
PHYSICAL REVIEW E 109, 035201 (2024)

Excited states in warm and hot dense matter
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Accurate modeling of warm and hot dense matter is challenging in part due to the multitude of excited states
that must be considered. Here, we present a variational framework that models these excited states. In this
framework an excited state is defined by a set of effective one-electron occupation factors, and the corresponding
energy is defined by the effective one-body energy with an exchange and correlation term. The variational
framework is applied to an atom-in-plasma model (a generalization of the so-called average atom model).
Comparisons with a density functional theory based average atom model generally reveal good agreement in
the calculated pressure, but our model also gives access to the excitation energies and charge state distributions.
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I. INTRODUCTION

In warm and hot dense matter, the electronic structure
comprises a complex and very large set of excited states of
the Hamiltonian. Electrons are excited to populate these states
through collisions and absorption of electrons and photons.
The resulting properties of the plasma, such as the equation of
state (EOS), opacity, and transport coefficients, can, in prin-
ciple, be calculated by taking appropriate averages over these
excited states. Experiments can probe these excited states in
detail [1–7], providing stringent tests of our models.

There are many approaches to modeling warm and hot
dense matter. Broadly speaking, at lower densities, a partic-
ularly successful approach is to start with the atomic structure
of the isolated atoms or ions and then to correct for plasma
effects [8–11]. The focus of such models is to calculate optical
properties of the plasma, including absorption and emission
spectra. Typically, these models become less successful at
higher densities where a consistent treatment of plasma effects
becomes crucial. At high densities, notable methods include
path-integral Monte Carlo (PIMC) [12,13] and density func-
tional theory (DFT) based simulations [14–19]. While the
atomic methods focus on the properties of an atom or ion
in the plasma, PIMC and DFT typically model many ions in
a simulation cell and therefore contain a more sophisticated
treatment of the plasma physics. PIMC has so far been largely
limited to EOS applications and lower Z materials. The widely
popular DFT [20], through its finite temperature extension
[21], has been applied to a wide variety of properties and is
generally very successful.

However, attempts to apply DFT to the opacity of moder-
ately degenerate or nondegenerate systems reveal a weakness
of the approach [22–24]. As shown in these references, the
calculated opacities, using the independent particle method
[25], differ dramatically from the measured data. These differ-
ences are most apparent in the bound-bound lines (see Fig. 3
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of Ref. [22], for example). Whereas the atomic approaches
agree relatively well with the data, the DFT based result is
very different.1 From a practical point of view, the important
difference between the atomic and DFT approaches is the
absence of so-called configurational broadening. This effect
stems from variations in integer occupations of the electron
states included in atomic approaches but not in DFT, which
uses Fermi-Dirac occupation. These variations in occupation
lead to different excited state energies and result in shifts
(in energy) of the bound-bound lines. This is absent in the
independent particle approach to opacity in DFT. Hence, one
strong line centered at one transition energy in the spectra
appears (see Fig. 3 of Ref. [22]), as opposed to many weaker
lines in the atomic physics prediction. However, in DFT, it is
the properties of the (thermal) equilibrium state of the sys-
tem that are calculated. To calculate excited state properties,
time-dependent (TD) DFT [25,26] or ensemble DFT (EDFT)
[27–30] is required. In EDFT, another (nonthermal) ensemble
is invoked to gain access to excited states, as discussed below.

TD-DFT calculations performed using the adiabatic local
density approximation (ALDA) [31] fail similarly to the in-
dependent particle approach when applied to these opacity
problems [24,32]. Although TD-DFT is exact in principle and
allows for the calculation of all excited state properties, the
ALDA uses only the instantaneous density for evaluation of
the exchange-correlation functional. Multiple excitations are
known to arise from nonadiabatic electron correlation effects
that are neglected in the ALDA. This indicates that to prop-
erly treat multiple excitations, memory and dissipation effects
need to be included explicitly in the exchange-correlation
functional [33–36]. Hence, despite being exact in principle,
in practice, for these plasma physics problems, the standard
approximations (e.g., ALDA) are grossly inadequate.

