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Numerical simulations of elastic-plastic Richtmyer-Meshkov instability of multiple interfaces
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The elastic-plastic Richtmyer-Meshkov instability of multiple interfaces is investigated by numerical simula-
tion using a multimaterial solid mechanics algorithm based on an Eulerian framework. This Richtmyer-Meshkov
instability problem is realized by a copper layer that is flanked by vacuum and a copper block of different
material strength. The research efforts are directed to reveal the influence of the layer thickness and material
strength on the deformation of the perturbed solid-vacuum interface impacted by an initial shock. By varying the
initial thickness (xI) of the copper layer and the yield stress (σY2) of the copper block, two deformation modes,
which have been identified as the broken mode and the stable mode, are closely scrutinized. For a fixed xI and a
decreasing σY2, the reflected rarefaction waves (RRWs), developing after the initial shock impacts the perturbed
interface 1 (I1) between vacuum and the copper layer, become stronger after traveling across the interface 2 (I2).
Subsequently, the velocity of I2 becomes larger, causing the width of I1 to grow larger. This width growth of I1
leads to a final separation of the spike from I1 and, consequently, the deformation mode changes from the stable
mode to the broken mode. For a fixed σY2 and a decreasing xI, the RRWs impact I2 at an earlier moment with a
greater strength and thus the deformation mode changes from the stable mode to the broken mode. Meanwhile,
the comparison of the spike width of cases whose deformation mode is the broken mode shows that there exists
a maximum value of rescaled spike width, at which the deformation mode changes from the stable mode to the
broken mode.

DOI: 10.1103/PhysRevE.109.035102

I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI), named after
the seminal work of Richtmyer [1] and Meshkov [2], arises
when a shock wave interacts with a perturbed interface be-
tween two materials of different properties. Specifically, the
misalignment between directions of the local density gradient
across the interface (normal to the interface) and the shock
pressure gradient (normal to the shock) produces a baroclinic
deposition of vorticity on the interface. Consequently, this
interaction leads to the unbounded growth of the perturbed
interface unless a mechanism could dissipate or advect such
vorticity. This instability can also occur in free surfaces sepa-
rating continuous media from vacuum and it is regarded as
the limiting case of a free-slip interface separating a solid
or fluid material from a very rarified gas [3]. In the case
in which Atwood number A = −1, the initial shockwave is
driven through the material into the perturbed free surface.
When the shockwave arrives at the free surface, it first releases
to zero pressure at the perturbation minima and then reflects
back into the material as a rarefaction wave. A short time later,
the shockwave releases to zero pressure at the perturbation
maxima, also reflecting back into the material as a rarefac-
tion wave. Under these conditions, the stresses produced by
the shockwave interaction with the perturbations cause the
perturbation minima to compress, invert, and then grow in
tension as RM instabilities (spikes) into vacuum. Because the
compressed RM spikes grow quickly relative to the initial per-
turbation maxima, the initial maxima invert and form bubbles
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that unstably grow into the material, causing the material to
flow into the spikes to support the spike growth [4]. Although
the RMI is originally regarded as the impulsive limit of the
Rayleigh-Taylor instability [5,6], it has become increasingly
important because it controls a variety of processes in nature
and technology, such as inertial confinement fusion (ICF) [7]
and astrophysical problems [8].

The canonical RMI, consisting of a single planar shock-
wave interacting with a single corrugated interface separating
two fluids, has been widely studied by numerical simulation,
experimental research, and theoretical analysis [9–11]. As for
the RMI involving the interaction between shock and multiple
interfaces, which is a setup relevant to ICF and supernova
collapse, most of the research has focused on gas curtains. For
example, Refs. [12–15] consider a thin layer of fluid within
another fluid. Hence, the multiple-interface RMI has been
extensively investigated from the fluid dynamics perspective.
However, this intriguing instability also appears in problems
of interest in solid mechanics, for example, purely elastic and
elastic-plastic RMIs. The research work of purely elastic RMI
flow has been performed based on the analytical model [16]
and linearized analysis [17], and the results show that the
interface is always stable because the vorticity deposited on
the material interface during the shock passing through is
propagated away by the shear waves. On the other hand, the
study of the RMI in elastic-plastic material primarily relies
on numerical approaches other than purely analytical models
since the plasticity theory is nonlinear and thus inaccessibly
complicated.

The first research to describe the evolution of small per-
turbations at the solid-vacuum interface in the elastic-plastic
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RMI problem was conducted by Piriz et al. [18]. They
developed an analytical model by using the relatively
simple method which was presented in Ref. [16] to describe
the behavior of the elastic medium. They found a relation
among the long-term interface amplitude, the initial interface
amplitude and growth rate, the unstressed density of material,
and the yield stress of the material. A set of two-dimensional
(2D) numerical simulations was also performed and the re-
sults agree very well with the analytical relation. Since then,
the investigations of elastic-plastic RMI have been mainly
focused on the long-term behavior of the interface, devoted
to establishing a relationship between the parameters of long-
term behavior and initial condition, and to inferring the yield
stress of the material which is under complicated loading.

Specifically, Dimonte et al. [19] developed a model similar
to that described in Ref. [18] at the metal-gas interface for the
strength suppression of the RMI. This model can be used to
infer the yield stress (σY) of copper in an explosively driven
experiment and the results agree with previous ones obtained
in Ref. [20]. By simulating the solid-vacuum RMI problem
with perfect plastic constitutive, Ortega et al. [3] obtained an
empirical law that presents a combined relation for the long-
term perturbation amplitude of the interface, its maximum
growth rate, the initial density, and the yield stress of the ma-
terial. Moreover, this empirical law was extended to materials
that follow more complex plastic behavior. Jensen et al. [21]
performed RMI growth experiments using the free-surface
configuration and estimated the tensile yield stress for cerium
following a high-pressure, shock-induced phase transition by
three methods. Two of the methods are based on the model
developed by Dimonte et al. [19] and the yield stress values
obtained using these three different methods were in reason-
able agreement. Furthermore, the other improved models for
the elastic-plastic RMI were also proposed to evaluate the
material strength of solids under high pressures in previous
experiments [4,22–25].

