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Experimental investigation of walking drops: Wave field and interaction with slit structures
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While bouncing walking silicone oil droplets (walkers) do show many quantumlike phenomena, the original,
most intriguing, double-slit experiment with walkers has been shown to be an overinterpretation of data.
Several experiments and numerical simulations have proven that for at least some parameter region there is
no randomness. Still, true randomness was claimed to be observed in an experiment on chaotically bouncing
walkers. Also, most of the available phase space has not been investigated. The main goal of this paper is
therefore to look for true interference and chaos in the entire phase space. Recently, we made an extensive
investigation of drops interacting with slits, but still in a limited range. However, the outcome was always
deterministic and only incidentally mimicked the statistics of the corresponding quantum case. We also showed
that the extra interference, already seen by others, in the double-slit case was caused by reflection of waves
from the outlet of the unused slit after passage and thus was not a true double-slit effect. A new theoretical
treatment of bouncing drop dynamics has since given analytic relations for the associated wave field, leading to
a proposal for criteria for the possible occurrence of true interference in the double-slit experiment. Satisfying
these criteria, requires working close to the onset of the Faraday instability, with two spatial conditions favoring
slow walkers, and a temporal condition favoring fast walkers. The regions of high velocity, where the walkers
bounce periodically, and of very low velocity, with chaotically bouncing walkers, have not been comprehensively
investigated so far. We have therefore looked at these regions, probing the limits for interaction with slits.
Furthermore, noting that a short transit time is essential to fulfill the criteria, experiments were done using
double-slit barriers only 0.5 and 2 mm broad. Nowhere was true interference or a chaotic response found. As the
theory has implications for many of the observed quantumlike phenomena involving walkers as, e.g., tunneling
and interaction between drops, we have measured the spatial and temporal decay of the wave field. A comparison
with the theory shows very good agreement but leads to a reformulation of the above-mentioned criteria.
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I. INTRODUCTION

Oil drops on a vibrated surface of the same oil will, under
the right conditions, turn into “walkers” as shown by Couder
et al. in Ref. [1]. In that paper the authors also show the first
quantumlike phenomenon: Two drops on the same surface
will interact through their wave fields and move in circles
around each other. These circles turn out to have quantized
radii.

Shortly after this, in 2006, Couder and Fort [2] pub-
lished their truly intriguing paper on walkers diffracted by
submerged single- and double-slit barriers and apparently sat-
isfying the same statistics as true Quantum Systems. This
triggered the emergence of a new field of hydrodynamic
quantum analogs, which apart from diffraction experiments
[3–7], has touched on subjects such as, e.g., quantization
of bound states in two-body interactions [8,9], the quantum
harmonic oscillator [10,11], tunneling [12–14], the quantum
corral [15–18], and scattering [19]. For a recent thorough
review of the field, see Ref. [20].

Previous investigations on the diffraction experiment were
centered on examining the validity of the observation by
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Couder and Fort [2] concerning the quantumlike statistics,
and mostly operated in the regime of slow moving chaotically
bouncing droplets (see Fig. 1). Andersen et al. [3] were unable
to reproduce the quantumlike statistics and also pointed out
problems with the statistical uncertainty due to the low num-
ber of walkers involved. However, they did observe that an
extra interference effect was present for the double-slit. This
was confirmed by Pucci et al. [6] who in addition found a
deterministic outcome for a wide slit structure although in a
rather limited part of the possible parameter space for chaoti-
cally bouncing walkers (see Fig. 1(a), Ref. [6], and Fig. 1, this
paper). They also reported a chaotic outcome at drive levels
extremely close to the onset of spontaneously excited Faraday
waves [21].

A large part, marked by the orange hatched region in Fig. 1,
of the available parameter space at high drive levels involving
chaotically bouncing walkers were covered systematically by
Ellegaard and Levinsen [7]. This investigation examined both
single- and double-slits of several slit sizes, and revealed a rich
scenario of interferencelike patterns. However, the outcome
was always deterministic with the chaotic scenario reported
by Pucci et al. [6] shown to be a result of response pat-
terns rapidly changing with drive amplitude and therefore not
related to chaos (see Figs. 10 and 19 in Ref. [7]). Further-
more, we were able to show unambiguously that the extra
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FIG. 1. Part of (�, γ ) parameter space, reproduced from Wind-
Willassen et al. [Phys. Fluids 25, 082002 (2013)], Fig. 3(a), with the
permission of AIP Publishing, and augmented with a Vw y axis. Note
that this axis refers to the velocity Vw of the drop at γ /γF = 0.998,
where γ and γF are the drive and the critical drive, respectively. �

is the vibration number of the drop (for definitions, see Table I).
The region of interest is the walker region limited to the left by
the red borderline. The notation (m, n)q refers to the periodicity of
the bouncing where m is the number of driving periods and n is the
number of contacts with the bath with the superscript q distinguish-
ing different phase-shifted modes. The squares denote stationary
bouncers while the circles denote walkers, with the colors denoting
the associated (m, n)q state. In the light blue area marked “C” the
walkers bounce chaotically. The small orange hatched rectangle to
the right shows the area covered by previous investigations, while the
large (orange-bordered) rectangle shows the total phase space now
covered in detail by our investigations. The orange cross-hatched
rectangle denotes a transition zone (see Sec. IV B).

interference is solely due to the wave structure generated after
passage interacting with the backside of the unused slit. Thus,
it is not a true double-slit interference effect.

The landscape that the drop is moving in is best illustrated
by Fig. 1. In this figure, extracted and adapted from Fig. 3(a)
of Ref. [22], the (�, γ ) parameter space for walkers is dis-
played. For ease of comparison with the experimental results
we have supplied the figure with an additional y axis to the
right, showing the approximate free space velocity Vw(0.998)
of the drop at γ /γF = 0.998 that corresponds to �. (For
definitions, see Fig. 1 and Table I.)

Our previous investigation only involved drop velocities,
Vw, between 6.4 mm/s and 12 mm/s. This region is repre-
sented by the small orange hatched rectangle to the right in
Fig. 1 limited by those velocities. Other prior investigations
are also inside this regime [3,6,23]. This means that less than
half of the available phase space for walkers at high drive
levels has ever been thoroughly examined.

Thus, the foremost aim of this investigation is as follows.
To make a thorough investigation of the full available phase
space for walkers with the aim of observing, first, whether
true interference can be obtained, and second, whether chaotic
dynamics can lead to quantumlike behavior.

Since the first experiment by Couder and Fort [2] sev-
eral theoretical papers have examined the interaction between
walking droplets and submerged barriers [24–26]. More
recently Tadrist et al. [27] analytically derived relations de-
scribing the wave field accompanying the walker.

Their theory has implications for many of the quantum
analogs observed including the diffraction experiments, and
has also already been used to choose the parameters for a
tunneling experiment [14]. We therefore consider it of broad
interest to experimentally investigate the extent of the valid-
ity of the theory. This was only checked by the authors up
to M = 50, where M is the memory factor given by M =
γF /(γF − γ ).

To assess the possibility for real interference in the double-
slit experiment, knowledge of the spatial and temporal decay
of the wave field is needed. On the basis of their theory Tadrist
et al. [27] developed some simple criteria concerning this. The
spatial criteria l (0)D = l (0)/lch � 1 and R/l (0) � 1 com-
pare the decay length, l , of the field in front of the drop with
a characteristic length lch = √

2d = √
2(L + Lb) and with the

inner radius, R, of the container (see Table I and Fig. 2 for def-
initions). The temporal criterion τD = τM/Tch � 1 likewise
compares the decay time of the memory of the field, τM , with
a characteristic traveling time Tch = lch/Vw.

In Sec. II we describe some of the more important general
experimental details. This is followed by a presentation of the
theory by Tadrist et al. [27] on the wave field accompanying
the walker in Sec. III A.

In the rest of the paper we present our new experimental
results. In Sec. III B we treat the measurements on the spatial
extent and the temporal memory of the wave field. As the
highest possible values of M are necessary for the criteria to
hold, we have measured the decay length and decay time up
to M = 500. These measurements show excellent agreement
with the full theory. Noting discrepancies with approxima-
tions used in the development of the criteria, we reformulate
these using the full theory. The reformulated criteria are then
used to identify areas of interest in the search for true interfer-
ence effects.

This has led us to make new measurements in both the
very low velocity regime (Sec. IV A) and the high velocity
regime (Sec. IV B and Appendix A). Together with the mea-
surements described in Ref. [7] these measurements constitute
a full coverage of the available phase space for single-slits
of width L of order 5 to 14.7 mm and double-slits between
L = 5 and 7.5 mm. In Fig. 1 the phase space now covered is
represented by the large orange bordered rectangle stretching
from Vw(0.998) = 4.9 to 17 mm/s.

In practice the criteria are impossible to satisfy. However,
they can be met to such a degree that some vestiges of true
interference ought to be observable making the attempt seem
worthwhile. This search also involved looking carefully for
traces of chaotic dynamics in single-slits with L between 5.2
and 14.7 mm.

A major advance in our attempts is in the use of ultra-thin
barriers. As stated the criteria ignore the breadth, b, of the
barrier (see Fig. 2). In doing so, they highlight a problem
inherent in all prior experiments, where a significant delay
strongly dependent on ximp was caused by the time spent in the
slit. In the meantime the wave field passing through the other
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TABLE I. Table of notation for some important parameters. See Figs. 2 and 6 for more information.