The EDFT approach is an alternative to TD-DFT for calcu-
lating excited states and is perhaps more naturally suited for

1Notwithstanding the well documented exception of the quasicon-
tinuum for the iron case.
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inclusion of multiple excitations. This approach, formulated
via a variational principle for ensembles of excited states, pro-
vides a modified Hohenberg-Kohn theorem that establishes
an exact mapping between the potential and ensemble den-
sity. The benefit of this approach is that, via a corresponding
Kohn-Sham scheme, the density for an ensemble of multi-
ple excited states can be solved for simultaneously, and the
energies of the excited states can be obtained. While this
approach has that particular advantage, it is less frequently
used than TD-DFT, and many open questions remain, such
as how to construct exchange-correlation functionals that go
beyond the “quasi-LDA” [37] and how to address the issue of
ghost states [38], which are in some ways analogous to elec-
tron self-interaction in ground-state DFT. In addition, recent
work has focused on a generalization of EDFT that allows for
ensemble weights to vary independently [39] and, in principle,
through a many-weight-dependent exchange-correlation func-
tional, enables calculation of all excitation energies within a
single simulation. Other recent work has focused on ways
to decompose the correlation energy in EDFT into so-called
state-driven and density-driven parts [40,41]. Note that tem-
perature effects are not addressed in the EDFT approach. The
approach we take in this paper is more similar to EDFT than
to TD-DFT, although it is not formulated on a rigorous the-
oretical foundation and instead more closely follows atomic
physics approaches for calculating excited states. How-
ever, unlike EDFT, temperature is included explicitly in our
approach.

In DFT, the energy is that of a noninteracting system (that
gives the same electron density as the full interacting system),
which includes the exchange and correlation terms. Currently,
the most accurate numerical scheme uses the Kohn-Sham
(KS) approach [42]. In KS-DFT, the noninteracting energy is
found by solving a single-particle Schrödinger equation for an
effective one-body interaction potential, determined by mini-
mizing the energy with respect to the density. This solution
gives the eigenstates of this effective Hamiltonian, and the
electronic density is constructed by filling these states accord-
ing to Fermi-Dirac statistics. Even at elevated temperatures
this scheme is used, resulting in a set of KS states that are
fractionally occupied.

While these KS states are formally not physical states, their
proximity to real, physical states is helpful for accurate pre-
dictions from the model and is reflected in, for example, the
quantum shell structure observed in Hugoniot measurements
[4,43,44]. At elevated temperatures, therefore, the KS scheme,
in which variations in integer occupations of electron states
are replaced by Fermi-Dirac occupations, is expected to be
a poorer approximation than at zero temperature, where, in
reality, there is only one occupied state (the ground state) [45].

A clue to a path forward may be found in the isolated
atom approach to opacity [46,47]. In that field, an approach
known as the configuration-average approximation is very
similar in practice to the KS-DFT scheme. One constructs an
effective one-body interaction potential for the ion or atom,
includes an exchange and correlation correction, and solves
the equations self-consistently. The key difference is that
one does not use Fermi-Dirac occupations. Rather, one picks
the occupations of the eigenstates to resemble desired ex-
cited states. Instead of there being one Fermi-Dirac occupied

state, there are many different excited states, each corre-
sponding to a particular distinct set of chosen occupations.
This approach provides reasonable opacities in nondegenerate
plasmas [2,46,47].

However, this isolated atom approach suffers from two
major drawbacks when applied to the dense plasma regime:
first, it generally ignores, or treats inconsistently, the free elec-
trons; second, it is not variationally derived from an energy
expression and so is generally not reliable for the EOS. A
number of works have improved this situation [48–52], but
a practical variational framework has remained elusive.

