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Geometric localization of waves on thin elastic structures
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We consider the localization of elastic waves in thin elastic structures with spatially varying curvature profiles,
using a curved rod and a singly curved shell as concrete examples. Previous studies on related problems have
broadly focused on the localization of flexural waves on such structures. Here, using the semiclassical WKB
approximation for multicomponent waves, we show that in addition to flexural waves, extensional and shear
waves also form localized, bound states around points where the absolute curvature of the structure has a
minimum. We also see excellent agreement between our numerical experiments and the semiclassical results,
which hinges on the vanishing of two extra phases that arise in the semiclassical quantization rule. Our findings
open up novel ways to fine-tune the acoustic and vibrational properties of thin elastic structures and raise the
possibility of introducing new phenomena not easily captured by effective models of flexural waves alone.
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I. INTRODUCTION

Studying the propagation of elastic waves on thin struc-
tures is of crucial importance to a variety of problems
in science and engineering, with applications ranging from
acoustic cloaks to negative refraction [1–3]. Of particular
relevance to many of these applications are localized waves,
which are time-harmonic solutions to a wave equation that
remain confined to a certain region of space without needing a
confining potential or force. Indeed, such waves are observed
in many physical systems where they are often caused by het-
erogeneities in the medium or the boundary. For instance, the
Helmholtz equation admits bound states in arbitrary dimen-
sions when solved on a tubular domain, provided that the tube
is not everywhere straight [4]. Likewise, in waveguides in the
form of an elastic plate, described again by coupled Helmholtz
equations, waves localize around points of maximal curvature
[5]. Bound waves of similar nature have also been predicted in
waveguides in the form of rods [6], elastic strips with varying
elastic moduli [7] and thickness [8], quantum waveguides
[9], etc.

Localized waves can also arise in elastodynamic systems
described by higher-order wave equations. In this context,
Scott and Woodhouse [10] studied the localized vibrations of a
musical saw—an ordinary hand saw bent into the shape of the
letter S and playable like a musical instrument [11,12]. More
recently, Shankar et al. [13] revisited the musical saw using
both experiments and theory. Forgoing an explicit analytical
computation of the mode frequencies, they argued that the
bound modes that appear at the inflection point of the saw
are topologically protected.

Despite the efforts of the aforementioned authors, several
critical aspects of wave localization on thin structures remain
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unclear: What kinds of structural geometries support trapped
waves, and of what types? Are the vibrational spectra of one-
and two-dimensional thin structures different? Is it possible
to compute, even approximately, the shapes and frequencies
of the trapped modes? In this paper, we explore these ques-
tions, choosing a singly curved shell and a curved rod as our
examples.

A. Background

If a thin structure is uncurved, then there are three basic
types of waves that can propagate. Extensional waves propa-
gate by stretching and compressing the structure, and involve
only the tangential displacements (u and v in Fig. 1). Flexural
waves, by contrast, propagate by bending the structure and
involve only the normal displacement (ζ in Fig. 1). In flat
plates, shear waves, which do not compress or expand the
plate, and involve only the tangential displacements propagate
as well [14].

The situation gets complicated when the structure is
curved. First, curvature tends to couple the tangential and
normal displacements, and therefore, we can only speak of
waves that are predominantly flexural or extensional or shear-
like. Second, there are no universally accepted elastodynamic
equations for curved structures, and in the case of the rod
and the shell, several choices exist [15–19]. The simplest
ones, however, are almost always a set of linear partial dif-
ferential equations that couple the normal and tangential
displacements, the independent variables being time and the
coordinates that describe the undeformed configuration of
structure (x and y in Fig. 1). In models that assume that
the wavelength is larger than the thickness of the structure
(assumed to be of order unity), this generally requires that
the wave number k and curvature m satisfy the condition
0 � |m| < |k| � 1 [14,17,20,21]. Although not all elastody-
namic models assume this condition [22], in this paper, we
only consider ones that satisfy it.
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FIG. 1. Waves can propagate on thin elastic structures such as
(a) rods and (b) shells. The undeformed structure is parameterized by
the coordinates x and y. Curvature couples tangential displacements
(u and v) that stretch/shear the structure with normal displacements
(ζ ) that bend it.