Container (see Fig. 2)
Radius, deep section R = 90 mm Center block Lb = 4.7 mm
Height of barrier, accelerator, shelf 5 mm barrier breadth b: 5, 2, 0.5 mm
Slit opening L: 14.7, 7.5, 7.3, 5.2 mm Double slit d = L + Lb

Fluid
Density ρ = 950 kg/m3 Surface tension σ = 0.0206 N/m
Viscosity ν = 20 mPa s Diffusion coefficient Ddiff = 2.20 mm2

Fluid height h Height over barrier h1

Surface elevation ζ (r, t ) Envelope Field η(r, t )
Viscous boundary layer δ = √

(2ν/2π f )

Drive
Frequency f = 80 Hz Amplitude γ

Normalized time: τ = (π f /2)t

Faraday
Period TF = 2/ f Wavelength λF = 4.75 mm
Wave number kF Threshold γF

Free damping γ0 = 0.277

Drop
Drop diameter D Vibration number � = 2π f

√
ρD3/(8σ )

Impact phase τi Previous impacts τn

Drop velocity Vw Normalized v = Vw/π f
Impact parameter ximp (see Fig. 2) deflection angle α (see Fig. 2)
Memory factor M = γF /(γF − γ ) Memory number Me ≈ 0.76M
Characteristic length lch = √

2d Characteristic time Tch = lch/Vw

Damping time τM = MeTF Normalized τD = τM/Tch

Damping length l (�) Normalized l (�)D = l (�)/lch

Damping length defined by 3% contour l∗(�) (see Fig. 6) Normalized l∗(�)D = l∗(�)/lch

Angle between velocity vector and r � (see Fig. 6) Low velocity limit Vlow

FIG. 2. Top view of the interior of the container with a double-
slit of slit width, L, and breadth, b, inserted in a groove, the free ends
of which is shown in green. The radius of the free surface of the oil is
97 mm while the radius, R, of the deep section (white) is 90 mm. The
black parts all have the height 5 mm. The width, Lb, of the central
block is always 4.7 mm, while L and b can vary. A single trajectory
is shown to allow for the definitions of the deflection angle α and the
impact parameter ximp.

slit is slowly deteriorating. We have minimized this delay in
double-slit experiments where b is only 0.5 mm, respectively,
2 mm. These new measurements are treated in Sec. IV C. In
doing this we have again searched the whole available phase
space while also using single-slit barriers to look for possible
chaotic outcomes.

During the investigation we observed that the window in
ximp giving free passage became reduced and even split up at
high velocities. At even higher velocities no free passage was
allowed. Here the impact parameter ximp is defined in Fig. 2.
This phenomenon is explored in Sec. IV B and Appendix A.
Thus, the velocity phase space for passing on beyond the
barrier is bounded from above as well as from below [6,7].

II. EXPERIMENTAL DETAILS

The most important experimental features will be pre-
sented in this section, but a full account of the experimental
details can be found in Ref. [7]. A top view of the interior of
the container is shown in Fig. 2 and includes definitions of
several important parameters. The deep part of the container
of radius R = 90 mm is surrounded by a 5 mm high and 7 mm
broad shelf that dampens reflections of waves from the outer
rim. Barriers, movable from outside by a step-motor during
the experiment, are placed in a central groove. A built-in
accelerator, the V-shape, ends 3.8 cm before the slit system.

035101-3



CLIVE ELLEGAARD AND MOGENS T. LEVINSEN PHYSICAL REVIEW E 109, 035101 (2024)

Both barriers and accelerator have the same height of 5 mm
as the shelf. The b = 5 mm single- and double-slit barriers
used have slit opening L equal to 5.2, 7.3, 7.5, or 14.7 mm.
The b = 2 mm double-slit barrier has L = 5.2 mm, while the
b = 0.5 mm single-slit has L = 5.2 mm and the double-slits
have either L = 5.2 mm or L = 7.3 mm. The central block
of all double-slit barriers have a width of Lb = 4.7 mm. The
uncertainty on all these quantities, including the distance d
between the slit centers, is less than 0.1 mm.

The definitions of the impact parameter ximp (lateral dis-
tance from the center of the slit system to the center of the
accelerator) and the deflection angle α are also shown in
Fig. 2. The uncertainties on these parameters are ± 0.2 mm
and ±0.3◦, respectively.

A glass lid resting on a transparent plastic cylinder closes
the container hermetically to avoid air movement in the
cell to disturb the drops. However, slow diffusive pressure
equalization is provided for by a porous plug. A horizontal
drops-on-command cannon enters the side of the plastic cylin-
der through a hole sealed with a rubber membrane. Drop size
and consequently drop velocity can be easily chosen by selec-
tion of the height and duration of the voltage pulse supplied
to the piezo electric actuator of the cannon. The experiment is
controlled by a homemade LabView program that also records
the frequency f of the drive, a range of relevant accelerations
and temperatures, besides the starting point of the drop on
the surface. A Matlab program controls the ccd camera and a
second Matlab program records the drop trajectories with both
programs controlled by the LabView program. Taken together
with the movable barrier, this arrangement ensures that the
data collection can be automated to collect large amounts of
trajectories without opening the container system.

Strict temperature control of the system is very important,
as explained in detail in Ref. [7]. Therefore, we keep the
temperature of the oil at nominally 25 ◦C and within a rel-
ative uncertainty of ± 0.005 ◦C, which for the silicone oil
of nominal viscosity ν = 20 mPa s means, that all measure-
ments are performed at a frequency of f = 80 Hz. Equally
important, the accelerometer is also temperature stabilized.
Thus, we have a statistical uncertainty on the drive amplitude,
γ , of less than 0.03% while the uncertainty on the critical
amplitude γF is dominated by a systematic error of less than
0.06%. The measured wavelength λF of the Faraday waves is
approximately 4.8 mm.

A new addition to our setup consists of a retractable system
consisting of a horizontally mounted second camera that to-
gether with a mirror set at 45◦ gives a top view of the drop. An
LED light is synchronized to the drive. Using a pulse length
of 0.2 ms, we have re-calibrated the drop diameter D. This
showed that our previous calibration was off by between 4 and
9% (footnote [28]) depending on Vw. One feature of this setup
is that we can actually distinguish between simple modes of
bouncing.

III. WAVEFORM: THEORY AND EXPERIMENTS

A. Theory

In the following we shall go through some of the elements
of the theory by Tadrist et al. [27]. In doing this, we pay spe-

cial attention to the assumptions made during the derivation,
so they can be subjected to an experimental check.

To describe the dynamics of the walkers it is necessary to
understand the interaction with the Faraday capillary surface
waves. Thus, any theory for the walkers must build on the
theory for these waves. Since Faraday [21] first observed the
spontaneous emergence of waves on a vibrated fluid surface,
substantial efforts have gone into developing a theory de-
scribing this phenomenon. Benjamin and Ursell [29] showed
that the equation for the surface elevation ζ (x, y, t ) could be
written as a Mathieu equation when the fluid is inviscid and
the depth of the fluid infinite,

d2ζ

dt2
= gk + σ

ρ
k3 − γ gkcos(2π f t ). (1)

Here k is the wave number. This equation has as solution a
subharmonic resonance with wavelength λF = 2 π/kF at kF

given by

(2π f /2)2 = gkF + σ

ρ
k3

F . (2)

However, the parametric instability thus occurring at half the
drive frequency has a threshold of zero due to the fluid being
inviscid, which of course is unphysical.

Several attempts have been made to remedy this situa-
tion by inserting a phenomenological damping term, e.g.,
Refs. [30–32]. However, these all assume that the viscous
damping is small and that the Faraday waves are in phase with
the drive. None of these assumptions are in fact correct.

Without any restrictions on viscosity and fluid depth,
Kumar and Tuckerman [33] solved the full linearized Navier-
Stokes equations in the presence of parametric forcing by
using a Floquet analysis. However, due to the parametric
forcing the result is given as an infinite system of coupled
equations for the Fourier modes. By truncating the Fourier
modes to ± f /2 and ±3 f /2 they showed that the response
would be subharmonic if the fluid depth, h, is much greater
than the viscous boundary layer δ = √

2ν/(2π f ). By further
truncating the series of modes to only ± f /2, Müller et al. [34]
could solve the equations deriving a solution for the Faraday
threshold in the limit of large depth and low viscosity.

This approach is followed by Tadrist et al. [27]. They
first derive an equation for the surface elevation under the
assumption that h is much bigger than δ. The result is an
integro-differential equation derived under the condition that
the amplitude of the surface waves is much smaller than both
λF and δ. An extra damping term shows up in the integral and
is due to bulk waves emitted by the surface waves. Truncating
the series of modes to only ± f /2 and assuming a small
detuning close to γF they proceed to solve analytically for
the driven surface waves. Any disturbance then leads to the
excitation of long-lived Faraday waves which are detuned by
π/4 close below γF .

The impact of the walker is introduced as a series of
delta function kicks at times τn = τi + 2πn, where τi denotes
the phase of the impact. n ∈ Z and normalized time τ =
(2π f /2)t . The previous bounces of the walker are set to hap-
pen at positions rn = −(τ − τn)v, and the drop position r = 0
at time τ . The walker is assumed to move in a straight line
with constant velocity and bouncing periodically in sync with
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the Faraday waves. Inserting this as an external pressure term,
they derive an expression (Eq. (D1) in Ref. [27], Appendix D),
for the wave field at position r following the walker,

ζ (r, τ ) =
[(τ−τi )/2π]∑

n=−∞
B+

F kF

√
π

Ddiff(τ − τn)
J0(kF |r − rn|)

× cos(τ + �+
F )exp

(
−τ − τn

2πMe
− |r − rn|2

4Ddiff(τ − τn)

)
.