As mentioned above, most investigations of elastic-plastic
RMI are focused on the long-term behavior of the interface,
while little research has focused on the wave motion occur-
ring before interface deformation, which is known to have
an intriguing influence on the RMI dynamics. To this end,
Liu et al. [26] have carried out comprehensive numerical
simulations to systematically examine the behavior of the
whole process of the solid-vacuum RMI at different initial
perturbed interface amplitudes and yield stresses. They had
documented three typical deformation modes for this RMI
problem, namely, the broken mode, the stable mode, and the
oscillating mode. In order to gain mechanistic insight into
these three modes, the wave motions at the early stage, the
subsequent interface deformation, and the temporal variations
of interface positions and velocities were closely examined.
Inspired by this work, in the present paper we consider the
elastic-plastic RMI of multiple interfaces realized by a copper
layer that is flanked by vacuum and a copper block of different
material strength, and the main goal is to explore a full view
on this interesting RMI problem which is closer to the setup
relevant to ICF and supernova collapse.

In this study, the planar elastic-plastic RMI problem of
multiple interfaces is systematically examined at different
initial thicknesses of the copper layer and yield stresses of

the copper block. We find that two typical deformation modes
appear, namely, the broken mode and the stable mode, when
the initial thickness and the yield stress are varied. To clarify
the differences of these two modes, the wave motions at the
early stage, the subsequent interface deformation, and the
temporal variations of interface positions and velocities are
discussed in detail. Moreover, a maximum value of rescaled
spike width is found as the critical value for the transition from
the stable mode to the broken mode. The remainder of this
paper is organized as follows. The numerical implementation
and equations are briefly described in Sec. II. The problem
description and validation of the simulation program are pre-
sented in Sec. III. The simulation results and discussions are
exposed in Sec. IV. Finally, concluding remarks are summa-
rized in Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL
IMPLEMENTATION

In the simulation of the elastic-plastic RMI problems, the
equations of motion for the elastic-plastic solid materials are
used in an Eulerian framework which is based on the work of
Barton et al. [27,28]. In a fixed Cartesian frame of reference
(x1, x2, x3), the equations of motion, which include the mass,
momentum, energy, and deformation equations in differential
form, are described as follows:

∂ρ

∂t
+ ∂ρuk

∂xk
= 0, (1a)

∂ρui

∂t
+ ∂ (ρuiuk − σik )

∂xk
= 0, (1b)

∂ρ(e + ukuk/2)

∂t
+ ∂[ρuk (e + ukuk/2) − uiσik]

∂xk
= 0, (1c)

∂ρFi j

∂t
+ ∂ (ρFi juk − ρFk jui )

∂xk
= −ui

∂ρFk j

∂xk
− ϕi j, (1d)

for i, j, k = 1, 2, 3 denoting the coordinates and Einstein in-
dex notation being employed throughout this article. ui is the
component of velocity u, σi j is the component of stress tensor
σ, and e(ρ, S) is the inner energy with ρ being the density and
S the entropy of the solid material. The elastic deformation
gradient Fi j = ∂xi/∂Xj is used to measure relative displace-
ments between particles where xi and Xj denote the spatial
and material coordinates, respectively. Hence, the density ρ

varies according to

ρ = ρ0

|F| , (2)

where ρ0 is the density of the initial unstressed solid and
|F| denotes the determinant of the elastic deformation gradi-
ent tensor. For the problem of two-dimensional deformations
(F13 = F23 = F31 = F32 = 0) considered here, the evolution
equations [Eq. (1d)] of the elastic deformation gradient tensor
F are reduced to have four nontrivial components as F33 can be
obtained from Eq. (2). The second term on the right-hand side
of Eq. (1d), which represents the influence of the plasticity on
the elastic deformations, is given by

ϕi j = 1

2μτ
σ ′

ikρFk j, (3)
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TABLE I. Parameters for copper.

Parameter Copper Units

ρ0 8.93 g/cm3

K 15.28 × 106 m2/s2

cV 3.9 × 102 J/(kgK)
T0 298 K
μ0 39.38 GPa
α 1 −
β 3 −
γ 2 −

where σ ′
ik = σik − σmmδik/3 is the tensor of deviatoric stress,

δik is the Kronecker delta, and μ is the shear modulus. Based
on the previous treatment [28], the expression of relaxation
time τ takes the form

τ = τ0

(
σ0

σe

)m1

, σe =
√

3

2
σ ′

i jσ
′
i j, (4)

where τ0 is a reference relaxation time, σ0 is the characteristic
stress, and the exponent m1 controls the extent of rate depen-
dence. This expression can be simplified to perfect plasticity
in our simulations by setting σ0 = σY, and m1 high enough
so that the equivalent stress σe conforms to the yield surface
defined by σY almost immediately.

A hyperelastic constitutive law [29,30], in which the stress
state is acquired via direct differentiation of the equation of
state (EOS) for the inner energy in consistency with the energy
conservation equation, is used as follows:

σi j = ρFik
∂e

∂Fjk
. (5)

The Godunov-Romenski hyperelastic EOS [3,31] is employed
for the modeling of elastic-plastic solids which considers con-
tributions to the inner energy related to shear and hydrostatic
deformations, respectively,

e = es + eh, (6a)

es = 2cs
2(ρ)I2, I2 = (IH

1 )2

3
− IH

2 , (6b)

eh = K

2α2

[(
ρ

ρ0

)α

− 1

]2

+ cV T0

(
ρ

ρ0

)γ [
exp

(
S

cV

)
− 1

]
,

(6c)

where cs
2(ρ) = μ/ρ = μ0ρ

β/ρ
β+1
0 , and IH

1 , IH
2 are the first

two invariants of the elastic Hencky strain tensor H =
1
2 ln(FFT ). μ0 is the reference shear modulus, K is the squared
bulk speed of sound, cV is the heat capacity at constant vol-
ume, T0 is the reference temperature, and α, β, γ are constant
values. The material considered in this work is copper and the
parameters, from Ref. [31], are listed in Table I.