Because the curvature couples the different displacement
components, irrespective of the equations we use, to fully
characterize wave propagation on curved structures, we have
to consider multicomponent (i.e., vector) waves. Computing
the exact spectrum of a multicomponent differential operator
is often difficult, unless one resorts to numerical or asymp-
totic techniques. Indeed, for this reason, in their theoretical
analyses of the musical saw, both Scott and Woodhouse [10],
and Shankar et al. [13] chose to simplify matters by analyzing
flexural vibrations alone.

Most nontrivial wave problems can only be solved asymp-
totically, and the exact choice of the method depends
on the problem at hand, e.g., in Refs. [5,6] the authors
resorted to an asymptotic method that assumes that wave-
length is the same order as the inhomogeneity scale [23].
In comparison, the semiclassical WKB (Wentzel–Kramers–
Brillouin) approximation, widely applied in quantum-
mechanical contexts, assumes that the wavelength is much
smaller than the inhomogeneity scale. It has also been ex-
tensively used to study elastic waves, which is not surprising
given the many similarities between quantal and elastody-
namic problems, including those describing the dynamics of
thin structures such as plates and rods [24–27]. When bound
states are present, semiclassical asymptotics allows one to
extract the corresponding frequencies through quantization
[28]. Such an endeavor, however, becomes nontrivial in the
case of multicomponent wave equations, such as the ones we
study in this paper. Here, subtleties can arise owing to the
presence of an extra phase in the quantization rule [29–32].
Recently, this phase has been shown [33] to be responsible
for a spectral flow in the rotating shallow-water equations that
describe oceanic waves on the Earth’s surface, leading to the
topological protection of equatorial waves [34].

B. Overview

In this paper, we use the semiclassical approximation (sum-
marized in Sec. II) to study the bound-state spectrum of elastic
waves in a curved rod and a singly curved shell with a varying
curvature profile. To avoid losing the main results of the paper
in a thicket of details, we summarize them here:

(i) For both the rod and the shell, independent of the
boundary conditions, waves exhibit robust localization around
points where the absolute curvature has a minimum. Wave
localization induced by the presence of an inflection point in

an S-shaped musical saw [10,13] is a special case of this more
general observation.

(ii) In a curved rod, only extensional waves form bound
states and flexural waves always form “unbound” states that
are spread across the rod. We show this by using both
semiclassical asymptotics (Sec. III) and by explicitly finding
extensional solutions to the rod equations (Sec. IV).

(iii) In a shell, waves of all three types can form states
that are bound along the curved direction [x in Fig. 1(b)]. In
the frequency spectrum, flexural bound states appear first and
have the lowest frequencies. They are then followed by shear
and extensional bound states, in that order (Sec. V).

(iv) For both structures, flexural waves start propagating
well below the frequency of the first bound state associated
with an extensional wave. Hence, in very long rods and shells,
these bound states coexist with a near-continuum of flexural
waves, forming quasibound states in a continuum [35].

(v) Finally, both structures are described by equations for
which the extra phase in the modified quantization rule
vanish—something that we expect to be generically true for
equations of thin-walled structures. This simplifies our analy-
sis considerably and results in remarkable agreement between
our numerical experiments and quantization results.

Our findings show that waves can be robustly trapped in
thin elastic structures by a simple alteration of their geome-
try. This could help, for instance, in crafting better thin-plate
acoustic cloaks [1], and aid the control of noise and vibration
in thin structures [36,37]. Curvature-induced localization of
waves could also be used to improve the acoustic black-hole
effect in thin-walled structures [38,39], which at the moment
relies primarily on wave localization caused by a power-law
tapered thickness profile [40]. Finally, a singly curved shell
serves as a simple, yet effective single-mode waveguide that
can steer flexural waves of specific frequencies in the un-
curved direction.

Notation. Matrices are set in sans-serif type, e.g., D. Op-
erators are distinguished with a hat, e.g., k̂. Hats are dropped
on operator “symbols,” e.g., k. Unless explicitly indicated
otherwise, repeated indices are to be summed over.