(3)

Here J0 is the Bessel function of the first kind of order zero.
The upper limit of the sum, denoted [(τ − τi )/2π ], is de-

fined as the largest integer smaller than (τ − τi )/2π . �+
F is

the phase-shift of the Faraday waves, and as we are mainly
interested in the form of the wave field in the limit of M � 1,
we use the simple expression for B+

F given in Eq. (2.68b),
Ref. [27],

B+
F = vF cos(τi − π/4). (4)

Here vF = 2VF /(2π f ) with VF = λF × f /2 ≈ 190 mm/s be-
ing the Faraday wave velocity.

With r measured in mm, the diffusion coefficient Ddiff =
2.20 mm2 (see footnote [35]). As normalized time is
(2π f t/2), the normalized drop velocity is v = 2Vw/(2π f ).
The memory number Me is given by

Me = M

2πγ0

(
1 + γ

1/2
0

2
+ γ0

4

)
. (5)

Here the free damping factor γ0 = 4νk2
F /(2π f ). With f =

80 Hz and ν = 20 mPa s, we have kF ≈ 1320 m−1, γ0 ≈
0.277, and Me ≈ 0.76M. In dimensional form the damping
time as given by Tadrist et al. [27] is

τM = MeTF , (6)

where the Faraday period TF = 2/ f . To validate the ex-
pression for the wave field we have in Fig. 3 compared a
simulation on Eq. (3) with a wave field measurement by
Rode et al. (see Fig. 4(a) in Ref. [23]). Due to the way the
equation for the wave field is constructed, the form of the
response is determined by the velocity Vw of the walker and
M, while the absolute scale is determined by the choice of τi.
As seen, especially in the forward direction the fit is excellent
with τi = 0.381. This value of τi agrees well with, e.g., the
values used in the simulations by Faria [25]. We note here that
the wave height measurements by Rode et al. [23] and also by
Damiano et al. [36] show that apart from the central peak, the
theoretical condition of the wave height being much smaller
than h, λF , and δ is fulfilled.

Equation (3) can further be transformed into an integral,

ζ (r, τ ) = B+
F kF

2
√

Ddiff
cos(τ + �+

F )exp

(
−vr cos(�)

2Ddiff

)

×
∫ π

π

exp[ikF r sin(� − φ)]√
a − ikF v sin(φ)

× exp

(
− r√

Ddiff

√
a − ikF v sin(φ)

)
dφ, (7)

FIG. 3. Wave height measurement (data, courtesy Mads Rode)
along the trajectory in the direction of the drop movement. The wave
height is measured far from any obstacles and is shown by the contin-
uous (red) curve. The dot-dot (black) curve is a simulation on Eq. (3).
Especially in the forward direction the fit is good. Experimental
values given are the drop diameter D = 0.763 ± 0.003 mm, and
M = 69 ± 16. Since Vw is not stated we have used Vw = 9.5 mm/s
as representative in the simulation. τi = 0.381, and the summation is
taken to n = 3M to ensure convergence.

where

a = 1

2πMe
+ v2

4Ddiff
. (8)

Here � denotes the angle in the horizontal plane between the
direction of r and the direction of the velocity of the walker
(see Fig. 6 for details). Evaluation of the integral yields the
same results as Eq. (3) except that the central peak becomes
slightly higher. Our simulations are therefore done on Eq. (3)
throughout the paper.

In the limit of small memory factor M and low walker
velocity Vw, the square-roots in Eq. (7) can be expanded, and
an analytic solution (Eq. (2.59) in Ref. [27]) for the wave field
is found,

ζ (r, t ) = B+
F kF√

v2 + 2Ddiff
πMe

cos(τ + π/4)

× J0

⎛
⎜⎝kF

∣∣∣∣∣∣∣
r + r√(

v2 + 2Ddiff
πMe

)v

∣∣∣∣∣∣∣

⎞
⎟⎠e−r/l (�). (9)

The condition for the expansion to be valid is kF v/a =
4DdiffkF v/[v2 + 2Ddiff/(πMe)] ≈ 2πkF vMe 	 1. However,
for this to hold for their standard velocity of Vw = 11 mm/s,
M needs to be much smaller than 4.8 corresponding to
γ /γF 	 0.79, making the approximation of limited value. In
fact, comparison of simulations on Eqs. (3) and (9) reveals
significant discrepancies.

Tadrist et al. [27] took Eq. (9) to mean that the accompa-
nying wave field is exponentially damped in space with an
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FIG. 4. Simulation on Eq. (3) of the wave field with the drop
at the origin and moving right along the y axis. Vw = 8.2 mm/s
and M = 67. The wave height (in mm) is represented by the color-
scale to the right. The continuous curves (black) are, counting from
the center 30%, 10%, and 3% contour curves. These are seen to
even catch some of the destructive interference lines in the wake.
τi = 0.381. The summation is taken from n = −3M to ensure con-
vergence. The dashed (red) curve is l (�) [Eq. (10)]. This is clearly
not following a constant contour.

anisotropic damping length given by

l (�) = 2Ddiff

v cos(�) +
√(

v2 + 2Ddiff
πMe

) . (10)

At higher values of M and/or faster walkers a simple
analytic solution is not possible. However, an upper bound of
the wave field is found exhibiting the same exponential decay
in space as before. Tadrist et al. [27] therefore concluded that
the spatial decay also here is governed by l (�).

On the basis of their theoretical investigation Tadrist
et al. [27] suggested that true interference might be pos-
sible in the double-slit experiment under certain conditions
and that quantumlike phenomena could occur in the limit
of vanishing viscosity (Ref. [27], Appendix F). The posited
conditions were that the normalized damping length of
the waves, l (0)D = l (0)/

√
2d , the normalized radius of the

container, R/l (0), and the normalized damping time, τD =
MeTFVw/

√
2d , all should be much larger than 1. Here the

length
√

2d is chosen as a characteristic path length for mov-
ing the drop from one side of the barrier to the other. To fulfill
these criteria, γ /γF necessarily should be as close to unity as
experimentally possible.

Considering Eq. (9) more closely, it is clear that as stated
the criteria ignore the decay inherent in the first few periods of
the Bessel function J0. Although we do realize that the criteria
are only meant to be a heuristic guide, this simplification un-
fortunately means that one arrives at overly optimistic criteria.
To investigate this aspect, we have made a simulation using
Eq. (3) of the wave field with Vw = 8.2 mm/s and M = 67.
The result is presented in Fig. 4.

From the wave field we construct an envelope field η(r) de-
fined as the smooth tangent surface that outlines the absolute
values of the extremes of the wave field. This is then used to

FIG. 5. l∗(0)D, l∗(90)D, and τD as functions of Vw for M = 500.
(−) L = 5.2 mm, (−−) L = 7.5 mm, and (−·) L = 14.7 mm.

calculate constant contour curves, along which the envelope
field value has fallen to a given percentage of its peak value.
Shown are the 30%, 10%, and 3% contours. These even catch
some of the destructive interference lines in the wake. Also
shown is the ellipsoidal l (�) calculated from Eq. (10). This is
clearly not following a constant contour.

Still criteria similar to those proposed are useful in de-
termining an optimum operating point for a double-slit
experiment. To obtain a better assessment, though, we replace
l (�) in the criteria with l∗(�) equal to the absolute value of
the vector r originating in (x,y) = (0,0) and having its end
point on the 3% contour curve in the direction � (Fig. 6).

In Fig. 5 we show the variation of l∗(0)D, l∗(90)D, and
τD calculated using Eqs. (3) and (6) as function of Vw for
three different slit sizes setting γ /γF = 0.998. We have in-
cluded l∗(90)D since we believe the real quantity of interest
is somewhere in-between l∗(0)D and l∗(90)D. Ignoring for
the moment the condition on the size of the container, from
this figure it is clear that the slit of highest interest is the
L = 5.2 mm slit. Also, that the optimum velocity range is
around 6–9 mm/s as this is the only region where at least
both l∗(90)D, and τD are simultaneously �3. Furthermore,
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(a) (c)

(b) (d)

FIG. 6. Measurements of l∗(�). Values of the parameters Vw and M in upper right corner of each field. (a), (b) D = 0.701 ± 0.014 mm.
(c), (d) D = 0.854 ± 0.012 mm. The uncertainty on Vw is ± 0.08 mm/s. The direction of the drop is shown by the arrows Vw . The definitions
of � and l∗(�) are shown in (a) together with the uncertainty in the measurement of l∗(�). Full curves (in black) show the 3% contour lines
found using Eq. (3) that as seen give a good fit to the data (∗). Also shown are l (�) (the ellipsoids) calculated from Eq. (10).

that much larger than 1 is impossible to reach experimentally.
Still we expect that some traces of nondeterministic behavior
could be present if the criteria are at all meaningful.

B. Experimental results

In this section we shall present our results on the spatial
and temporal damping of waves associated with the walkers.

1. Spatial damping

Tadrist et al. [27] only made a qualitative comparison for
M = 10 between theory and experiment [their Fig. 3(b)]. The
best way to make the measurements would be by using a
synthetic schlieren setup. This was done by these authors for
their measurement of the decay time. However, a glass bottom
and strong lights are at odds with the stringent temperature
stability required to reach the high values of M close to the
onset of Faraday surface waves that we are aiming at. We
therefore resort to a different scheme.

Two strings of small LEDs are placed across the container
perpendicular to the direction of the accelerator such that
the reflections are seen at distances respectively 63 mm and
92 mm after the end of the accelerator with the latter used to
check for possible size effects. Moreover, we have placed a
flat dummy in the groove instead of a barrier to create a free
path after the accelerator. The size of the deflections by the
wave field thus gives a measure of the height of the wave field.