Based on the previous work of Barton et al. [28], the
numerical discretization of the motion equations of solid and
the computation of the plasticity models are briefly described
here. Specifically, the equations of motion for elastic-plastic
solids are solved by using the Eulerian finite-difference

FIG. 1. Schematic of computational setup used for the elastic-
plastic RMI of the considered multiple interfaces.

method in a fixed Cartesian grid. The state variables are stored
at cell centers and the cell face numerical fluxes are formed
through polynomial reconstruction of cell center variables
by using a third-order, weighted, essentially nonoscillatory
(WENO) method [32]. The time integration is approximated
by using a third-order total variation diminishing Runge-Kutta
method [33]. The plastic update can be reduced to a stiff
ordinary differential equation dependent only on the local
stress state and the solution for this ordinary differential equa-
tion can be simplified by using the hyperelastic EOS (6)
and the perfect plastic model [28]. Sharp interface resolu-
tion is achieved by employing level-set functions to track
the motions of the free surface between solid and vacuum
and the slip surface between two solids [28], along with the
modified ghost material method [34] to capture the neces-
sary internal boundary conditions for material interactions.
The necessary parameters used in the modified ghost material
method, such as the density ρ, the velocity u, the total energy
E , and the elastic deformation gradient tensor F, are obtained
by solving the solid-vacuum or solid-solid one-dimensional
Riemann problems along the normal direction of the inter-
face via the Harten-Lax–van Leer discontinuities (HLLD)
method [35].

III. PROBLEM DESCRIPTION AND VALIDATION

A. Problem description

As shown by the schematic in Fig. 1, the problem to be
considered is the two-dimensional planar elastic-plastic RMI,
which contains a finite-thickness layer of copper (area 1)
between the vacuum (area 3) and a copper block of differ-
ent material strength (area 2). The rectangular computational
domain extends from x ∼ −8–8 cm and y ∼ 0–4.3 cm, corre-
sponding to a length of 16 cm and a width of 4.3 cm in the
x and y directions, respectively. The computational domain
is divided into three parts by two interfaces. The interface
1 (I1), plotted as a red line in Fig. 1, is perturbed with a
sinusoidal wave x = −ξ0cos(ky), with k chosen in a way such
that one wave cycle is included in the y-direction computa-
tional domain and the wavelength λ = 4.3 cm. The vacuum
is on the left side of I1 (area 3) and copper whose parameters
are set in Table I is set to be on the rest of the simulation
domain (areas 1 and 2). The copper is divided into two parts
by the interface 2 (I2) at x = xI cm, and these two parts are
considered as multimaterials as they are set to have different
material strength, namely, different yield stresses. The initial
horizontal velocities of unstressed copper in areas 1 and 2 are
set as 5 and 0 km/s, respectively, and the vertical velocities as
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FIG. 2. Comparison of variables along the x direction at t = 0.3 µs obtained via our code (red dashed line) and those given in Ref. [37]
(blue dash-dotted line) and those from the exact solution in Ref. [31] (black solid line).

0 km/s. With this setup, one of the shocks originated in the
vertical colliding boundary (x = xI cm) between the two dif-
ferent coppers travels to the right and exits the computational
domain, while the other moves left towards I1. Note here
that the interfaces I1 and I2 that are quantitatively exam-
ined remain in the computational domain during the whole
simulation. A numerical sponge layer [36], which absorbs
outgoing waves and minimizes reflection, is applied at the
right boundary in the region x ∈ (7.2, 8) cm, as shown in the
shaded part of Fig. 1. The left boundary does not need to be
set because the material considered in area 3 is vacuum. The
upper and lower boundaries are set to be periodic.

B. Code validation

A detailed test study has been performed to further validate
the code used based on the following two cases. The first
test case is performed according to Ref. [31], in which two
plates of unstressed elastic copper are impacted at x = 0.5 cm
with velocity uL = (5, 0, 0) km/s for the left one and uR =
(−5, 0, 0) km/s for the right one. The parameters of the cop-
per plates are set the same as those used in the present work.
In Fig. 2, some representative results, such as the density ρ,
x-velocity u, stress component σyy, and the entropy S, are
plotted along the x direction at t = 0.3 µs to compare with
those given in Ref. [37]. It is seen that a fairly good agreement
is achieved, although deviations at x = 0.5 are observed for
different variables due to the overheating effect, which is
also present in previous numerical simulations [31,37] while
absent in the analytical theory [31].

The second test case is a prototypic case of multi-interface
elastic-plastic RMI described above which, however, has a flat
solid-vacuum interface (ξ0 = 0). According to the previous
work by Liu et al. [26], it is assured that the present numerical
method using a grid resolution of x = y = 0.025 cm is
reliable to simulate the elastic-plastic solid-vacuum RMI in
our work. The perfect plastic model of the two coppers with
the same yield stress of 0.5 GPa, which is the same as that
used by Dimonte et al. [19] and Liu et al. [26], is considered
in this test. Some representative results, including the initial
left-travelling plastic shock wave velocity Us, the jump in
normal velocity u across the shock, the long-term yield
copper density ρY, and the interface velocity V0, are compared
in Table II with those obtained by Dimonte et al. [19] and
Liu et al. [26]. It is shown that the present simulation obtains
results that agree fairly well with those of Dimonte et al. [19],
confirming that the program can be extended from the solid-
vacuum RMI problem [26] to the elastic-plastic RMI problem
of multiple interfaces considered in our present study.

TABLE II. Comparison between the results obtained by the
present simulation and that of Dimonte et al. [19] and Liu et al. [26].