II. SEMICLASSICAL THEORY OF WAVES

In this section we present a quick rundown of the semiclas-
sical approximation as applied to multicomponent waves. For
more detailed descriptions, we refer to the book by Tracy et al.
[41] and references therein. We begin with a wave equation of
the form

∂2
t �(x, t ) + Ĥ�(x, t ) = 0, (1)

where �(x, t ) is an N-component wave field described by a
one-dimensional coordinate x and time t . In elastodynamics,
� is usually composed of displacements, e.g., for the rod
we have � = (ζ , u), and for the shell we have � = (ζ , u, v)
[see Figs. 1(a) and 1(b)]. Also, Ĥ is taken to be a Hermitian
operator in the form of an N × N matrix, composed solely of
spatial derivatives (i.e., powers of ∂x) with time-independent
coefficients. Assuming that the waves are time harmonic
with frequency ω, i.e., �(x, t ) = ψ (x)e±iωt , where ψ (x) is
the time-independent part of the wave field, Eq. (1) can be
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recast as

D̂ψ = 0, with D̂ = Ĥ − ω2IN , (2)

where IN is the N × N identity matrix. If the coefficients of
the spatial derivatives that appear in D̂ are constants, then the
eigenmodes ψ are plain waves. In what follows we assume
that these coefficients are slowly varying, with the variation
controlled by a single positive parameter ε � 1. It is useful
to treat ε as an ordering parameter so that we can look for
solutions at various orders of ε. To this end, we rescale x →
ε−1x so that a derivative ∂x becomes ε∂x. With analogy to
quantum mechanics, this allows us to recast the derivatives
in D̂ in terms of the wave number/momentum operator k̂ =
−iε∂x, with ε playing the role of Planck’s constant. Since we
shall be considering D̂ in the coordinate representation, the
position operator x̂ = x.

We look for eikonal solutions to Eq. (2) of the form ψ (x) =
A(x)eiS(x)/ε , where the amplitude A(x) is an N-component
spinor with complex components, and S(x) is a rapidly vary-
ing phase, playing the role of an action. To solve Eq. (2) at
various orders of ε, it is convenient to make use of Weyl cal-
culus, which allows one to map differential operators that are
functions of x̂ and k̂ to ordinary functions, called Weyl sym-
bols, defined on an x-k phase space, and vice versa [42,43].
Functions of x and k̂ alone, e.g., f (x) and g(k̂), follow the
straightforward mapping

f (x) → f (x), g(k̂) → g(k). (3)

The Weyl symbol of the product of two operators in terms
of their individual symbols, however, is given by the Moyal
formula [41]

f (x)g(k̂) → f (x)g(k) + iε

2
{ f (x), g(k)} + O(ε2)

= f (x)g(k) + iε

2
f ′(x)g′(k) + O(ε2). (4)

Above, {·, ·} is the x-k Poisson bracket.
Converting each entry of the matrix operator D̂ into a Weyl

symbol, we get the N × N dispersion matrix D, which we
express in various orders of ε as D = D(0) + εD(1) + O(ε2).
Employing the eikonal ansatz, at O(ε0), we find the matrix
equation D(0)A = 0. To satisfy this equation, at least one of
the N eigenvalues of D(0), say λ(x, k; ω), must vanish so
that det D(0)(x, k; ω) = 0. A vanishing eigenvalue λ and the
associated normalized eigenvector τ describe different wave
types or “polarizations” represented by Eq. (2). By a polariza-
tion we mean a linear subspace of the total wave field that is
usually of a distinct physical nature, e.g., flexural waves on a
curved rod.

Vanishing eigenvalues of D(0) serve as the ray Hamiltonian
of a wave of a specific polarization. This leads us to the
phase-space representation of waves as rays that satisfy the
Hamilton’s equations

ẋ = ∂kλ(x, k; ω) = {x, λ},
(5)

k̇ = −∂xλ(x, k; ω) = {k, λ},
where the overdot denotes derivatives with respect to a pa-
rameter that parameterizes the rays in the phase space. As the
x-k phase space is two-dimensional, the solutions to Eq. (5)

FIG. 2. (a) In phase space, bound states are represented by rays
in the form of closed orbits, which is analogous to that of a bound
particle oscillating between two classical turning points (±x
 in the
cartoon). Other trajectories represent unbound states. (b) A bound
state represented by a “peanut”-shaped orbit has six caustics.

are identical to the level curves defined by λ(x, k; ω) = 0. It
should be noted that the phase-space representation breaks
down when more than one eigenvalue of D(0) simultaneously
vanish, which leads to mode conversion between the different
polarizations [41]. However, as we shall see, mode conversion
effects can safely be ignored for problems we study in this
paper.