With an exposure time greater than TF we get a full swing of
the deflection from each LED in every frame. To measure the
extent of the wave field we follow frame by frame the largest
clearly defined fixed size of deflection as it is moved from
LED to LED when the walker proceeds along its trajectory. In
this way we obtain a contour of fixed amplitude of the wave
field around the drop. Ideally we should do this at a wave
height of 1/e times the maximum wave height close to the
impact position of the drop. Unfortunately we have no way of
measuring this peak value, so we end up with an arbitrarily
chosen contour. Note, that the window in wave height where
this measurement is possible is quite narrow. As shown below
the actual measurement turned out to correspond to the 3%
level, leading us to choose this as our definition of l∗(�).

The measurement was made at M ≈ 31 and at M ≈ 66 for
two values of drop sizes with the results displayed in Fig. 6.
Also shown for comparison is the 3% contour line calculated
from Eq. (3) together with l (�) calculated from Eq. (10).

That the damping is anisotropic is easily discerned, with
that of the higher velocity being most prominent. The
agreement with the 3% contour line calculated from Eq. (3)
is surprisingly good, although the interferences seen in the
wake give rise to some deviation. These interferences are also
present in the simulations by Tadrist et al. [27] and similar to
those seen experimentally by Eddi et al. [30] in the wave pat-
terns. Note that the form deviates strongly from the ellipsoidal
shape of l (�) calculated from Eq. (10).
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FIG. 7. Measurements of the dependence of l∗(0) and l∗(90)
on M (see footnote [37]). (•, black) and (o, blue) from LED line
at 63 mm after accelerator, (∗, red) and (+, red) from LED line
at 92 mm after accelerator. Upper panel: D = 0.710 ± 0.014 mm,
Vw = 8.1−8.2 mm/s. Lower panel: D = 0.854 ± 0.012 mm, Vw =
14.4 mm/s [37]. The simulated 3% contour values from Eq. (3) for
l∗(0) (··) and l∗(90) (−−) are plotted too, showing good overall
agreement. Also included are l (0) (−) and l (90) (− · −·) calculated
from Eq. (10).

For l∗(0) and l∗(90) the investigation has furthermore been
extended to cover the interval 30 � M � 500 with the result
shown in Fig. 7. We should mention here that for the chosen
drop sizes, Vw is nearly independent of M for M � 30.

Some features of the data agree with Eq. (10), for in-
stance l∗(90) is always greater than l∗(0) and the values
decrease with increasing velocity. Also in agreement with the
prediction by Tadrist et al. [27], in both directions we observe
the spatial damping length to saturate as also noted by these
authors. However, the saturation sets in at much lower values
of M than expected from Eq. (10) [see also their Fig. 3(c)].
This result is, again, in remarkable agreement with the result
based on the 3% contour line also plotted in the figure (see
also footnote [38]).

2. Temporal damping

Besides investigating the spatial decay we have also mea-
sured the temporal decay where the prediction of the theory is
that τM = Me(M )TF .

FIG. 8. Measurements of the wave height showing exponential
decay with time. Data normalized by extrapolated value at time of
absorption of drop. M = 33 ± 0.3 (+), M = 52 ± 1 (∗), M = 125 ±
5 (◦), M = 400 ± 50 (�).

Tadrist et al. [27] investigated this quantity for M � 50
by dropping glass-beads into an open container. The decay of
the waves was again measured by using a synthetic schlieren
setup which included the use of high-powered LEDs. As be-
fore, this is not feasible close to the onset of Faraday waves
both because of heating issues but also due to disturbances
from air movement. However, by shooting off large drops and
choosing the phase right, these drops will coalesce on impact,
very often generating a tiny drop with a diameter smaller than
D = 300 µm. This will survive for at most a few seconds
after which the Faraday waves will start to decay. We can
then follow this decay with the method from before. It thus
becomes just a question of statistics to obtain good quality
data. Some measured decay-curves are displayed in Fig. 8,
and as seen we find exponential decay from which we can
derive the decay time τM as function of M.

In Fig. 9 we show the measured dependence of τM on
M while also including the data displayed in Tadrist et al.
[27], their Fig. 7, together with their prediction τM = MeTF .

FIG. 9. Measured temporal damping as function of M (•). Also
included are the measurements by Tadrist et al. [27] (+) (data,
courtesy Loïc Tadrist) together with their prediction τM = Me(M )TF

with TF = 25 ms the Faraday period (−). (◦, −−) Simulation based
on Eq. (3).
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(a) (b)

FIG. 10. In panel (a) we show the height of the simulated wave field ζ for Vw = 8.2 mm/s with the y-axis following the direction of
the trajectory (� = 0◦). The drop is positioned at y = 0. M = 100 (–, black) and M = 500 (·, red). (b) The same for the wave field height
perpendicular to the trajectory (� = 90◦) for y = 0. The values of the envelope field η(l∗(�)) corresponding to the measured values of l∗(�)
are given in the text boxes with the corresponding arrows pointing to the positions of l∗(�). The positions of l (�) calculated from Eq. (10) are
shown with arrows.

Within the experimental accuracy the measured values agree
reasonably well with the theoretical prediction. This result
was not anticipated. Both Pucci et al. [6] and Ellegaard and
Levinsen [7] suspected nonlinear effects to be important at
high values of M and therefore refrained from using M to
characterize the outcome of the slit experiments.

C. Discussion, wave field

In Sec. III B we described the measurements of the spatial
and temporal damping that are of importance theoretically.
The results on the spatial damping were strongly deviant from
the damping term l (�) proposed by Tadrist et al. [27]. Most
importantly, the spatial damping is seen to saturate much
earlier than expected from Eq. (10). As we get the same result
from both LED lines where one is rather close to the rim of the
container, size effects can be ruled out. A tentative explanation
is that the saturation is caused by the drop in every jump trying
to overtake the waves in front of it while the waves decay
during the jump.

We therefore took a closer look at the theory. Although
not all assumptions are strictly met, the comparison shown in
Fig. 3 supports the use of Eq. (3). Thus, even though the ex-
periment presumably is done with chaotically bouncing drops,
the assumptions on the wave height, the use of δ functions,
and of periodically bouncing drops, are all validated. The real
problem with the interpretation giving rise to the criteria set
out in Ref. [27], however, becomes clear with inspection of
Fig. 10. As seen in Fig. 10(a), in the forward direction it
is impossible to distinguish between the results for ζ (y) for
M = 100 or 500 in agreement with the saturation found in
our experiments. For � = 90◦, Fig. 10(b), we find the same
situation to a very high degree. Only in the wake for � =
180◦, is found a notable difference. For higher values of Vw

(e.g., 14.4 mm/s) even the small difference seen in Fig. 10(b)
has disappeared. This shows that the early saturation found
experimentally is real with a surprisingly good fit to the full
theory.

The experimental values are seen from Figs. 10(a) and
10(b) to correspond to where the envelope field η has fallen
to 3% of its maximum value in near perfect agreement with
the fit based on the 3% contour line to our measurements
displayed in Figs. 6 and 7, although the complicated interfer-
ence pattern in the wake is giving rise to some deviation. This
means that we can actually use results based on simulations
on Eq. (3) in the criteria instead.

Turning now to considering the temporal decay we notice
from Fig. 9 that generally the measured data points lie below
the theoretical value. This discrepancy is caused by MeTF

being the decay time for a spatially uniform field, while our
measurements as well as the measurements of Tadrist et al.
[27] are done on a localized field. The decay of the field at any
given point in space is therefore partly due to dissipation and
partly to redistribution of energy from high amplitude regions
in the field into low amplitude regions as the field over time
becomes more uniform.

This is confirmed by simulations on the full equation. Here
we follow the decay of the absolute value of the wave field,
Eq. (3), period by period, by letting time τ proceed as τi +
2π (l − 1), where l ∈ N, without new bounces. In Eq. (3) that
corresponds to letting τ grow while keeping the last impact at
τi − 2π thus replacing the upper limit in the sum with just
n = −1. To keep at a fixed point in space, rn is replaced
with rn = −(τi − τn) v. As the energy of a wave field is
proportional to the amplitude squared [39], we can follow the
energy flow by calculating δE as

δE (r, τ ) = ζ (r, τ + 2π )2 − [ζ (r, τ ) exp (−1/Me)]2. (11)
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FIG. 11. Simulation of the change in energy distribution
δE/ max(δE ) during the decay of the wave field by comparing the
actual energy decay with that of a uniform decay after time t. M =
67 and Vw = 8.2 mm/s with the y-axis following the direction of
the trajectory (� = 0◦). Time proceeds from t = (τ − τi )/(π f ) = 0
without any new impacts (see text for more details). The decay is
followed for one period after the elapsed time noted above the fields.
Note the narrowed color range accentuating the outward flow of
energy.

Here the first term represents the simulated decay of the
amplitude over one period starting at time τ , and the second
term the decay over the same period as it would be if the field
were to decay uniformly. The choice of τ ensures that ζ (r, τ )2

represents the local amplitude squared. Simulations of δE
starting at t = 0 and at t = 0.25 s are shown in Fig. 11 for
parameters M = 67 and Vw = 8.2 mm/s with δE normalized
by max(δE ). Notice that the color scale only covers a small
part of the total range of energy change to emphasize the
energy flow. As seen, there is a faster loss of energy from
the high energy regions in the center and in the wake and a
corresponding slower loss of energy from the adjacent lower
energy regions, thus illustrating the energy flow. Here the blue
regions are losing energy while the yellow/red regions are
gaining energy compared to uniform decay.

Considering a point away from the center, simulations
show that the wave height may actually start to grow due to
the redistribution of field energy before the viscous dissipation
starts to dominate. The decay of the central peak and the
wave field at (x,y) = (30,0) is shown in Fig. 12. It is clear
from Figs. 11 and 12 that the inhomogeneity of the field is
felt for a surprisingly long time resulting in a lowered value
for the measured time constant compared to the theoretical
value. As the measurements of the temporal decay is done
around ζ/max(ζ ) ≈ 0.01 we have read the slope here from
Fig. 12. The result shown as the broken line in Fig. 9 is in fine
agreement with the experimental result taking the different
drop sizes into account.

