns, which covers the
entire recording period of the experiment. The experimental
images for both inner and outer interfaces are also plotted for
reference. It shows that theoretical results well follow the ex-
perimental measurements until t > 2.81 ns. In the period from
t = 2.21 ns to t = 2.53 ns, the outer interface is dominated by
the perturbation of the k = 10 mode. The perturbation of the
k = 4 mode becomes visible from t = 2.58 ns, and its ampli-
tude is comparable with that of the k = 10 mode at the final
stage of the recording from about t = 2.75 ns. In contrast, the
perturbation on the inner interface mainly contains the k = 4
fundamental mode, which is visible at the early stage from
t = 2.42 ns.

The fundamental mode of k = 10, which is dominant on
the outer interface, however, has a small amplitude on the
inner interface at the beginning of the recording period and
fades out quickly from around t = 2.32 ns. It is also interest-
ing to notice that the k = 2 mode becomes visible on the inner
interface near the final stage of the recording, starting from
t = 2.70 ns, as can be seen from the elongation of the inner
interface along the vertical direction, whereas on the outer
interface, the amplitude of the k = 2 mode stays small com-
pared to the two, i.e., k = 4 and k = 10, fundamental modes.
It should be noted that the calculated profiles presented in
Fig. 3 do not exactly agree with the experimental profiles since
only fundamental modes and their intercoupling modes are
kept in the theoretical model. The differences mainly come
from the neglect of odd modes, which are not prominent in
the experiment because the fundamental modes and their
intercoupling modes have much larger amplitudes which
dominate the perturbation profiles.

At the final stage, starting from t = 3.00 ns, Fig. 3 shows
that theoretical results severely deviate from experimental
results. In particular, the perturbation amplitude on the outer
interface is much overestimated by the weakly nonlinear
model compared to the experimental measurements. This is
within the expectation on the performance of the weakly
nonlinear model, since from around t = 3.00 ns, the implo-
sion is at the stagnation stage, where the growth of per-
turbation amplitudes is prominently affected by complicated
interaction between bouncing shock fronts and interfaces, and
is thus far beyond the scope of weakly nonlinear models.
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FIG. 3. The evolution of perturbations on inner and outer interfaces at different moments. The red solid lines are calculated from our
weakly nonlinear model, and the blue dot-dashed lines are extracted from x-ray images in Ref. [43]. The agreement between the mode-coupled
weakly nonlinear model and experimental measurements can be observed in (a)–(j) before t = 3.00 ns. In (k) and (l), the weakly nonlinear
model has a severe deviation from the experiment at the final stagnation stage, as a result of the incompleteness of describing highly nonlinear
effects at the stagnation stage.

To justify the theoretical model, which only keeps the
k = 10 and k = 4 fundamental modes and their higher har-
monic terms up to the third order, Fig. 4 displays the Fourier
decomposition of the inner and outer interfaces as the func-
tion of wave number m at the initial time t = 2.21 ns and
an intermediate time t = 2.47 ns. The amplitudes displayed
in the figure are the root-mean-square of the coefficients of
both the sine and cosine components of the mode. The hori-
zontal dashed line displays the noise level of the experimental
measurements [43]. Figure 4 shows that the model predictions
agree well with experiments, showing that our model captures
the essence of the perturbation evolution.

Figure 5 displays a decomposition of perturbation ampli-
tudes for the k = 4 and 10 modes on both outer and inner
interfaces, where triangles are amplitudes extracted from
Fig. 3 through Fourier expansion, and solid curves are results
calculated from the weakly nonlinear model. As a compari-
son, the perturbation amplitudes from the linear terms, i.e., the
first order terms in Eq. (6) with respect to ε, are also plotted
in the figure as dashed curves.