Dimonte’s result Liu’s result Present result Units

Us 7.64 7.87 7.86 km/s
u 5 5 5 km/s
ρY 8.3 8.2 8.1 g/cm3

V0 5.26 5.19 5.17 km/s
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IV. RESULT AND DISCUSSIONS

A. Deformation mode

In the simulations of the solid-vacuum RMI problem, Liu
et al. [26] systematically examined the solid-vacuum RMI
at different initial perturbed interface amplitudes and yield
stresses. They found that the interface deformation mode
changes from the stable mode to the broken mode with the
gradual increase of kξ0 from 0.18 to 0.22 and the yield stress
of 0.5 GPa fixed for coppers. Inspired by our previous find-
ings, we turn to study the multi-interface elastic-plastic RMI
problem in the present work, with research interest directed to
examine the initial thickness of the copper layer (x = xI cm)
and the yield stress of the copper block (σY2). According
to Liu et al. [26], the simulations are performed with the
initial amplitude (kξ0) of I1 and the yield stress of the copper
layer (σY1) fixed at (0.2, 0.5 GPa). The typical modes of
the interface deformation, which have been identified as the
broken mode and the stable mode in Ref. [26], have also been
found in the present simulations. As reported in our previous
work [26], the oscillatory mode occurs in the case with large
yield stress of material (σY � 4 GPa) and the main reason
is that the material near the interface changes quickly from
the plastic state induced by the initial shock to the elastic
states due to the large yield stress. As the yield stress of the
copper layer σY1 is fixed at 0.5 GPa, the oscillatory mode
is absent, with the initial thickness of the copper layer and
the yield stress of the copper block (xI, σY2) varying from
(0.5 cm, 1.0 GPa) to (1.0 cm, 6.0 GPa) according to the present
simulations. Possibly, it may occur in the cases with other
parameter settings, which should be explored as one of the
motivations in our future work.

At the early stage of interface deformation for these two
modes, the observed interfacial behaviors, i.e., phase reversal
and formation of bubble and spike, are basically the same as
the classical heavy-light fluidlike RMI problem [38]. How-
ever, the long-term interfacial behaviors are different. For the
broken mode, the spike finally separates from I1 as a result
of the continuous increase of the I1 width (xw1 = xb1 − xs1,
where xb1 and xs1 are the x positions of the bubble and spike
tips of I1, respectively), as shown in Fig. 3(a). For the stable
mode, the spike and bubble of I1 grow to saturation and then
the shape of I1 remains almost unchanged, characterized by
the interface width of I1 maintaining a nearly constant positive
value, as shown in Fig. 3(b).

Unlike the sharp-pointed spike in Refs. [39,40], the spike
is found to be bulged [see Fig. 3(b)] during the formation
of the spike of the two modes in the present simulations.
The bulging phenomenon has been found in the numerical
simulations [3,19] and the experiments [4,21]. It is originated
in the elastic-plastic effect, which takes a role during the spike
evolution so that the material of the spike experiences a switch
between the elastic and plastic states. As a consequence, the
bulge happens when the x-velocity of the spike tip does not
always obtain the maximum value which, however, occurs in a
small region immediately behind the spike tip, in that the spike
tip will be bulged rather than continue to be sharp pointed.

Figure 4 shows the phase map of the interface deforma-
tion modes of I1 at different settings of (xI, σY2). For a
small thickness of the copper layer, xI � 0.6 cm, the interface

(a)

(b)

FIG. 3. Visualization of (a) the broken mode with the initial
setting (xI, σY2) = (0.5 cm, 4 GPa) and (b) the stable mode with the
initial setting (xI, σY2) = (1.0 cm, 4 GPa) of interface deformation
at t = 200 µs. The green pattern represents material 1 and the red
pattern represents material 2.

deformation is realized as the broken mode for all the yield
stresses considered in our simulations, identified by a final
separation of the spike resulting from the continuous increase
in the width xw1 of the growing interface I1. For a larger
thickness of the copper layer, xI � 0.8 cm, the interface de-
formation is realized as the stable mode after a long-term
interface growth of I1 for all the yield stresses in our simula-
tions. For the copper layer whose initial thickness is between
the two typical values, such as xI = 0.7 cm, the interface
deformation mode changes from the broken mode to the stable
mode with the increase of yield stress (σY2) of the copper
block. Moreover, for the case with initial setting (xI, σY2) =
(0.7 cm, 4 GPa), the broken mode transitions to the stable
mode either by increasing the initial thickness of the copper
layer or by increasing the yield stress of the copper block.

In the following, the interface deformation modes of I1 are
closely scrutinized by four typical simulations of two groups

FIG. 4. Phase map of the interface deformation modes for differ-
ent (xI, σY2).
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TABLE III. Parameter settings of (xI, σY2) for four typical
simulations.

Case xI/cm σY2/GPa Deformation mode

A1 0.7 1.0 Broken mode
A2 0.7 6.0 Stable mode
B1 0.5 4.0 Broken mode
B2 1.0 4.0 Stable mode

either at a fixed xI and varying σY2 or at a fixed σY2 and
varing xI, for which the parameter settings of (xI, σY2) are
listed in Table III as cases A1, A2, B1, and B2. The essential
differences between the broken mode and the stable mode are
illustrated, with a special interest focused on the wave motion
at the early stage and the subsequent interface deformation,
and quantitatively examined via the temporal variations of
interface positions and velocities.

B. Wave motion

This section is mainly devoted to examine the wave motion
of four typical cases of two deformation modes at different
initial thickness of the copper layer and the yield stress of the
copper block, i.e., cases A1, A2, B1, and B2, based on the
numerical schlieren images visualized below. The numerical
schlieren function φ is calculated by Ref. [41],

φ = exp

(
− |∇ρ|

max|∇ρ|
)

, (7)

where ∇ρ is the density gradient. For all simulated cases, time
t is set to be zero when the initial shocks are produced at the
colliding interface.