IV. MEASUREMENTS WITH SLIT STRUCTURES

Although the reformulated criteria probably can not be
fulfilled with the present setup, we should at least be able
to get close enough to observe traces of true interference.
As shown in Fig. 5, a straightforward use of the conditions
for fixed value of M somewhat favors a medium range drop
velocity, with the spatial criteria favoring low velocity while
the temporal criterion favors high velocity. Furthermore, as
pointed out by Pucci et al. [6], the bouncing of the low velocity

(a) (b)

FIG. 12. (a) The decay of the amplitude of the central peak with
time showing the initial fast loss of energy followed by a slow
approach to the theoretical decay (red −−) of a uniform field deter-
mined by MeTF = 1.27 s. (b) The same for the wave field amplitude
perpendicular to the trajectory (� = 90◦) (x,y) = (30,0). Here we see
the effect of the bleeding of the energy from the higher amplitude in
the wake in the initial increase of the amplitude. It takes a surpris-
ingly long time before we approach the decay of a homogeneous
field. All fields are normalized by the value at the central peak at
time t = 0.

walkers is chaotic with these authors claiming to have discov-
ered a small region of chaotic response for even a single-slit
structure.

We have therefore extended our earlier investigation into
the interaction of drops with slit structures [7] both toward
lower and higher velocities, thus also probing the boundaries
for passage. As already noted in Refs. [6,7] the width, L, of
the slits sets a limit to the lowest velocity possible for transit.
However, we also found that a similar limitation existed at
high velocities even before reaching the high velocity limit
for walkers. Measurements regarding this are presented in the
figures and captions of Appendix A.

Before going into details about the experimental results,
we want to divide the trajectories passing the slit structure
into two main categories. We denote trajectories in the first
category as regular. Trajectories in this group are smooth and
have no kinks or cusps [40] created by stop and go motion, and
belong to drops that do not suffer a complete loss of velocity
at any time and after passage of a slit leave the immediate
neighborhood on a linear trajectory. All other trajectories be-
long to the irregular category having kinks or cusps where
the velocity vector changes direction abruptly, although as we
shall show later, they mainly fall into two distinctive groups.
Examples of irregular trajectories with kinks are shown in
Fig. 16 where all the trajectories bending backwards toward
the barrier stop, before they make the backward bend. A few
of these are shown in the inset.

A. Low velocity regime

The low velocity regime has been investigated for three
different single-slits with L equal to 5.2, 7.5, and 14.7 mm,
respectively, and b = 5 mm. This was done for a wide range
of fluid heights h1. In the whole regime the response is non-
chaotic, as also found in the part of the regime previously
investigated. However, a finite low velocity limit, Vlow, was
found that depended on slit size, fluid height, and γ /γF . A
typical example of trajectories obtained just at the lower limit
for transit is shown in Fig. 13. This example extends the result
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FIG. 13. Typical example of trajectories obtained for a drop ve-
locity just at the lower limit for passage through a b = 5 mm and
L = 5.2 mm single-slit. Trajectories of a total of 20 drops are shown.
Of these, two pass in the center following regular trajectories. One
drop makes a complete stop in the slit before moving on and turn-
ing to the right. Vimp = 7.87 ± 0.05 mm/s, D = 0.713 ± 0.020 mm.
γ /γF = 0.998. h1 = 0.550 ± 0.040 mm.

for L = 5.2 mm shown in Figs. 5 and 6 in Ref. [7] toward the
low velocity limit.

A common feature is that the window of impact parameters
leading to passage shrinks towards the central part of the slit
when Vw is lowered towards Vlow. Below this, all trajectories
are turned away before entering the slit. Both features are
present in the figure. The limiting velocity becomes smaller
with both increasing fluid height and increasing slit size,
showing that the effective slit size becomes larger when the
fluid height over the barrier is increased. This trend is clearly
seen in Fig. 14 that presents an overview of our results. More-
over, the limit is at its lowest at γ ≈ γF . Not surprisingly, the
above results are also valid in the double-slit cases investi-
gated with L � 14.7 mm (see also Ref. [6]).

B. High velocity regime

Previous investigations have mainly been concerned with
walkers inside the regime of the (γ ,�) phase space where

FIG. 14. Low velocity limit Vlow(γ /γF ) with γ /γF = 0.998 ver-
sus fluid height h1 over barrier. L = 5.2 mm slit (x), L = 7.5 mm
slit (�), L = 14.7 mm slit (◦). The drop size corresponding to
Vlow(0.998) is shown to the right of the figure.

walkers are bouncing chaotically (see Fig. 1). With γ /γF

equal to 0.998, this corresponds to velocities, Vw, smaller
than approximately 11–12 mm/s. Since short transit times
are favored at fixed M by the reformulated criteria, we have
now investigated the part of the phase space above toward
the upper limit of � for walkers using the same slit structures
as before. This limit also corresponds to the highest possible
velocity of around 16.7 mm/s. As before, the outcome is
found to be nonchaotic in the whole regime. The expectation
here was that for all sizes of the slits, transit would happen
all the way up to the upper limit for walkers. The situation,
however, was seen to be quite different as instead a lower
slit-dependent limit for transit was found.

A common feature here is that the limits are insensitive to
acceleration close to γF . This, however, is not surprising as
the velocity of large drops is nearly constant in this regime of
acceleration. That the effective slit size depends on the fluid
height does give rise to the limits being slightly dependent on
this quantity. When the velocity is raised towards the limit, in
all cases we find a transition region. Below this, the trajecto-
ries outside the window for regular transit are all turned back
before entrance of the slits with the occasional exception of a
few back-tracking trajectories as also seen at lower velocities.
In the transition region the impact window for passage along
regular trajectories is gradually squeezed with the rest of the
original window now being occupied by drops following ir-
regular trajectories that stop abruptly just after leaving the slit
structure. Even more surprising is the development of a central
zone, with or without satellites, where regular trajectories are
forbidden, and only the same type of irregular trajectories
are found. Finally, at the end of the transition region, these
irregular trajectories are the only ones present, even though
the window of passage is nearly the same size as before we
entered this region.

In Appendix A we show some typical examples of the
behavior in the transition region, while our results are sum-
marized in the (Vw, L) phase space displayed in Fig. 15. The
velocity Vw(γ /γF ), where γ /γF ≈ 0.998, is here changed
by choosing different drop sizes with the connection between
Vw(0.998) and � (thus D) shown in the figure. In the figure the
horizontal light blue shaded area shows the approximate upper
boundary for walkers above which only stationary bouncers
exist. The vertical, dashed, lines denote the slit sizes L, while
the values of ximp leading to regular trajectories for the slit in
question are shown with small squares. The spaces in between
marked with thin line segments (red) are only occupied by
irregular trajectories, the narrow L = 5.2 mm slit being distin-
guished by having satellites to the central zone. The transition
always takes place over a quite narrow range of velocity inside
the dark gray shaded area which stretches across the figure.
For the L = 14.7 mm slit the velocity comes close to the high-
est possible velocity for a walker but still with a notable gap
up to this. In the white region above the transition region no
regular trajectories are found at all, and drops stop completely
after passing. This general behavior has been observed in an
interval of fluid height over the barrier from 0.330 mm until
0.650 mm. In the light gray region all passing trajectories are
regular except for the occasional back-bending trajectories.

While we only show results for the b = 5 mm, L = 5.2,
7.5, and 14.7 mm single-slits, we do find similar results for
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FIG. 15. (Vw , L) phase space with the transition zone approximately covered by the dark gray shaded area. The trajectories in the light
gray area belong to either regular or the occasional backtracking, with all trajectories that pass through the slit going on. In the white region
above the transition zone, all drops stop completely after passage. The velocity Vw (γ /γF ), at γ /γF = 0.998, is changed by choosing different
drop sizes, and the correspondence between Vw , �, and D is shown by adding the right y-axes. The horizontal light blue shaded area shows the
approximate upper boundary for walkers. Above only stationary bouncers exist. The vertical, dashed, lines denote the slit sizes L. The impact
range ximp for the different slits are centered around the vertical lines denoting the slit sizes—and shown on the same scale. The values of
ximp leading to regular trajectories are shown with small squares, while the thin (red) horizontal lines show the parts of the impact ranges ximp

occupied by trajectories that stop abruptly after passage.

all other single slits regardless of the value of b as well as for
all double-slits. In the case of a regular barrier high velocity
walkers will also come to a complete stop. For low fluid
heights this happens when the walker approach the barrier.
This may be considered as the limit of L → 0 case. At suffi-
ciently high fluid heights it will happen after passage of the
barrier.

C. Implications for the double slit experiment

We now return to whether the double-slit experiment may
result in true interference and/or chaotic behavior keeping in
mind the limitations mentioned above. From Fig. 5 it is clear
that for observation of true interference, the L = 5.2 mm slit
is of highest interest. Furthermore, the velocity range should
be around 6–9 mm/s for l∗(�)D, τD, and R/l∗(0) all to be
simultaneously at least �3. Finally, γ /γF should be as close
to unity as experimentally possible.

This velocity and γ regime we have already covered exten-
sively using b = 5 mm barriers with L = 5, 7.3, and 7.5 mm
wide double-slit structures and L = 14.7 mm single-slits [7].
We have now extended the investigation to cover the whole
possible velocity range for these slits and find that the con-
nection between the angular deflection angle α and the impact
parameter ximp is always without any sign of true interference
and also nonchaotic.