Bound waves in phase space

We expect the rays of bound waves to be bounded in phase
space as well, with these rays being topologically equivalent
to a circle [44,45]. As shown in Fig. 2(a), such rays oscillate
between two classical turning points where k = 0 and ẋ = 0.
Turning points are examples of caustics, i.e., points on the ray
where ẋ = 0, and in a bound ray, apart from the classical turn-
ing points, there could be other caustics as well [see Fig. 2(b)].
Even though the semiclassical approximation breaks down
near the caustics, we can recover the phase S(x) by inte-
grating k(x) along a ray. Furthermore, for bound rays, single
valuedness of ψ (x) results in the modified Bohr–Sommerfeld
quantization condition

ε−1
∮

dx k(x; ω) = 2

(
n + α

4

)
π − γ , (6)

from which bound-state frequencies can be obtained. Above,
the quantum number n ∈ N0 and α is the Keller–Maslov index
[44,46]. Closed orbits in a two-dimensional phase space that
can be smoothly deformed to a small circle always have α = 2
[47]. The additional phase γ only appears when the wave field
has more than one component, and is a consequence of the fact
that the polarization vector τ is uniquely determined only up
to an overall phase. Its rate of change γ̇ as we move along a
ray can be written as γ̇ = γ̇G + γ̇NG, with [29,30,33]

γ̇G = iτ ∗
μ{τμ, λ} = iτμ

†τ̇μ,

γ̇NG = (i/2)D(0)
μν

{
τ ∗
μ, τν

}− τ ∗
μD(1)

μντν,
(7)

where the asterisk represents complex conjugation and the
subscripts μ, ν represent the entries and components of D(0)

and τ , respectively. It can be shown that the first phase γG has
the general form of a geometric phase [48,49] upon treating
the x-k phase space as a parameter space [29]. The second
(nongeometric) phase γNG has no such interpretation.

Instead of explicitly accounting for the extra phase γ in
the quantization rule, we could have diagonalized the wave
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equation at various orders of ε [31–33,50]. During such a
procedure, terms proportional to γ̇G and γ̇NG naturally appear
in the ray Hamiltonian λ as a first-order correction. Despite
the elegance of the method, we do not use it in our analysis.
This is because, as we discuss in Appendix A, for both the
problems we consider, the extra phases vanish.

III. WAVE LOCALIZATION IN A CURVED ROD

As we remarked earlier, several rod theories [51,52], with
varying levels of sophistication, have been written down to
describe wave propagation on rods—straight or curved. For
our purposes, it is sufficient to work with a simple model
[15,16,18,53] of a curved rod that ignores higher-order effects
like torsion, cross-sectional rotation, etc. We use this model
when even more elementary rod theories exist (see, e.g.,
Appendix B) as it is more widely used, in addition to having
received experimental attention [54].

A. Equations of motion and semiclassical approximation

Let the undeformed state of the rod be in the form of a
plane curve σ : X → R2, which we take to be parameterized
by its arclength x ∈ X ⊂ R. As a wave propagates along
the rod, it undergoes a deformation σ → σ + δσ, where the
displacement field δσ(x, t ) = u(x, t )t (x) + ζ (x, t )n(x). Here
t = dσ/dx is the unit tangent of the undeformed rod and n
is its unit normal, obtained by rotating t counter-clockwise
by π/2 [see Fig. 1(a)]. We shall use the normal displacement

ζ and the tangential displacement u as the components of a
two-component wave field � = (ζ , u). Assuming the absence
of external forces, the equations of motion can be derived from
the following action [18]:

U [ζ , u] = 1

2

∫
dt dx[ρ(u̇2 + v̇2) − K (u′ − mζ )2

− B(mu′ + ζ ′′)2], (8)

where the overdot represents derivatives with respect to time
t and the primes denotes derivatives with respect to the ar-
clength x. We have also assumed that the rod is uniform
with linear mass density ρ, with extensional stiffness K and
bending stiffness B. Also, the signed curvature of the rod is
m(x) = n · dt/dx. With these identifications, we can delineate
the bending and stretching contributions to the energy.