On the outer interface, the growth of perturbation am-
plitudes, especially that of the k = 10 mode, displays the
necessity to include nonlinearity in the model. As shown in
Fig. 5(a), the amplitude of the k = 10 mode on the outer

FIG. 4. The Fourier decomposition of (a) outer interface at t =
2.21 ns, (b) outer interface at t = 2.47 ns, (c) inner interface at t =
2.21 ns, and (d) inner interface at t = 2.47 ns. The gray dashed line
is the noise threshold in the experimental measurements [43]. The
bars are the results of our mode-coupled nonlinear model, and red
dots are extracted from x-ray images of the experiments [43].
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FIG. 5. The perturbation amplitudes of the fundamental modes
k = 4 and k = 10 on (a) the outer interface and (b) inner interface.
The triangles represent the amplitudes extracted from x-ray images
in Ref. [43] through Fourier expansion, and the solid and dashed
lines represent the mode-coupled weakly nonlinear model results
and linear contributions, respectively. The vertical dashed lines at
t = 2.7 ns in (a) and t = 2.8 ns in (b) indicate the moments when the
first reflected shock wave from the cylindrical center arrives at the
interfaces. The horizontal dash-dotted line shows the noise level in
the experimental measurements.

interface reaches its maximum at around t = 2.7 ns and then
displays a fast decrease. This amplitude evolution feature re-
sults from the combination of ηo

1,c1(t ) and ηo
3,c3(t ) in Eq. (6),

which are the linear amplitude components of the k = 10
mode and the third-order nonlinear contribution, respectively.
The third-order nonlinear term provides the necessary de-
creasing mechanism and determines the position of the peak
together with the rate of decreasing. Without nonlinearity,
however, the amplitude stays in the increasing phase for a
much longer time, as shown by the dashed curve, and the
experimental feature will not be recovered.

The second-order harmonic modes k = 6, 8, and 14 on the
outer interface are displayed in Fig. 6(a) and the third-order
coupled modes k = 2 and 12 are displayed in Fig. 7(a). It is
not easy to recognize these modes by eye from the recorded
profiles in Fig. 3 because the amplitude of the k = 10 fun-
damental mode is much larger than the amplitudes of these
modes, as shown by the comparisons in Figs. 6(a) and 7(a),
where the fundamental modes are displayed as a tinged back-
ground. However, the evolution of these modes can still be
demonstrated by the Fourier decomposition. As displayed in

FIG. 6. The perturbation amplitudes for the second-order modes
k = 6, 8, and 14 on (a) the outer interface and (b) the inner interface.
The markers with error bars represent the amplitudes extracted from
x-ray images in Ref. [43] through Fourier expansion, and the solid
lines represent the results calculated from our mode-coupled weakly
nonlinear model. The vertical dashed lines at t = 2.7 ns in (a) and
t = 2.8 ns in (b) indicate the moments when the first reflected shock
wave from the cylindrical center arrives at the interfaces. The hor-
izontal dash-dotted line shows the noise level in the experimental
measurements. The results of the fundamental modes are plotted as
a tinged background.

Fig. 6(a), in addition to the much smaller amplitudes, the
growth rates of the second harmonic modes are also much
smaller than those of fundamental modes. Compared with
the second-order harmonic modes, the third-order harmonic
k = 2 and 14 modes on the outer interface are negligibly
small. As shown in Fig. 7(a), their amplitudes fluctuate around
the noise level (the horizontal dash-dotted line). On the
inner interface, two prominent features can be recognized
from Fig. 3 by eye. One is the diminishing of the k = 4 and
k = 10 fundamental modes and the other is the increasing of
the k = 2 harmonic mode before t = 2.81 ns. They turn out to
come from different origins. The diminishing of the k = 4 and
k = 10 fundamental modes before t = 2.81 ns is dominated
by the linear evolution effect, as illustrated by the comparison
between the perturbation evolution with and without nonlinear
terms in Fig. 5(b). This decrease is attributed to the takeover
of the oscillatory evolution of the coupled inner and outer
interfaces during the transition stage of the implosion, i.e., the
time period characterized by 6 < αk < 36 [30]. As revealed in
Ref. [30], it is a common feature of two coupled interfaces that
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FIG. 7. The perturbation amplitudes for the third-order modes
k = 2 and 12 on (a) the outer interface and (b) the inner interface.
The markers with error bars represent the amplitudes extracted from
x-ray images in Ref. [43] through Fourier expansion, and the solid
lines represent the results calculated from our mode-coupled weakly
nonlinear model. The vertical dashed lines at t = 2.7 ns in (a) and
t = 2.8 ns in (b) indicate the moments when the first reflected shock
wave from the cylindrical center arrives at the interfaces. The hor-
izontal dash-dotted line shows the noise level in the experimental
measurements. The results of the fundamental modes are plotted as
a tinged background.