A critical feature of the temporal criterion is, that it is
tacitly assumed that the breadth b of the slit is negligible. This
can be seen from the use of the free space drop velocity, Vw, in
calculating τD. However, in reality the velocity of the walker
decreases appreciably during passage as, e.g., seen in the left

inset of Fig. 16(a) for a b = 2 mm barrier. Simultaneously
the trajectory is often very far from straight as most clearly
seen in the figures of Appendix A. These effects are also seen
in Fig. 5, of Ref. [23], where the wave field in the unused
slit furthermore can be seen to deteriorate visibly during the
passage of the drop through the other slit.

For b = 4–6 mm, a realistic value of Tch can be substan-
tially larger than lch/Vw. Including this in the estimate of τD

can thus lower this quantity a great deal. As this might well
be the reason why no trace of true interference or chaotic be-
havior has been encountered so far, we have made a series of
measurements on b = 2 mm (L = 5.2 mm), and b = 0.5 mm
(L = 5.2 and 7.3 mm) slits covering the range of 6 to 17 mm/s
with γ /γF between ≈0.97 and 1.

1. b = 2 mm barrier with double-slit

The measurements with a b = 2 mm double-slit barrier
show a similar picture to those described earlier for the b =
5 mm barrier with trajectories fanning out after passage. The
response shows no sign of true interference, although we still
see the distortion stemming from the waves scattered from the
backside of the barrier. Furthermore, the response is always
nonchaotic.

Up to a limiting velocity as described above we observe
smooth regular trajectories surrounded by trajectories that
turn back before entering the slit together with the occasional
back-tracking trajectories also seen for the b = 5 mm barrier.
An example from below the limiting velocity is displayed
in Fig. 16. Of 47 trajectories passing, 30 trajectories are
smoothly regular, always having a nonzero velocity. A single
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(a)

(b)

FIG. 16. Double-slit experiment with b = 2 mm barrier, L =
5.2 mm, and d = 9.9 mm (47 trajectories). γ /γF = 0.998, and h1 =
0.620 ± 0.040 mm. Impact velocity of 14.51 ± 0.02 mm/s and D =
0.863 ± 0.020 mm. (a) All passing trajectories. The right inset shows
a few of the irregular trajectories while the left shows the velocity
change during passage. (b) The associated distribution of angular
deflection, α (•), including also the far field response of any irregular
trajectories, as function of the impact parameter ximp. The nonchaotic
nature is high-lighted by also plotting a point symmetric copy of the
response (◦). The black line segments at α = 0 symbolize the barrier
with slit openings.

smooth trajectory, coming from the left slit and passing all the
way across the right slit, slightly backtracks before curving
away and proceeding in a straight fashion. Such trajectories
were also observed for the L = 14.7 mm double-slit by Pucci
et al. [6] both in experiments and simulations [their Figs. 7(a)
and 7(d)]. The remaining irregular trajectories all belong to
the class where the drops stop, turn back towards the barrier
before turning again and proceeding in a regular fashion. But
even these trajectories are reproducible with some shown in
the inset to the right of Fig. 16(a).

As expected the average of the time Ts spent in the slit,
approximately 0.15 s, is not as detrimental as in the case
of the b = 5 mm barrier, where 〈Ts〉 for the same velocity is
approximately 0.55 s. These numbers should be compared to
the characteristic time Tch of 0.96 s.

For higher velocities we find a transition region as de-
scribed above with forbidden zones occupied by irregular

trajectories where the drops come to a complete stop after pas-
sage. But the message is clear. In the whole velocity interval,
where walkers can pass, the relation between α and ximp is
nonchaotic for all values of γ . Also, there is no sign of true
interference with the angular distribution just being a slightly
skewed version of that for the corresponding single-slit.

2. b = 0.5 mm barrier with double-slit

Experiments with the b = 0.5 mm double-slit barriers were
done at fluid heights h1 from 0.410 to 0.960 mm. Generally the
results are remarkably similar to those seen for the b = 2 and
5 mm barriers. The drops passing through the slits exhibit the
same symmetry-broken angular response as is seen for those
slits, with the interaction of the wake with the other slit still
being the deciding factor in the outcome. This is illustrated
by the measurements displayed in Fig. 17 (L = 5.2 mm) and
Fig. 18 (L = 7.3 mm). In the figures we only show regular
trajectories, having excluded trajectories belonging to drops
that hit the central block or the outer edges of the slits and are
turned back.

In the case of the L = 5.2 mm double-slit most trajectories
never cross from one side to the other, i.e. trajectories origi-
nating on the left side of a slit have negative deflection angles
while trajectories originating on the right side of a slit have
positive deflection angles. Only at the outskirts, we observe
trajectories that suddenly start crossing. Examples of the two
different cases are shown in the inset of Fig. 17(a) with a
magnified view. These crossing trajectories give rise to the
vaselike structure seen in the figure, and the rapid shift of sign
in Fig. 17(b).

In the case of the L = 7.3 mm double-slit the pattern at
Vw ≈ 9 mm/s is slightly more complicated. In the interior
trajectories coming from the left side of a slit have a small
overlap with trajectories originating from the right side hence
resulting in two crossings. Thus, the outcome for the de-
flection angles is as for the L = 5.2 mm double-slit. At the
outskirts, however, the structure is more complicated with
trajectories having nearly identical input values of ximp ending
up nearly 100◦ from each other although still reproducible.
Examples of the different outcomes are displayed in the in-
sert of Fig. 18(a) and are reflected in the more complicated
structure of Fig. 18(b).

An interesting new feature is found when fluid heights are
increased to above ≈ 0.800 mm. Here high velocity drops pass
over the barrier outside the region of the slits as described
in tunneling papers, e.g., Ref. [14]. Far from the slits these
trajectories are not influenced, but close by they are strongly
affected by the interaction of the wake with the slits. Never-
theless, the drops passing through the slits seem to be quite
unaffected with the interaction of the wake with the other slit
still being the deciding factor in the outcome. An example for
a single-slit is shown in Appendix B, Fig. 24.

3. Time spent in the slit

In Fig. 19, the delay caused by the velocity loss and the
prolonged route taken by most drops during passage of the
L = 5.2 mm double-slits is illustrated by typical examples for
barriers with b = 5, 2, and 0.5 mm.
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(a)

(b)

(c)

FIG. 17. Double-slit experiment with a b = 0.5 mm barrier, L =
5.2 mm, and d = 9.9 mm (55 trajectories). Impact velocity Vw =
12.63 ± 0.08 mm/s and drop size D = 0.849 ± 0.016 mm. γ /γF =
0.998, and h1 = 0.670 ± 0.040 mm. (a) All trajectories that pass
through the slits with the inset displaying a 10 by 10 mm sec-
tion around the slit to the right showing the different types of
trajectories found. (b) The associated distribution of angular deflec-
tion (•) as function of the impact parameter ximp. To illustrate the
reproducibility we have also shown the point-symmetric response
(◦). The line segments at α = 0 symbolize the barrier with slit open-
ings. (c) Histogram of angular distribution.

As we have to open the container to change the slit struc-
ture, drop sizes will be slightly different. The response of the
deflection angle α versus the impact parameter ximp for the
three barriers are displayed in Figs. 19(a)–19(c). The corre-
sponding characteristic times Tch are 1.27, 1.44, and 1.39 s,
respectively. In Fig. 19(d) we compare the measured times

(a)

(b)

(c)

FIG. 18. Double-slit experiment with a b = 0.5 mm barrier, L =
7.3 mm, and d = 12 mm (96 trajectories). Impact velocity Vw =
9.03 ± 0.08 mm/s and drop size D = 0.724 ± 0.010 mm. γ /γF =
0.998, and h1 = 0.740 ± 0.040 mm. (a) All trajectories that pass
through the slits with the inset displaying a 12 by 24 mm sec-
tion around the slit to the right showing the different types of
trajectories found. (b) The associated distribution of angular deflec-
tion (•) as function of the impact parameter ximp. To illustrate the
reproducibility we have also shown the point-symmetric response
(◦). The line segments at α = 0 symbolize the barrier with slit open-
ings. (c) Histogram of angular distribution.

spent in the slit Ts, normalized with the characteristic time Tch,
versus ximp.

In all cases we find a simple U-shaped response having a
large overall change across ximp. Even though the fluid height
is seen to have a great influence on the range in ximp that is
occupied, the minimum time spent scales nicely with b, with
the delay being significant for b = 5 mm but negligible for
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(a) (d)

(b) (e)

(c) (f)

(g)

FIG. 19. Deflection angle α versus ximp for a double-slit exper-
iment with L = 5.2 mm and d = 9.9 mm. (a) b = 5 mm, 362 tra-
jectories, D = 0.820 ± 0.015 mm, Vw = 10.91 ± 0.04 mm/s, h1 =
0.710 ± 0.040 mm, (b) b = 2 mm, 30 trajectories, D = 0.756 ±
0.015 mm, Vw = 9.71 ± 0.04 mm/s, h1 = 0.540 ± 0.040 mm, (c)
b = 0.5 mm, 35 trajectories, D = 0.821 ± 0.016 mm, Vw = 10.01 ±
0.04 mm/s, h1 = 0.710 ± 0.040 mm. (d)–(f) Corresponding his-
tograms of angular distribution. (g) Measured time spent inside
the slit Ts normalized with the characteristic time Tch versus ximp

for the above. b = 5 mm (•), b = 2 mm (◦), and b = 0.5 mm (�).
γ /γF = 0.998. The line segments at α = 0 (a)–(f) and at Ts/Tch = 0
(g) symbolize the barrier with slit openings.

b = 0.5 mm. This comparison shows that b plays an important
role in the interpretation of the experiment.