In this work, we give a variationally derived model that
contains multiple distinct excited states and includes free
electrons consistently. As in the isolated atom approach, the
excited states are defined by a chosen set of occupations. The
energy of each excited state is calculated from an effective
one-particle system with exchange and correlation term. In
the limit of one excited state with Fermi-Dirac occupations,
this model recovers the Mermin-Kohn-Sham DFT. We give
the derivation of this model and apply it to electronic structure
and EOS calculations in the dense plasma regime. For the
application considered (excited atoms in a plasma), the model
can be viewed as an extension to the work of [53,54], where
the author used DFT to get the averaged properties of an atom
in a plasma.

The formal model is presented in Sec. II. We start with a
general formalism for an arbitrary number of classical nuclei
and a corresponding number of quantum mechanical electrons
that make the system charge neutral. A free energy model is
constructed, and in Secs. II B and II C, the constrained free
energy is presented and minimized for this general system.
In Sec. II D, we specialize to an atomic-like model with one
nucleus in a sphere whose volume is given by the mass density
and atomic mass. The model relies on the input of the choice
of the excited state list, defined by a set of occupations. In
Sec. II E, we show how the usual atomic-physics-like config-
uration definition can be practically extended into the positive
energy continuum, thus including free states consistently. In
Sec. III, we apply the atomic model to an example of an
aluminum plasma to demonstrate its practicality and some of
the features of the model.

II. FREE ENERGY

A. General model

We consider an ensemble of many classical nuclei and
quantum mechanical electrons in a volume V at temperature
T . In Hartree atomic units, the free energy of the system is

F =
∑

x

Wx[Ex − T Sx] + T
∑

x

Wx ln Wx, (1)

where the sum over x is over nondegenerate (in energy)
electronic excited states (see the Appendix) and Wx is the
probability of excited state x. The energy Ex is approximated
by

Ex = E (0)
x + E el

x + Exc
x , (2)
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where the effective single-particle kinetic energy is

E (0)
x =

∑
i∈x

nx,i

∫
V

d3rψ∗
x,i

(
− 1

2
∇2

)
ψx,i, (3)

with ψx,i(r) being the orbital and nx,i being the occupation
factor for the ith eigenstate, the set of which represents excited
state x.2E el

x is the electrostatic energy,

E el
x = 1

2

∫
V

d3r
∫

d3r′ nx(r)nx(r′)
|r − r′|

+ 1

2

∑
m

∑
n∈V,n �=m

ZnZm

|Rn − Rm| −
∑
n∈V

Zn

∫
d3r

nx(r)

|r − Rn| ,

(4)

where Ri is the position vector of nucleus i, the sum over n ∈
V is carried out over the nuclei in the volume V , nx(r) is the
electron density of excited state x,

nx(r) =
∑
i∈x

nx,i|ψx,i(r)|2, (5)

and Zn is the nuclear charge of nucleus n. Exc
x is the exchange

and correlation free energy, which we approximate with the
local density approximation

Exc
x =

∫
V

d3r εxc[nx(r)]. (6)

The entropy is split into two contributions (see the Appendix):
a term due to the entropy of the excited state Sx,

Sx = −
∫

V
d3r

∑
i∈x

|ψx,i(r)|2

× [nx,i ln nx,i + (1 − nx,i ) ln(1 − nx,i )], (7)

and the term
∑

x Wx ln Wx.
The essential idea here is that the excited states are approx-

imated by a constrained one-particle system with one-particle
eigenvectors ψx,i(r) and occupations nx,i. The thermal ensem-
ble of excited states is then the set of these excited states with
their probabilities Wx,i. The set of occupation factors nx,i is
input into the model (see below).

B. Constrained free energy

Before minimizing this free energy, the following con-
straints are added: ∑

i∈x

λx,i

[∫
V

d3r|ψx,i|2 − 1

]
= 0, (8a)

B

[∑
x

Wx − 1

]
= 0, (8b)

γ
∑

x

Wx

[ ∫
V

d3rnx(r) − Zx

]
= 0, (8c)

∑
x,i

μx,iWx

∫
V

d3r|ψx,i(r)|2[nx,i − fx,i] = 0, (8d)

2Each excited state is approximated by an effective one-electron
system with eigenstates ψx,i(r) and occupations nx,i(r).

where λx,i, B, γ and μx,i are Lagrange multipliers. Equa-
tion (8a) ensures normalization of the orbitals, Eq. (8b)
ensures that the probabilities Wx sum to 1, Eq. (8c) requires
overall charge neutrality of the excited states, and Eq. (8d)
fixes the occupation factors nx,i to be given by the chosen
inputs fx,i. This last requirement is how we define an given
excited state x. These can be chosen arbitrarily provided that
0 � fx,i � 1. In Sec. II E we will describe how they are chosen
for a particular example.