For the broken mode case of group A, the wave motion
at the early stage is demonstrated in Fig. 5. Specifically,
Fig. 5(a) shows the initial shape of the copper layer which
is between the interface 1 (I1) and the interface 2 (I2). I1
is the interface determining the deformation mode of the
case and I2 is the interface at which the initial shocks (IS)
are produced. Figure 5(b) shows the produced initial shocks,

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 5. Numerical schlieren images of wave motion for the bro-
ken mode (case A1) at t = (a) 0 µs, (b) 0.4 µs, (c) 0.7 µs, (d) 1 µs, (e)
2 µs, (f) 5 µs, (g) 7 µs, (h) 10 µs. The red lines represent the interfaces.

FIG. 6. Pressure contour plot at t = 10 µs of the broken mode
(case A1).

resulting from the impact of the copper block at the copper
layer, which are unstressed while with a relative velocity of
5 km/s. When the left-travelling IS impacts the perturbed
interface I1 [see Fig. 5(c)], it first releases to zero pressure at
the perturbation minima and then reflects back into the copper
layer as a rarefaction wave. A short time later, IS releases
to zero pressure at the perturbation maxima, also reflecting
back into the copper layer as a rarefaction wave and at mean
time there develops the reflected rarefaction waves (RRWs)
in Fig. 5(d). Under these conditions, the stresses produced
by IS interacting with the perturbed interface I1 cause I1
to experience the typical phase reversal of heavy-light RMI
configurations in Figs. 5(d)–5(f). Meanwhile, the RRWs slow
down the I2 since it travels across I2 due to the decrease of
pressure, i.e., first in the middle, then the top and bottom of I2
due to the convex head of the RRWs. As a result, the planar I2
changes to be a bow-shaped interface (BSI) in Fig. 5(e). The
RRWs subsequently travel to the right to catch up the strong
initial shock from behind and slow down the shock, also first
in the middle, then the top and bottom due to the convex
shape of RRWs. Consequently, the initial shock changes to
be a bow-shaped shock (BSS) in Fig. 5(f). According to the
discussion in Ref. [26], due to the growth of I1 and I2 in
the whole simulation, the material behind the bubble of the
I2 is compressed and the material behind the spike of I2 is in
tension. As evidence, Fig. 6 shows the hydrostatic pressure (p)
contour at t = 10 µs. Here, p is calculated from the stress ten-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 7. Numerical schlieren images of wave motion for the sta-
ble mode (case A2) at t = (a) 0 µs, (b) 0.4 µs, (c) 0.7 µs, (d) 1 µs, (e) 2
µs, (f) 5 µs, (g) 7 µs, (h) 10 µs. The red lines represent the interfaces.

035102-6



NUMERICAL SIMULATIONS OF ELASTIC-PLASTIC … PHYSICAL REVIEW E 109, 035102 (2024)

FIG. 8. Pressure comparison of the above two modes at t = 2 µs.
(a) The pressure contour of the whole domain in which the pressure
contour of the broken mode (case A1) is shown in the upper half and
that of the stable mode (case A2) is shown in the lower half. (b) The
pressure along the x direction (y = 2.15 cm) of the two modes.

sor σ , p = −(σxx + σyy + σzz )/3, whose negative or positive
values correspond to isotropic tension or compression state
of the material. It is obviously seen that the material behind
the bubble of the I2 is compressed with the positive pressure
and the material behind the spike of the I2 is in tension with
the negative pressure. Within that, the reflected shock (RS) is
developed to offset the pressure difference between these two
areas, as shown in Fig. 5(h).

For the stable mode realized by increasing the yield stress
of the copper block to σY2 = 6.0 GPa and fixing the initial
thickness of copper layer xI = 0.7 cm, the wave motion be-
haves basically similar to that of the broken mode described
above, although a little difference exists as discussed below.
Specifically, Figs. 7(a)–7(f) demonstrate similar wave motions
involving in sequence the formation of IS, the impacting of the
IS at the perturbed interface I1, the subsequent formation of
RRWs, and the resulting phase reversal and the deformation
from I2 to BSI. After the RRWs travel across the I2, the RRWs
become weaker than that of the broken mode (case A1), as
shown in Fig. 7(e). Furthermore, the RRWs also become in-
visible and the RS appears in a similar manner, as shown in
Figs. 7(f)–7(h).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 9. Numerical schlieren images of wave motion for the bro-
ken mode (case B1) at t* = (a) −0.44 µs, (b) −0.2 µs, (c) 0 µs, (d) 1
µs, (e) 3 µs, (f) 7 µs, (g) 8 µs, (h) 10 µs. The red lines represent the
interfaces.

As a close examination, the strengths of the RRWs of these
two modes at t = 2 µs are compared by the contour of the
hydrostatic pressure (p) plotted in Fig. 8. Since the problem
solution has an up-and-down symmetry, the pressure contour
of the broken mode is plotted in the upper half in Fig. 8(a),
and that of the stable mode is plotted in the lower half to
obtain a clear comparison. Figure 8(b) shows the comparison
of the pressure along the x direction (y = 2.15 cm) of the
two modes. The two vertical blue dashed lines represent the
x positions of the interfaces at y = 2.15 cm and the areas 1, 2,
and 3 represent the copper layer, copper block, and vacuum,
respectively. Clearly, for the broken mode case in which the
yield stress of the copper block σY2 = 1.0 GPa is smaller
compared to that of the stable mode case, the pressure behind
I2 is larger so that the spike of I2 gains a negative velocity of
larger magnitude. This larger velocity of the spike of I2 results
in the larger width of I1 after the continuous increase and
the separation of the spike from I1. The detailed discussion
is given in Sec. IV C.