A similar comparison is carried out in Fig. 20 for L =
7.3 mm double-slits with b = 5 mm and b = 0.5 mm. The
characteristic time Tch is here 1.80 s. The angular response
for the L = 7.3 mm double-slit is rather complicated. But
interestingly, the variation of Ts across the slit openings still
has a quite simple form with the smallest delay found in the
central regions of the slits. Again the delay is rather significant
for the b = 5 mm barrier and negligible for the b = 0.5 mm
barrier.

(a) (c)

(b) (d)

(e)

FIG. 20. Deflection angle α versus ximp for a double-slit with L =
7.3 mm, d = 12 mm. (a) b = 5 mm, 94 trajectories, Vw = 9.30 ±
0.04 mm/s, and D = 0.730 ± 0.015 mm. h1 = 0.780 ± 0.040 mm.
(b) b = 0.5 mm, 104 trajectories, Vw = 9.27 ± 0.07 mm/s, and
D = 0.750 ± 0.015 mm. h1 = 0.540 ± 0.040 mm. γ /γF = 0.998
for both. (c), (d) Corresponding histograms of angular distribution.
(e) Measured time spent inside the slit Ts normalized with the char-
acteristic time Tch versus ximp for the above. b = 5 mm (•), and
b = 0.5 mm (◦). The line segments at α = 0 (a)–(d) and at Ts/Tch = 0
(e) symbolize the barrier with slit openings.

4. Behavior in and close to the slit

Here we shall only deal with the behavior close to γF , i.e.,
at γ /γF ≈ 0.998.

Although the fanning out of trajectories after passage looks
deceptively alike for all L = 5.2 mm barriers, the detailed
structure is varying. The dominant feature for the b = 5 mm
barrier is that trajectories starting from one side of the slit end
up at the other side thus crossing the center-line an odd num-
ber of times; see, e.g., Fig. 21(e). For the b = 2 mm barrier
this is also the case for low velocity drops. However, for high
velocity drops the dominant feature is an even (0 or 2) number
of crossings (see Fig. 16). For the b = 0.5 mm barrier an even
number of crossings dominate at all drop velocities, although
1 crossing is seen for high numerical values of ximp (Fig. 17).
This is the cause of the shift in symmetry seen in Fig. 19. Here,
compared to the b = 5 mm (a) and b = 2 mm (b) barriers, that
have an odd number of crossings, the b = 0.5 mm barrier (c)
has zero crossings, indicating that the time spent in the slit is
an important factor in the resulting symmetry.

For b = 5 mm, at L = 7.5 (and 7.3 mm) we find that the
number of crossings can be at least 1,2, or 3 (see, e.g., Fig. 22
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TABLE II. Overview of experimental conditions used in previous double-slit experiments compared with some from the present investi-
gation. Vw is the droplet velocity, d the distance between slit centers, and R is the radius of the deep section of the container. The normalized
damping time MeTFVw/

√
2d , and the normalized damping length l/

√
2d are calculated using the theory of Tadrist et al. [27]. Compared to the

corresponding tables in Refs. [7,27], the entry for Couder and Fort has been corrected as that experiment was done with a 50 mPa s oil [43,44].
See also Ref. [35] for other corrections. The last entries are also shown corrected with the measured 3% values of l∗(0) and l∗(90), and with
the average time 〈Ts〉 spent in the slit added to Tch.

Experiment L mm Vw (mm/s)
√

2d (mm) γF /(γF − γ ) MeTFVw/
√

2d l(0)/
√

2d l(90)/
√

2d R/l(0)

Couder and Fort [2] 7.6 17.4 20.2 5–20 0.08–0.3 0.2–0.4 0.3–0.5 9–4
Andersen et al. [3] 5 15 14.1 21 0.5 0.9 1.0 7.3
Pucci et al. [6] 14.7 6.8 28.3 500 2.3 1.7 2.35 1.7
Ellegaard and Levinsen [7] 7.3 8.3 16.9 250 2.3 2.1 2.8 2.5
Ellegaard and Levinsen [7] 7.3 11.0 16.9 1000 12.5 2.5 4.3 2.2
Ellegaard and Levinsen [7] 5 11.1 13.7 1000 15.5 3.0 5.2 2.2
b = 2 mm barrier 5.2 9.8 14.0 500 6.7 2.8 4.4 2.3
b = 2 mm, corrected 5.2 9.8 14.0 500 5.4 1.0 3.1 6.0
b = 0.5 mm barrier 5.2 7.9 14.0 500 5.4 3.2 4.6 2.0
b = 0.5 mm, corrected 5.2 7.9 14.0 500 5.4 1.1 3.4 5.6

in this paper, and Figs. 7 and 11 in Ref. [7]), while for b =
0.5 mm we only see 1 or 2 crossings (Fig. 18). Finally, for
the L = 14.7 mm slit we can have 1, 2, and 3 crossings at low
values of Vw (Fig. 10, Ref. [7]), and 0, and 1 at high values of
Vw (Fig. 23).

The explanation for these differences can be found in the
wave height measurements by Rode et al. [23] (see Figs. 4,
5, and 6 in this reference). For the narrow L = 5.2 mm slit
the extra damping, caused by the proximity of the boundaries
when the drop visits the slit, leads to a decrease in the central
peak, hence the drop in velocity. Also observed is an amplifi-
cation of the wave amplitude in front of the drop (Figs. 4(a)
and 4(b) in Ref. [23]). This leads to profound changes in the
interaction for even small changes in, e.g., γ , D, h1, or L as
seen in the shift in symmetry, e.g., between Figs. 16 and 19
and for the 14.7 mm slit in Fig. 19, Ref. [7].

For the L = 14.7 mm slit the observed change is small at
values of M � 70. Therefore, the angular response in this case
mimics the angular response around a one-sided wall (Fig. 6,
Ref. [6]), giving a preferred deflection angle as found by Pucci
et al. [6]. However, the specific value depends on, e.g., h1

and Vw.
As the Doppler shifted wave length in the wake depends

on the velocity, the interaction with the corners behind after
passage is rather complicated. For all values of L we find
oscillating structures. Here the deflection angle sweeps back
and forth as ximp is moved monotonically across the slit i.e.
the function α(ximp) is nonmonotonic. For an example, see
Fig. 20(a). The actual response depends on the values of D,
h1, and γ , with maximum deflection angles found from 10◦
to nearly 70◦ for L � 7.5. For M � 70 we find oscillating
structures also for the L = 14.7 mm slit while the limiting
angle can be as low as 25◦ at high values of Vw (see Fig. 23).
Such undetected oscillating structures were the main source
of the seemingly chaotic response found by Pucci et al. [6].

Due to the complex interactions of the wave field with
the slit and its environment, in reality all sizes of limit-
ing angles are found. So the limiting angle of 60◦ is not
generic as was assumed by Pucci et al. [6]. To get a better

understanding of these differences in response one would need
many more wave field measurements. This is also the case for
understanding the stop-and-go motion and resulting kinks for
large numerical values of ximp. But it is fair to assume, that
the stop-and-go phenomenon, seen for instance in Fig. 16, is
implicated in the complete stop seen at high drop velocities
(i.e., for large drops).

D. Discussion

1. The velocity range

The information gained from the measurements on the
wave field led us to reformulate the criteria proposed by
Tadrist et al. [27]. These reformulated criteria were then used
to evaluate the optimal regime for possibly observing true
interference. This regime was already mostly covered by our
previous investigation [7]. However, the extra time used by
the drop while inside the slit was not taken into account in
calculating the normalized damping time τD. This suggested
that the optimum velocity range for the slits used would be
somewhat higher, prompting us to investigate the complete
range of high-velocity walkers. Independence of α on ximp, as
pointed out by Pucci et al. [6], could be caused by the chaotic
bouncing of drops at low velocities leading to quantumlike
behavior. This might thus be seen already in the single-slit
case. The investigation was therefore also extended towards
the low velocity boundary for walkers.

Here a low velocity boundary was found for all slit sizes.
Close to the boundary we found that the structure of the
ensemble of trajectories is the same for all slits. An example is
shown in Sec. IV A, Fig. 13. Therefore, it is natural to assume
that a single mechanism lies behind. We notice that the slit
system seems to act as a potential barrier for a single object.
This is supported by the limit dropping from about 8 mm/s
for a b = 5 mm barrier to below 6 mm/s for a b = 0.5 mm
barrier while keeping the fluid height constant. As the slit is
much wider than the drop and much narrower than the extent
of the wave field close to the critical drive amplitude, the
passage of the drop is governed by the kinetic energy of this
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combination, as defined in Ref. [41]. Thus, here we have an
analogy to quantum theory, where a bare particle becomes
dressed through interaction with excitations of a field. How-
ever, no sign of chaotic behavior or true interference was
found at all.

The theoretical prediction was that high drop velocity most
likely was needed to observe true interference in a double-slit,
but an investigation of this regime did not find any sign of this.
Nor was any sign of chaotic behavior detected in single-slits.

A curious phenomenon was observed both in the single-
and in the double-slit case. When the impact velocity is in-
creased beyond a critical value, a transition region is entered.
In this, the window in ximp occupied by regular trajectories
disappears very fast with one or more forbidden zones ap-
pearing, inside which no regular trajectories exist. The extent
of this transition region is roughly represented by the orange
cross-hatched rectangle in the upper right corner of the (�, γ )
parameter space in Fig. 1.

The transition region is seen to overlap with the stable
(2,1) and (2,1)2 walking modes. As noted by Wind-Willassen
et al. [22], stationary chaotic bouncing drops in the regime
around � = 1 could, when pushed, change state into a stable
walking mode. As our drops start out with a finite velocity
due to the horizontal drop maker, these drops can perform
the opposite transition into the stationary chaotic bouncing
mode. A similar transition into a stationary state is seen in this
regime, if the drive is lowered and then reset while the drop
is far from boundaries. We should note here that the upper
limiting velocity for walkers reported here corresponds well
with the upper limit for walkers reported in Ref. [42].