C. Minimization of the free energy

We require the following to be true:

δ�

δψ∗
x,i(r)

= 0, (9a)

∂�

∂nx,i
= 0, (9b)

∂�

∂Wx
= 0, (9c)

where � is the constrained free energy. Applying the first of
these, we obtain

0 = Wx

{
nx,i

[
− 1

2
∇2 + V el

x (r) + V xc
x (r)

]
− λx,i

}
ψx,i(r)

+WxT [nx,i ln nx,i + (1 − nx,i ) ln(1 − nx,i )]ψx,i(r)

−Wxγ nx,iψx,i(r) − Wxμx,inx,iψx,i(r), (10)

which can be rewritten as[ − 1
2∇2 + V el

x (r) + V xc
x (r) − γ

]
ψx,i(r) = εx,iψx,i(r), (11)

i.e., the one-particle Schrödinger equation. γ is determined by
setting the zero of the energy. Further,

V el
x = δE el

x

δnx(r)
, (12)

V xc
x = δExc

x

δnx(r)
. (13)

The second minimization requirement, Eq. (9b), gives

0 = Wx

[∫
d3rψ∗

x,i

(
− 1

2
∇2

)
ψx,i

+
∫

d3r|ψx,i|2
[
V el

x (r) + V xc
x (r) − γ − μx,i

]]

+ TWx

∫
d3r|ψx,i|2 ln

nx,i

1 − nx,i
, (14)

which reduces to (β = 1/T )

nx,i = 1

exp[β(εx,i − μx,i )] + 1
. (15)

μx,i are then determined by the requirement that nx,i = fx,i,
where fx,i is set by the input.

The third minimization requirement, Eq. (9c), gives

0 =Fx − B + T + T ln Wx, (16)
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where Fx = Ex − T Sx; then

Wx = exp (−βFx )

Z , (17)

i.e., the usual Boltzmann factor, where

Z =
∑

x

exp (−βFx ) (18)

is the partition function.
This completes the model. First, one chooses a set of oc-

cupation factors that define the excited states { fx,i}. Solving
the one-particle Schrödinger equation (11) for the orbitals and
eigenvalues associated with the xth excited state can then be
carried out in the usual self-consistent field framework. The
excited states are connected though the value of γ , which can
be determined iteratively, although, as we shall see, the EOS
does not seem to be sensitive to it for the cases tested here.
Once the energies Ex and entropies Sx of the excited states are
determined, the probabilities Wx are found with Eq. (17).

D. Application to the atomic model

In this section we specialize the formalism to the case of
one atom in a sphere of volume V and radius R, where the
volume is determined from the mass density and atomic mass,
which are inputs to the model. Liberman [53] introduced
the quantum average atom model. It is a DFT model of an
atom in a charge neutral sphere. The model uses Kohn-Sham
DFT with Fermi-Dirac occupation factors. Here, we extend
this concept with the present excited state treatment. Due to
the spherical symmetry of the atoms, the equations simplify
somewhat. The kinetic energy can be written as

E (0)
x =

∑
l

2(2l + 1)
∫

dε nx,ε,l

∫ R

0
dr

× y∗
x,ε,l

(
− 1

2

d2

dr2
+ l (l + 1)

r2

)
yx,ε,l , (19)

where

ψx,i(r) = yx,ε,l (r)

r
Yl,m(r̂), (20)

yx,l,ε (r) is the radial solution [55], l is the orbital angular
momentum quantum number, and the eigenstate index i is
replaced with ε and l . The entropy becomes