Before the discussion of the wave motion for the two
deformation modes of group B, the time t∗, which is set to

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 10. Numerical schlieren images of wave motion for the
stable mode (case B2) at t∗ = (a) −1.07 µs, (b) −0.5 µs, (c) 0 µs,
(d) 1 µs, (e) 3 µs, (f) 7 µs, (g) 8 µs, (h) 10 µs. The red lines represent
the interfaces.
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(a)

(b)

(c)

(d)

FIG. 11. Density contour plots for the broken mode (case A1) at
t = (a) 0 µs, (b) 3 µs, (c) 50 µs, (d) 200 µs. The black lines represent
the interfaces.

be zero corresponding to the moment when the IS impacts
the I1, is used to get a clear comparison of the two modes
with different initial thicknesses of the copper layer. For the
two modes of group B, the wave motion behaves basically
similar to that of the broken mode of group A described
above, although a little difference exists when compared with

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 12. Density contour plots for the stable mode (case A2) at
t = (a) 0 µs, (b) 3 µs, (c) 50 µs, (d) 100 µs, (d) 150 µs, (f) 200 µs. The
black lines represent the interfaces.

each other. Specifically, Figs. 9(a)–9(c) and Figs. 10(a)–10(c)
demonstrate, in sequence, the initial shape of the copper layer
with different initial thickness, the formation of IS, and the
impacting of the IS at the perturbed I1. Figures 9(c)–9(e) and
Figs. 10(c)–10(e) both show the the subsequent formation of
the RRWs, the resulting phase reversal, and the deformation
from I2 to the BSI, but the position and the strength of the
RRWs are different at the same time. At the time t∗ = 0 µs of
the two modes, the RRWs develop in the copper layer as a so-
lution of the Riemann problem originated at I1. At t∗ = 1 µs,
the RRWs reach the I2 in the stable case [see Fig. 10(d)],
while those of the broken mode have traveled across the I2
[see Fig. 9(d)], and thus the I2 is still planar in the stable mode
while that of the broken mode has become a bow-shaped inter-
face, causing the spike of I2 to gain a negative velocity with
smaller magnitude. Correspondingly, the width of I1 in the
stable mode case increases slower and it remains a constant
value at the long term, rather than increasing continuously.

C. Interface deformation

Next, our main focus is devoted to demonstrate the in-
terface deformation of the two typical modes by four cases
with different initial thicknesses of the copper layer and the
yield stresses of the copper block, based on the visualization
of density contours and the time evolution of the spike tip
position, the bubble tip position, and the interface width of
the two interfaces obtained by the simulation results.

Figure 11 depicts a sequence of density contour plots for
the broken mode of group A, which is identified by a final
separation of the spike from the perturbed I1. Specifically,
the initial copper layer contains two interfaces, namely, the
perturbed interface I1 between the vacuum and copper layer
and the plane interface I2 between the copper layer and the
copper block [see Fig. 11(a)]. After the impact of the IS
originated in the vertical colliding boundary I2 between the
copper layer and the copper block, the perturbed interface
I1 experiences the phase reversal, i.e., the interface changes
from being concave to being convex, as shown in Figs. 11(a)
and 11(b). As the spike tip of I1 has a higher velocity than
that of the bubble tip of I1, the perturbed interface I1 develops
and transitions to a shape characterized by a long and thin

FIG. 13. Time evolution of (a) the x position of the spike tip (xs1), the bubble tip (xb1), and the interface width (xw1), and (b) the x-velocity
of the spike tip (vs1), the bubble tip (vb1), and the interface width growth rate (vw1) of I1 for the two modes (cases A1 and A2).

035102-8



NUMERICAL SIMULATIONS OF ELASTIC-PLASTIC … PHYSICAL REVIEW E 109, 035102 (2024)

FIG. 14. Time evolution of (a) the x position of the spike tip (xs2), the bubble tip (xb2), the interface width (xw2), and (b) the x-velocity of
the spike tip (vs2), the bubble tip (vb2), and the interface width growth rate (vw2) of I2 for the two modes (cases A1 and A2).

spike and commensurate bubbles [see Fig. 11(c)]. Finally, the
interface width of I1 increases continuously and the spike
eventually separates from I1 after a long-term evolution in
Fig. 11(d).

The density contour plots for the stable mode (case A2) are
shown in Fig. 12. Similar to the broken mode, the interface
deformation also develops with the typical phase reversal and
formation of spike and bubble, as demonstrated in Figs. 12(a)–
12(c). In contrast, for the stable mode, the velocity of the
spike tip of I1 decreases faster; thus the spike tip is soon
at the same velocity as the bubble of I1. In the long term
(t � 150 µs), the spike and bubble tips obtain the same speed,
so that the interface width of I1 grows to a saturated value in
Fig. 12(e). Finally, the whole material moves at a nearly same
velocity, namely, the moving interface maintains at the stable
mode characterized by the interface shape remaining almost
unchanged [see Figs. 12(e) and 12(f)].

In Fig. 13(a), the interface deformation of the two modes is
quantitatively examined by the time evolution of the x position
of the spike tip (xs1), the bubble tip (xb1), and the interface

FIG. 15. Time evolution of the copper layer width between two
spike tips (xsw) and bubbles (xbw) for the two modes (case A1 and
case A2).

width (xw1) of I1. Correspondingly, Fig. 13(b) shows the com-
parison of the x-velocity of the spike tip (vs1), the x-velocity
of the bubble tip (vb1), and the interface width growth rate
(vw1 = vb1 − vs1) of these two modes. For the broken mode
in which the yield stress σY2 = 1.0 GPa, vs1 that is negative
increases slowly at t � 10 µs and is smaller than vb1 all the
time so that vw1 maintains a positive value [see Fig. 13(b)].
Hence, xw1 is continuously increasing, which leads to the final
separation of the spike from I1. For the stable mode in which
a larger yield stress σY2 = 6.0 GPa is applied, vs1 increases
faster than that of the broken mode [see Fig. 13(b)] and in
the long term (t � 150 µs) vs1 ≈ vb1. Correspondingly, vw1

decreases gradually to be almost zero [see Fig. 13(b)] and the
perturbed interface maintains a nearly constant positive xw1 in
the long term [see Fig. 13(a)]. This is the characteristic of the
stable mode.