the most unstable mode is overtaken by the previous second
oscillatory unstable mode at the transition stage, and the pre-
vious most unstable mode becomes the second unstable mode.
Before t = 2.81 ns, the k = 4 and k = 10 fundamental modes
are in the decreasing phase of an oscillatory period (where the
amplitude keeps decreasing but the acceleration is positive)
and thus display the decreasing tendency. It should be noted
that the amplitudes of the two modes would eventually grow
up if the instability was not interrupted by other events, as
shown by the theoretical curves in Fig. 5(b).

The amplitudes of the second harmonic modes on the in-
ner interface fluctuate around 2 µm, which is slightly above
the noise level, as displayed in Fig. 6(b). In addition, our
mode-coupled nonlinear model shows that the amplitudes
tend to decay slowly. The third-order harmonic modes of
k = 2 and 12 on the inner interface exhibit different features.
The behavior of the k = 12 mode is similar to the behavior of
the second harmonic modes, but with an even smaller
amplitude, as displayed in Fig. 7(b). However, the k = 2 mode
on the inner interfaces gradually grows up. Although its am-

plitude is not large, i.e., less than 5 µm, during the recording
period the amplitude is comparable with the amplitude of the
fundamental k = 4 mode at around t = 2.7 ns, as displayed in
Fig. 7(b), and thereby easy to recognize in Figs. 3(i) and 3(j)
as a feature of a vertical elongation of the profile.

The growth of the third harmonic mode k = 2 suggests
that the energy of the fundamental k = 4 and k = 10 modes,
i.e., the small-scale modes, is transferred to the k = 2 mode,
i.e., the large-scale mode, through nonlinear mode-mode in-
teraction, forming an inverse cascade in the mode space.
The inverse cascade was also revealed in recent numerical
simulations and experiments of two-dimensional converging
implosions [67–69], and was illustrated in magnetic-RT in-
stability experiments along the axial direction [70,71]. Since
the k = 2 mode is induced by higher wave number modes, it
may pose interesting problems for the prevention or control
of the appearance of lower wave number modes in future
experimental and theoretical investigations, as they have the
potential of further reducing the energy gain of ICF implosion
[55].

There are abrupt changes observed on both interfaces in the
evolution of perturbation amplitudes. On the inner interface,
the change takes place at around t = 2.7 ns, while the change
appears at around t = 2.8 ns on the outer interface. Both mo-
ments are shown as vertical dotted lines in Fig. 5. After these
moments, the weakly nonlinear calculations deviate from
the perturbation amplitudes measured in experiments. The
time t = 2.7 ns and t = 2.8 ns are the moments when the first
reflected shock wave from the center meets the two interfaces,
as revealed in a separate hydrodynamic simulation. From t =
2.8 ns, the system enters the stagnation stage, dominated by
successive reflections of shock waves between the cylindrical
center and the two interfaces. So, it is expected that the weakly
nonlinear model becomes ineffective after t = 2.8 ns.

IV. SUMMARY

In summary, we provide a mode-coupled weakly nonlinear
model to account for perturbation evolution in multi-interface
cylindrical implosion. We find that compression effects, in-
terfacial coupling, and weakly nonlinear effects are necessary
ingredients for a satisfactory description of the perturbation
development. A close comparison with experimental mea-
surements shows that our model captures important features
of multishell cylindrical implosion near the stagnation. In
particular, we show that the inverse cascade in the mode
space is able to excite small wave-number modes, which
may bring about interesting problems for the prevention or
control of these small wave-number modes. In addition, the
interfacial coupling effect induced oscillatory growth affords
an alternative physical picture for the perturbation evolution
in cylindrical implosion. These results may help gain further
insight into the distortion of hot spots in ICF implosion and
may also provide direct assistance to the design of cylindrical
multimode experiments in the future.
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