Sx = −
∫ R

0
dr

∑
l

2(2l + 1)
∫

dε|yx,ε,l (r)|2

× [nx,ε,l ln nx,ε,l + (1 − nx,ε,l ) ln(1 − nx,ε,l )]. (21)

The electrostatic energy is

E el
x = 1

2

∫
V

d3r
∫

V
d3r′ nx(r)nx(r′)

|r − r′| − Z
∫

V
d3r

nx(r)

r
. (22)

The exchange and correlation term is unchanged. The result-
ing Schrödinger equation is[

−1

2

d2

dr2
+ l (l + 1)

r2
+ V el

x (r) + V xc
x (r) − γ

]
yx,ε,l (r)

= εx,l yx,l,ε (r). (23)

We have brushed over an inconsistency inherent in average
atom models, where the wave function is normalized over all
space even though the energy involves only integrals inside
the ion sphere. This issue has been much discussed in the
average atom literature, and the same problem is inherent in
the above atomic model and leads to a thermodynamically
inconsistent model at low temperatures and high temperatures
[56]. Note that the general model of Secs. II A, II B, and II C
does not suffer from this inconsistency if, for example, we
consider a periodic system. It is probably possible to derive
a consistent atomic model, as was done for average atoms in
Refs. [50,57], but we do not attempt that here. With this in
mind, the pressure can be written as

P = − ∂F

∂V

∣∣∣∣
T,N

= −
∑

x

Wx

[
fx(R) −

∑
i∈x

∑
l

2(2l + 1)|yx,ε,l (R)|2

× nx,ε,l (γ + μx,ε,l )

]
, (24)

where fx(R) is the free energy density evaluated at R and

γ =
∑

x

WxV
xc

x (R) (25)

It is worth briefly contrasting the present atomic model
with the superconfiguration model presented in Ref. [50].
While both present a variational model of configurations in
plasmas, the model of Ref. [50] varies the sphere size de-
pending on the excited state; the present model does not. Our
model uses a configuration definition that is continuous across
a pressure ionization, while it appears that in Ref. [50] the
configuration does not exist if the bound state required by the
configuration does not exist. Finally, the configuration model
of Ref. [50] has not been amenable to practical implementa-
tion as yet, although an approximate version does exist [51].

E. Choosing the occupation factors

We now apply this atomic model to the calculation of the
EOS in dense plasmas. The first step is to enumerate the states
so that a list of all permutations can be created. There is an
infinite set of possible excited states that one could consider
based on variations of the occupation factors of bound and
continuum electrons. With this in mind, we create an approx-
imate, coarse enumeration of the states by defining energy
boundaries εn,l

x

2(2l + 1) =
∫ εn+1,l

x

εn,l
x

dε χx,l (ε), (26)

where n = 1, 2, . . .. The first energy bound for a given l , ε1,l
x ,

is chosen to be just lower in energy than the lowest energy
eigenstate for that l , and χx,l is the density of states for excited
state x for angular momentum quantum number l ,

χx,l (ε) = 2(2l + 1)
∫

V
d3r|yx,ε,l (r)|2. (27)
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FIG. 1. Filled density of states for helium (units of hartrees, EH).
We have applied an arbitrary broadening of 1 eV to the DOS so
that the bound states, which would otherwise be δ functions, can be
displayed.

With the set of states defined by these energy ranges, we
choose to occupy them with all perturbations of integer occu-
pations, which is common in atomic physics approaches. We
must also choose a maximum n to consider. The quantity n be-
comes equivalent to the principle quantum number for bound
states that are well contained inside the ion sphere. Hence, for
example, if we have a helium plasma and consider the maxi-
mum n to be 2 (nmax = 2), we would have the following list of
excited states: (1) 1s2 2s0 2p0, (2) 1s1 2s1 2p0, (3) 1s1 2s0 2p1,
(4) 1s0 2s2 2p0, (5) 1s0 2s1 2p1, and (6) 1s0 2s0 2p2, and for
configuration 2, for example, we have n2,ε1s,0 = 0.5.