The deformation of I2 of these two modes is also quanti-
tatively examined by the time evolution of the x position of
the spike tip (xs2), the bubble tip (xb2), and the interface width
(xw2 = xb2 − xs2), as shown in Fig. 14(a). Figure 14(b) shows
the comparison of the x-velocity of the spike tip (vs2), the x-
velocity of the bubble tip (vb2), and the interface width growth
rate (vw2 = vb2 − vs2) of the two modes, correspondingly. As
discussed in Sec. IV B, with the decrease of the yield stress
σY2 from 6.0 to 1.0 GPa, the RRWs across I2 become stronger
(the pressure behind the spike tip of I2 is larger), so that the

(a)

(b)

(c)

(d)

FIG. 16. Density contour plots for the broken mode (case B1) at t
= (a) 0 µs, (b) 3.44 µs, (c) 50 µs, (d) 200 µs. The black lines represent
the interfaces.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 17. Density contour plots for the stable mode (case B2) at t
= (a) 0 µs, (b) 3 µs, (c) 50 µs, (d) 100 µs, (d) 150 µs, (f) 200 µs. The
black lines represent the interfaces.

negative velocity of the spike tip of I2 has a larger magnitude
at t � 20 µs, as shown in Fig. 14(b). Meanwhile, the velocities
of the bubble tip of the two cases are nearly the same so that
the growth rate of I2, vw2, is larger than that of the case with
the yield stress of 6.0 GPa. Correspondingly, the interface
width of I2 increases faster for the case with smaller yield
stress σY2 = 1.0 GPa and reaches a larger maximum value, as
shown in Fig. 14(a).

The time evolution of the copper layer width between two
spike tips (xsw = xs2 − xs1) and bubbles (xbw = xb2 − xb1) for
these two modes is compared in Fig. 15. As shown in the
enlarged view, the time evolution of xsw and xbw for these
two modes is nearly the same at t � 5 µs. xsw decreases at
first because of the initial velocity of I1. When the initial IS
impacts the I1, the spike of I1 gains a negative velocity which
increases xsw. Finally, xsw increases with a smaller velocity
after the RRWs travel across the I2. Meanwhile, the width
between the two bubble tips develops similar to that between
the two spike tips. With the increase of yield stress of the
copper block from 1.0 to 6.0 GPa, the growth rate of xsw

is larger since the negative velocity of the spike of I2 has
a smaller magnitude after the RRWs travel across the I2, so
that xsw is larger than that of the case with yield stress of

1.0 GPa for the copper block since t � 45 µs, as shown in
Fig. 15. Meanwhile, the width of the bubble is smaller than
that of the case with 1.0 GPa. The smaller width of the case
with yield stress of 1.0 GPa for the copper block represents
smaller tension, so that the width of the spike tip increases
faster to be a larger one at t � 45 µs than that of the case
with 6.0 GPa yield stress for the copper block, as shown in
Fig. 15. Finally, once the larger width of the spike tips reaches
the critical value, the spike separates from I1, leading to a
transition of the deformation mode from the stable mode to the
broken mode.

Figures 16 and 17 depict the sequence of density contour
plots for the broken mode and the stable mode of group B,
respectively. The developments of the interface deformation
of the two cases are similar to that described above. At the
early stage, the typical phase reversal and formation of the
spike and bubble of the interface deformation also appear in
these cases, as shown in Figs. 16(a)–16(c) and Figs. 17(a)–
17(c). For the broken mode, the interface width increases
continuously since the negative velocity of the spike is larger
than that of the bubble and the spike eventually separates from
the interface after a long-term evolution in Fig. 16(d). For
the stable mode, the whole interface moves at a nearly same
velocity with no shape change of the interface, as shown in
Figs. 17(d)–17(f).

Following the above discussion, the time t∗ is also used
here to replace t to get a clear comparison of the two cases
with different initial thickness of the copper layer. Corre-
spondingly, x∗ which is set to be zero at t∗ = 0 is used to
replace x. In Fig. 18(a), the interface deformations of these
two modes are quantitatively examined by the time evolution
of xs1, xb1, and xw1. Correspondingly, Fig. 18(b) shows the
comparison of vs1, vb1, and vw1 of these two modes. At the
time t∗ � 50 µs, the velocities of the spike tip vs1 and bubble
tip vb1 are nearly the same in the two cases, as shown in
Fig. 18(b). Correspondingly, the x positions of the spike tip
xs1 and the bubble tip xb1 are nearly the same in the two cases,
as shown in Fig. 18(a). Meanwhile, the negative velocity of
the spike tip of the broken case slightly increases to have a
larger magnitude than that of the stable case until 50 µs. After
t∗ = 50 µs, the velocity of the spike is smaller than that of the
bubble for all the time of the broken mode, while the velocity

FIG. 18. Time evolution of (a) the x position of the spike tip (xs1), the bubble tip (xb1), and the interface width (xw1), and (b) the x-velocity
of the spike tip (vs1), the bubble tip (vb1), and the width growth rate (vw1) of I1 for the two modes (case B1 and case B2).
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FIG. 19. Time evolution of (a) the x position of the spike tip (xs2), the bubble tip (xb2), and the interface width (xw2), and (b) the x-velocity
of the spike tip (vs2), the bubble tip (vb2), and the width growth rate (vw2) of I2 for the two modes (case B1 and case B2).

of the spike increases to be the same as that of the bubble
of the stable mode, as shown in Fig. 18(b). The interface
width also increases continuously in the broken mode, while
that in the stable mode remains nearly constant, as shown in
Fig. 18(a).