2. Double-slit

Finally, we consider the double-slit case. Compared to our
previous investigation [7] we also use barriers with smaller
values of b (b = 2 and 0.5 mm) to limit the time used
to transit the barrier. Again we find an upper limit to the
velocity for passage of the drops. However, even in the tran-
sition region, where the forbidden zones develop, all regular
trajectories show a fully dependent relation between the
angular deflection and the impact parameter.

The extra interference found for the double-slit as com-
pared to the single-slit is still present. Also here, it is found
to be caused by back-reflection of waves after passage at
all velocities, where passage of the slits is possible. This
conclusion is backed by the behavior of high velocity drops
crossing the barrier comparatively close to the slits in the case
of the b = 0.5 mm barrier for values of h1 � 0.8 mm (Fig. 24).
Furthermore, since drops following irregular trajectories are
simply caught dead in their tracks, no support for a chaotic or
quantumlike behavior is found here either.

In Table II we give a summary of the experiments done so
far on the double-slit system.

In the last entries we have used the measured values for
l∗(0) and l∗(90) together with the average time 〈Ts〉 spent in
the slit added to the characteristic time Tch. While the change
in the normalized damping time clearly can be minimized by
using barriers with b as small as 0.5 mm, it is quite impossible
to meet the spatial criteria even using the rather liberal values
of l∗(0) or l∗(90).

To round off the discussion, the orange bordered rectangle
to the right side of Fig. 1 shows the range of the parameter
space now investigated in detail in this paper and in Ref. [7]
for L = 5.2, 7.5, and 14.7 mm. This covers the complete range
of velocities of walkers for which it is possible to pass a slit
opening with L equal to the sizes considered here.

V. CONCLUSIONS

The idea of using bouncing drops as a proxy for quantum
systems is truly fascinating. But the intriguing observation,
that the true interference patterns of a quantum mechanical
double-slit was reproduced with walking drops [2], has since
been proven wrong by several authors [3,6,7]. Still, that ran-
domness could be caused by chaotic bouncing was yet an open
question [6,45].

In earlier experiments with walking drops interacting with
slits less than half of the available phase space for walkers at
high γ have been investigated (the hatched region in Fig. 1).
Here we report new experiments covering the complete phase
space where we search for true interference and for random-
ness induced by chaotic bouncing.

A main criterion for the possibility of true interference is
that the accompanying wave field, passing through the slit
not traversed by the drop, reaches the other side soon enough
and with sufficient amplitude to have a significant impact. A
novel insight in this aspect is obtained through measurements
presented here on the damping of the wave field in both space
and time. This was done for drive values up to extremely close
to the spontaneous onset of Faraday waves. Recently, Tadrist
et al. [27] formulated simple criteria for possible true inter-
ference based on a theoretical derivation of the accompanying
wave field. We find very good agreement with their theory
in its full form. However, due to discrepancies caused by a
simplification used to derive the criteria, we have reformulated
these based on the full theory.

While the criteria can only be considered as guidelines in
pinning down regions of interest, they do highlight that the
time spent inside the slit should be minimized. In a major step
forward in the search we have therefore repeated this with
ultra-thin barriers down to a breadth b of 0.5 mm. Thus, we
have now systematically covered the whole possible regime
for slits with b equal to 5, 2, and 0.5mm. This regime is
indicated in Fig. 1 by the large orange bordered rectangle to
the right.

But in all cases we still find that—within very small
experimental uncertainties–the movements are always truly
dependent and without any sign of true interference or chaos.

The investigation has also led to further insight in the
interaction of both small and large drops with slits.

As drops are made smaller we find a low velocity limit.
The structure of the ensemble of trajectories is found to be the
same for all slit sizes L with the velocity limit going down as
L becomes wider or the fluid height or γ is increased. Thus,
the slit system seems to act as a potential barrier.

For large drops we also find a limiting velocity. This
depends on the slit size but is rather independent of γ . De-
creasing b results in a small increase in the limiting velocity
as the barrier becomes less effective in damping the waves.
Drops following irregular trajectories still make it through the
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 21. L = 5.2 mm, b = 5 mm. In the left column we show
the result for drops moving with impact velocity Vw = 14.10 ±
0.04 mm/s and D = 0.838 ± 0.016 mm, while in the right column
we present the result for drops with impact velocity Vw = 15.01 ±
0.10 mm/s and D = 0.870 ± 0.016 mm. Sweeping the impact pa-
rameter, panels (a) and (e) show regular trajectories for drops that
pass into the far region, (b) and (f) trajectories of those that do not
make it further than the local neighborhood at the outlet of the slit.
Notice the expanded x-scale. Panels (c) and (g) shows the associ-
ated (ximp, α) plots with the line segments at α = 0 symbolizing
the barrier with slit opening. h1 = 0.650 ± 0.040 mm and γ /γF =
0.991 ± 0.001. At a velocity of Vw = 15.76 ± 0.03 mm/s and D =
0.901 ± 0.020 mm, no drops make it through the slit without coming
to a complete stop after which most drift around slowly close to the
outlet of the slit. (d), (h) Histograms of the corresponding angular
distributions.

slit. But now stop and stay close to the outlet thus calling
for a different explanation, most likely a combination of the
wave field interacting with the barrier, and that in this regime
moving drops can coexist with stationary drops [22].

We have also displayed histograms of the distribution of
angular response. While a single histogram for a double-slit
[Fig. 20(c)] looks somewhat like the quantum mechanical
equivalent, the most striking observation is how similar the
histograms can look for quite different angular responses.

The walker-slit interaction is a complex hydrodynamic
problem, and interesting in itself. But our main conclusion

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 22. L = 7.5 mm, b = 5 mm. In the left column we show
(a) the regular trajectories of the drops moving with an impact veloc-
ity Vw = 15.17 ± 0.04 mm/s and D = 0.881 ± 0.015 mm, (b) those
that do not make it further than the local neighborhood of the slit
together with some of the backtracking trajectories, (c) the asso-
ciated (ximp, α) plot. Again the x axis is expanded. (d) Histogram
of the angular distribution. In the right column (e)–(h) the same
is shown for drops of a velocity of Vw = 15.62 ± 0.03 and D =
0.892 ± 0.15 mm. γ /γF = 0.998 and h1 = 0.630 ± 0.040 mm. At a
velocity of Vw = 15.84 ± 0.05 mm/s no drops make it through the
slit without coming to a complete stop. The line segments in panels
(c) and (g) at α = 0 symbolize the barrier with slit opening.

is still: There are many quantumlike phenomena in the
drop systems, notably quantized orbits of interacting drops,
and, e.g., the notion of dressed mass, but nowhere is
found the genuine fortuitousness characteristic of quantum
physics [46].
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APPENDIX A: HIGH VELOCITY REGIME

Here we present some results for the different single-
slits in Fig. 21 (L = 5.2 mm), Fig. 22 (L = 7.5 mm), and
Fig. 23 (L = 14.7 mm). These results are obtained just be-
low and inside the transition region in the high velocity
regime.

The figures display the regular trajectories, the irregu-
lar trajectories and the angular response, and illustrate both
differences and common features. As seen, even in the tran-
sition region the angular response is always truly dependent
without any sign of chaos: The distributions are symmetric
and reproducible.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 23. L = 14.7 mm, b = 5 mm. In the left column we show
(a) the regular trajectories of the drops moving with an impact
velocity Vw = 15.86 ± 0.03 mm/s and D = 0.887 ± 0.020 mm that
pass into the far region, (b) some irregular trajectories surrounding
the regular trajectories, (c) the associated (ximp, α) plot. Notice again
the expanded x axis. (d) Histogram of the angular distribution. In
the right column the same is shown for drops of a velocity of
Vw = 16.31 ± 0.03 (+) and D = 0.920 ± 0.020 mm. Superimposed
on the (ximp, α) plot (g) are the data from the left column (·), and data
for a drop having Vw = 16.42 mm/s and D = 0.931 ± 0.020 mm
(∗). γ /γF = 0.998 and h1 = 0.550 ± 0.040 mm. At a velocity higher
than Vw = 16.42 ± 0.05 mm/s no drops make it through the slit
without coming to a complete stop. The line segments in panels
(c) and (g) at α = 0 symbolize the barrier with slit opening.

APPENDIX B: TUNNELING

In Fig. 24 we show an example of the barrier crossing men-
tioned in Sec. IV C 2. The example shown is for a single-slit
having L = 5.2 mm and b = 0.5 mm. Compared to Fig. 17 it
is clear that the behavior of trajectories that pass inside the
slit is very similar in the two cases while outside the slit the
trajectories gradually revert to passing undisturbed. As h1 is
lowered, the trajectories passing over the barrier close to the
slit start bending towards the slit and no longer pass and finally
also the straight trajectories far from the barrier are reflected.
It is interesting that as soon as the influence of the slit on
the incoming drop has disappeared, the outgoing part of the
trajectory is unaffected by the slit.

This happens already at a distance of 10 mm from the
center of the slit. Taking this distance as d gives l∗

D(0) ∼ 1
and l∗

D(90) ∼ 3 whether taking the theoretical 3% values or
the measured values.

(a)

(b)

FIG. 24. Single-slit, L = 5.2 mm, b = 0.5 mm, 57 trajecto-
ries, h1 = 0.950 ± 0.040 mm, γ /γF = 0.992 ± 0.001, Vw = 10.06
± 0.06 mm/s, and D = 0.810 ± 0.014 mm. (a) Trajectories, (b) α

versus ximp (·). Point symmetric copy (∗). The line segments at α = 0
symbolize the barrier with the slit.
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