In Fig. 1 we show the filled DOS for configuration 1 in this
example. At low densities the bound state is well contained
within the ion sphere, and there are no free electrons. As
density increases, the 1s orbital becomes partially bound, and
two electrons cannot fit into the bound state, so the upper en-
ergy limit of this state extends into the continuum, satisfying
the definition, Eq. (26). For the highest density, there are no
bound states, and the 1s orbital extends into the continuum.
We see that this atomic picture of excitations will be best if
there are no (or very few) free electrons in the plasma since,
in our example, for 10 g/cm3, the two ionized electrons are
spread evenly over the 1s band, which is only one possible
distribution out of infinitely many.

There is another problem with this approach to occupation
numbers just discussed—it will be prohibitively expensive for
high temperatures or higher Z materials, for which nmax must
be large. We solve this by treating all states with energies
higher than εx,εnmax+1

x ,l with Fermi-Dirac statistics. The lifetime
of excitations of core (deeply bound) states is relatively long,
and that for excitations of continuum (free) electrons is much
shorter due to collisions. Therefore, it is reasonable to create
a set of occupation factors that include only a detailed list of
excitations for the core states and use an average occupation
[Fermi-Dirac (FD)] for the free electrons, at least for EOS
purposes. In the results presented here we have used this

approach. For our helium example, the list of excited states
increases to include (7) 1s1 2s0 2p0 + FD, (8) 1s0 2s1 2p0 +
FD, (9) 1s0 2s0 2p1 + FD, and (10) 1s0 2s0 2p0 + FD, where
the occupation factors are Fermi-Dirac beyond the last energy
boundary for each l runs, in principle, to ∞.

We note that by using Fermi-Dirac occupation factors in
the definition of an excited state, the configurations become
dependent on temperature, whereas in the first example, the
electronic structure of the configurations and their energies
are independent of temperature. For configurations that are
independent of temperature, the resulting probabilities (pop-
ulations) do depend on temperature but simply through the
free energy (Fx = Ex − T Sx) and Eq. (17).

It is worth pointing out again that in this model, bound
and free electrons are treated consistently. This is guaranteed
by the fact that the definition, Eq. (26), gives smooth and
continuous energy boundaries as a function of temperature
and density, as well as the energy integral in Eqs. (19) and
(21) being over all energies (i.e., over all bound and free
eigenstates).

In summary, one starts with a list of configurations which
define nx,ε,l . For an initial guess at γ and the potentials, one
proceeds by solving Eq. (23) for the yx,ε,l and eigenvalues for
each of the configurations in the list. The electron density
associated with each configuration is then constructed via
Eqs. (5) and (20). Each configuration is then solved self-
consistently, and the probabilities are updated via Eq. (17).
γ is then updated [Eq. (25)], and the process is repeated until
γ is self-consistent.

III. APPLICATION TO ALUMINUM PLASMAS

In Fig. 2, the charge state distribution (CSD) for aluminum
plasmas is shown. Here, we calculate the charge of an ion
by counting the number of positive energy electrons, which
therefore includes electrons in resonance states. This is a
reasonable definition, but we note that with this definition, it
is possible to have an ion of noninteger charge. This can been
seen from Fig. 1, where a bound state is partially bound for
1 g/cm3. Physically, this behavior reflects the fact that as a
bound state pressure ionizes, it is neither truly a bound nor a
free electron state. In Fig. 2 we see that at the highest temper-
ature (1000 eV) and lowest density (0.027 g/cm3), the plasma
is fully ionized. Going next to the 1000 eV, 2.7 g/cm3 case,
we find that the plasma is mostly fully ionized but contains
about 20% of ions with a single bound electron. Increased
collisional effects at this higher density are the cause of the
lower average ionization.