The deformation of I2 is also quantitatively examined by
the time evolution of positions xs2, xb2, and xw2 shown in
Fig. 19(a), along with the velocities vs2, vb2, and vw2 shown
in Fig. 19(b). As discussed in Sec. IV B, with the increase of
the initial thickness of the copper layer from 0.5 to 1.0 cm,
the RRWs impact I2 at a later moment with a commensurate
weaker strength, so that the negative velocity of the spike tip
of I2 has a smaller magnitude than that of the case with an
initial thickness of 0.5 cm for the copper layer, as shown in
Fig. 19(b). Meanwhile, the velocity of the bubble tip of I2
also has a smaller magnitude so that the growth rate of I2,
vw2, is smaller than that of the case with the initial thickness
of 0.5 cm for the copper layer. Correspondingly, the interface
width of I2 increases faster for the case with smaller initial
thickness xI = 0.5 cm and reaches a larger maximum value,
as shown in Fig. 19(a).

FIG. 20. Time evolution of the copper layer width between the
two spike tips and bubbles for the two modes (cases B1 and B2).

Figure 20 shows the comparison of the widths between
the two spike tips xsw and bubbles xbw for these two modes.
The relative widths of the copper layer, xsw_r = xsw/xI and
xbw_r = xbw/xI, representing the effect of compression or ten-
sion, are used to get a clear comparison of the two modes with
different initial thickness (xI) of the copper layer. The result
shows that even though the interface widths of I1 are nearly
the same at t∗ � 50 µs of the two cases [see Fig. 18(a)], the
material located at the middle of the copper layer of the broken
mode has been stretched larger than that of the stable mode.
The difference in material stretch is mainly attributed to the
deformation of I2 which results from the RRWs. The larger
material stretch results in the final separation of the spike
from I1.

D. Analysis of broken spike

Further, quantitative examination of the interface evolution
of the broken mode is performed via comparing the time
evolution of the copper layer width between two spike tips
(xsw) for all the cases whose deformation mode is the broken
mode, as shown in Fig. 21. The discontinuity of each case
corresponds to that the spike separates from the I1 and then
xsw represents the x-direction width of the broken spike. As
shown by the enlarged view of Fig. 21, at the early stage, the
width of the spike first decreases because of the initial velocity
of I1 until the initial IS impacting the I1. Then the spike of I1
gains a negative velocity, so that xsw increases. Finally, the
spike of I2 gains a negative velocity after the RRWs travel
across the I2, thus xsw still increases but with a smaller growth
rate. For the cases with the same initial thickness of the copper
layer, the growth of the spike width (xsw) is nearly the same. At
the long time, xsw grows continuously until the spike separates
from the I1, which is the characteristic of a broken mode. As
Fig. 21 shows, the maximum value of xsw, which represents
the value of the spike width at the broken time, is slightly
different for the cases with the same initial thickness of the
copper layer. This maximum value increases with the increase
of the initial thickness xI.

The rescaled value of the spike width, xrsw = xsw/xsw

(t = 0) ∗ xI, is used in our simulations to show the close
comparison of the spike width for the broken mode with
different initial thicknesses. As shown in Fig. 22, the
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FIG. 21. Time evolution of the copper layer width between the two spikes (xsw) for the broken mode.

maximum value of the rescaled spike width, xrsw,m, is about
6 cm for all the cases of the broken mode in our simulations.
The yield stress of the copper block σY2 shows a slight in-
fluence on xrsw,m. The maximum value of the rescaled spike
width xrsw,m can be regarded as the critical value at which the
interface deformation is realized as the broken mode.

V. CONCLUDING REMARKS

In this paper, we performed numerical simulation on the
elastic-plastic RMI of multiple interfaces. This RMI problem
is realized by a copper layer that is flanked by vacuum and
a copper block of different material strength. The research
efforts are directed to reveal the influence of layer thickness

and material strength on the deformation of the perturbed
interface. Two typical modes of interface deformation are
identified as the broken mode and the stable mode for different
settings of the initial thickness (xI) of the copper layer and
the yield stress (σY2) of the copper block. In particular, these
modes are closely scrutinized by four typical simulations of
two groups either at a fixed xI and varying σY2 or at a fixed σY2

and varying xI. The essential difference among these modes is
illustrated, with special interest focused on the wave motion
at the early stage and the subsequent interface deformation,
and quantitatively examined via the temporal variations of
interface positions and velocities.

At the early stage of interface deformation for the four
cases, the observed wave motions and interfacial behaviors

FIG. 22. Time evolution of the rescaled value of the spike width (xrsw).
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are basically the same as the classical heavy-light fluidlike
RMI problem. Specifically, the formation of IS, the impacting
of IS at the perturbed interface I1, the subsequent formation
of the RRWs, and the resulting phase reversal are nearly the
same in all the typical cases. However, there also exists a
difference of the typical cases, which results in different defor-
mation modes. For the cases in which the initial thickness of
the copper layer is fixed at xI = 0.7 cm, with the decrease of
the yield stress of the copper block σY2 from 6.0 to 1.0 GPa,
the pressure behind the I2 becomes larger, resulting in a
negative velocity with larger magnitude of the spike of I2.
The negative velocity vs2 with a larger magnitude results in
the smaller width of the spike width (xsw) and thus smaller
tension. The smaller tension leads to a larger velocity of the
spike of I1 (vs1) so that the width (xw1) of I1 becomes larger
and the spike finally separates from I1. Hence, the interface
deformation obtains a transition from the stable mode to the
broken mode. For the cases that the yield stress of the copper
block is fixed at σY2 = 4.0 GPa, with the decrease of the
initial thickness of the copper layer xI from 1.0 to 0.5 cm, the
RRWs travel across I2 faster and are larger at the same time,
so that the spike of I2 gains a negative velocity with larger
magnitude which results in a larger width of I1. Consequently,

the interface deformation changes from the stable mode to the
broken mode.

Moreover, quantitative examination of the interface evolu-
tion of the broken mode is performed via comparing the time
evolution of the width of two spike tips (xsw). The rescaled
value of the spike width, xrsw = xsw/xsw(t = 0) ∗ xI, is used
in our simulation to show the close comparison of the spike
width for the broken mode with different initial thicknesses,
and the result shows that the deformation mode changes from
the stable mode to the broken mode since xrsw reaches a
critical value xrsw,c = 6.0 cm.
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