For the 10 and 100 eV cases, we compare our results to
the model of White et al. [58] (see Fig. 2). For the 100 eV,
2.7 g/cm3 case our model is significantly more strongly
peaked. For the 2.7 g/cm3 cases we used nmax = 2. In the
limit of using nmax = 0, we would recover the DFT result,
and the CSD would be peaked at one charge state with all of
the population. Using nmax = 1 would allow some fluctuation,
nmax = 2 would allow even more, and so on. Hence, the reason
the CSD of our model is more peaked than that of White et al.
[58] is due to the lower value of nmax. Does this mean that the
result of the present model for this case is not converged with
respect to nmax? As we argued earlier, the present definition
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FIG. 2. Charge state distributions for aluminum plasmas. We
have considered configuration perturbations up to the n = 2 shell for
2.7 g/cm3 and the n = 3 shell for 0.027 g/cm3. The results of the
present model are shown by the blue bars. Also shown by the dotted
lines are the results of Ref. [58].

of the excited state works best for core states. Using nmax = 2
in this case ensures this outcome, while using nmax = 3 would
not, as the n = 3 states are partially bound. Which choice is
more reasonable depends on the timescale of the experiment
that we wish to model. Excitations of the partially bound
n = 3 states will have a much shorter lifetime than those of
the core states. For experiments that probe time-integrated
quantities over timescales that are longer than the n = 3 ex-
citation lifetimes, the present model is appropriate, whereas if
the experiment has shorter time resolution, then considering
explicit excitations of these shells would be necessary.

Last, we note that the CSD is an output of the model
and we are free to choose different definitions of ion charge
that are reasonable. This choice does not affect the model in
any way—it does not change the EOS, energies, entropy, or
populations.

In Fig. 3, the filled density of states is shown for a hot dense
aluminum plasma at 100 eV and 2.7 g/cm3 using nmax = 2.
With aluminum’s 13 electrons this leads to 63 distinct excited
states, and the result shown is averaged over all of these with

FIG. 3. Filled density of states for aluminum at 100 eV and
2.7 g/cm3. The solid black line is the result from the present excited
state model (ESM). It is compared to the DFT prediction (dashed red
line) from the average atom model TARTARUS [56].

the probabilities Wx. In the bottom panel, we see the effect
on the 1s eigenstate. There are four distinct groupings of 1s
states. They correspond to four different charge states with
significant probabilities in the plasma. In contrast, we also
show the DFT result obtained using the TARTARUS code. There
is only one peak, corresponding to the average 1s energy of the
plasma. The different peaks within each cluster correspond to
different arrangements of electrons in the “spectator” bound
states (i.e., those in the n = 2 shell) but have the same ion
charge.

In the top panel of Fig. 3, we again see a cluster of peaks
from −10 to −5 hartrees (abbreviated EH ), corresponding
to the n = 2 shell. The DFT results show two distinct peaks
corresponding to the 2s and 2p eigenstates. Near zero energy,
the line corresponding to the n = 3 states shows up. Since they
are not explicitly included in our excited state list, the excited
state model predicts a strong line near zero energy.

In Fig. 4, we show the radial density averaged over all
excited states

n(r) =
∑

x

Wxnx(r). (28)

We compare this to the DFT result from the TARTARUS model.
Overall, we find good agreement, but some differences are
observed. On the one hand, it is not surprising that the av-
erage over the excited states is not the same as the averaged
excited state. On the other, the difference is fairly small and
would be hard to test experimentally. Also shown in Fig. 4 are
the electron densities from the excited states. These curves
indicate that there is little fluctuation in the occupation of the
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FIG. 4. Electron density of aluminum at 100 eV and 2.7 g/cm3

(units of Bohr radii aB). The solid black line is the predicted average
radial density from the present excited state model (ESM). It is
compared to the DFT prediction (dashed red line) from the average
atom model TARTARUS [56]. Also shown by the semitransparent lines
are the individual densities due to the excited states, with their degree
of transparency proportional to the probability Wx .

1s shell (the peak nearest the origin), significant variation on
the n = 2 shell occupation (the second peak from the origin),
and significant variation in the free electron density (the tail
after the peaks). We note that while the DOS (Fig. 3) indicates
that the 1s eigenvalue does depend on the charge state, Fig. 4
shows that these variations do not strongly affect the density
due to the 1s shell.

In Table I, the excess pressure is shown [given by Eq. (24),
which does not include the ideal ion contribution] for the
same aluminum plasmas, ranging from degenerate systems
(2.7 g/cm3 and 10 eV) to fully ionized (0.027 g/cm3 and
1000 eV). These pressures are compared to TARTARUS results.
Overall agreement is close between the two methods. Agree-
ment is best for the high temperature cases, where details
of the interaction potentials are unimportant due to the high

TABLE I. Values of excess pressure (in Mbar) for aluminum at
temperatures of 10, 100, and 1000 eV and densities of 0.027 and
2.7 g/cm3. ESM refers to the present excited state model, while
TARTARUS refers to the DFT based average atom model [56].

Al density = 0.027 g/cm3

ESM (n = 3) TARTARUS

10 eV 2.02 × 10−2 2.16 × 10−2

100 eV 0.954 0.948
1000 eV 12.5 12.5

Al density = 2.7 g/cm3

ESM (n = 2) TARTARUS

10 eV 2.08 2.07
100 eV 64.4 65.4
1000 eV 1203 1201

average energy of the free electrons, as well as for the most
degenerate case, where the plasma is dominated by one charge
state (i.e., close to the DFT limit of the model). The remaining
differences are relatively small and can be explained by the
difference between calculating the pressure of an average sys-
tem (DFT) versus the average pressure of the resolved excited
states.

The calculation of γ [Eq. (25)] requires an initial guess and
an iterative, self-consistent procedure. We start with the value
provided by an average atom model which seems to be close to
the final answer. For example, for Al at 100 eV and 2.7 g/cm3,
the value from the TARTARUS model is γAA = −0.446 EH

(which results in a pressure of 64.44 Mbar), while the con-
verged value is γ = −0.444 EH (which results in a pressure
of 64.41 Mbar). Conveniently, an approximation in which
we choose γ to vary for each excited state such that γx =
V xc

x (R) and using γ = ∑
x Wxγx also seems to be accurate for

EOS, giving γ = −0.444 EH and a pressure of 64.43 Mbar
for this case. Clearly, this approximation could be more
problematic for excitation energies (differences in excited
state energies) than for the EOS, which is a more averaged
quantity.

IV. CONCLUSIONS

A variational model of excited states in electronic structure
was presented. The model recovers the usual Kohn-Sham
density functional theory approach in the limit where only
one state dominates (i.e., for degenerate systems like solids
or for fully ionized plasmas). The model uses an effec-
tive one-electron expression for the excited state energy
and includes the LDA for the exchange and correlation en-
ergy. Boltzmann factors for the excited state probabilities
result from minimizing the free energy with respect to the
probabilities.

Excited states are defined by a set of one-electron level
occupation factors. If these are set to be the Fermi-Dirac occu-
pation factors, then Kohn-Sham DFT is recovered. We applied
this variational theory to a model of an atom in a plasma, a
generalization of the average atom model [53,54]. We used an
atomic physics-inspired definition of excited states, in which
permutations of integer occupations of bound states are con-
sidered. A comparison of this application to the average atom
model TARTARUS was made. We see the effect on the density
of states, density, and pressure. In general, the pressure is
quite close to the DFT calculation, but some differences were
observed. Since DFT is a widely used and trusted method,
this can be considered a validation of the current model. The
advantage of the current approach is that the calculation of
excited states should allow the prediction of more realistic
optical properties with a consistent and realistic EOS. This
advantage remains to be explored.
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APPENDIX: ENTROPY

The entropy is given by

S = −
∑

i

Wi ln Wi, (A1)

where the sum is over all microstates of the system. If mi-
crostate i is degenerate, with gx being the total number of
microstates at the energy Ex, then

S = −
∑

x

∑
i∈x

Wi ln Wi. (A2)

The probability of microstate i is Wi = Wx/gx, so

S = −
∑

x

∑
i∈x

Wx

gx
ln

Wx

gx

= −
∑

x

Wx ln
Wx

gx

= −
∑

x

Wx ln Wx +
∑

x

WxSx. (A3)
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