In Eq. (8), the extensional stiffness K = YA and the bend-
ing stiffness B = Y I , with Y being the Young’s modulus, A
being the cross-sectional area, and I being the second moment
of area. If the rod’s cross-sectional “thickness” is h, then
A ∼ h2 and I ∼ h4. This gives us a natural length unit � =√

B/K ∼ h and a time unit
√

Bρ/K that can be conveniently
used for nondimensionalization. [Note that the curvature
transforms as m(x) → �−1m(x).] Unlike Refs. [15,16,18,53],
where the curvature m is assumed to be a constant, we will
assume it varies with the arclength x. Finally, upon varying
the functional in Eq. (8), we get the dynamic rod equations in
the following nondimensional form [cf. Eq. (1)]:

∂2
t

(
ζ

u

)
+ Ĥ

(
ζ

u

)
= 0, where Ĥ =

(
∂4

x + m2 −m∂x
(
1 − ∂2

x

)+ 2m′∂2
x + m′′∂x

m∂x
(
1 − ∂2

x

)+ m′(1 − ∂2
x

) −(1 + m2)∂2
x − 2mm′∂x

)
. (9)

Equation (9) is a set of coupled equations involving the curvature m(x) as the only parameter. When m = 0, it decouples into
two equations: the first of which is the Euler–Bernoulli beam equation that describes flexural vibrations that bend the rod and
involves only ζ ; the second equation, which involves only u, characterizes extensional waves that propagate longitudinally by
stretching the rod. When curvature is nonzero, which is the case we want to analyze, the components ζ and u remain coupled.

Because we have assumed that curvature m(x) is nonuniform in Eq. (9), we can no longer seek a plane-wave solution. Instead,
we shall employ the semiclassical approximation. To this end, we assume that the curvature is a slowly varying function of the
form m(εx). Here 0 < ε � 1 is a small dimensionless parameter that controls the slowness of the variation. Because the length
unit � we chose for nondimensionalizing the arclength x is proportional to the thickness, physically speaking, here we are
assuming that the length scale over which the curvature varies significantly is much larger that the thickness of the rod. Next, we
do a final change of variables x → ε−1x in Eq. (9) so that m(εx) → m(x) and all spatial derivatives get multiplied by ε. For the
eigenvalue problem with D̂ = Ĥ − ω2I2, this gives us

D̂ =
(

ε4∂4
x + m2 −εm∂x

(
1 − ε2∂2

x

)+ 2ε3m′∂2
x + ε3m′′∂x

εm∂x
(
1 − ε2∂2

x

)+ εm′(1 − ε2∂2
x

) −(1 + m2)ε2∂2
x − 2ε2mm′∂x

)

=
(

k̂4 + m2 − ω2 −imk̂(1 + k̂2) − 2εm′k̂2 + iε2m′′k̂

imk̂(1 + k̂2) + εm′(1 + k̂2) (1 + m2)k̂2 − 2iεmm′k̂

)
. (10)

In the last step above, we have set ε∂x → ik̂, with k̂ being the “momentum” operator. Using the rules in Eq. (4) we can easily
write down the Weyl symbol D for the operator in Eq. (10) as D ≈ D(0) + εD(1), where

D(0) =
(

k4 + m2 − ω2 −imk(1 + k2)

imk(1 + k2) (1 + m2)k2 − ω2

)
and D(1) = 1

2

(
0 m′(1 − k2)

m′(1 − k2) 0

)
. (11)

Here we have ignored the O(ε2) correction D(2), which would be superfluous to include in the first-order eikonal approximation
we use in this paper (see Sec. II). The two eigenvalues of the lowest-order dispersion matrix D(0), representing waves of two
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FIG. 3. Dispersion curves of plane waves propagating on a rod of constant curvature m = 0.05. The solid blue curves represent the exact
dispersion relations obtained after setting λ± = 0 in Eq. (12). The red dashed curves represent the asymptotic dispersion relations in the k � m
and k � m limits and given in Eqs. (13) and (14), respectively.

different polarizations, are

λ±(x, k; ω) = 1
2 {(1 + k2)[k2 + m2(x)] ±

√
[k2 − m2(x)]2(1 − k2)2 + 4m2k2(1 + k2)2} − ω2. (12)

For a given ω, we have λ+(x, k; ω) � λ−(x, k; ω) for all
values of x and k. Mode conversion between the two polar-
izations ensues near points where λ+(x, k; ω) = λ−(x, k; ω),
and the semiclassical approximation breaks down. We see
that λ+ = λ− only when the discriminant in Eq. (12) van-
ishes, which happens only when m(x) is zero, and k = ±1
or k = 0. As we discussed in Sec. I A, the rod equations are
only applicable for short waves whose wavelength is much
longer than the thickness, which translates to the requirement
0 � |k| � 1. Hence, mode-conversion points with k = ±1
or k = 0, lie well beyond the range of applicability of these
equations. For this reason, we ignore mode-conversion issues
and assume that λ+ �= λ− throughout our analysis. Before
moving on, it is useful to first analyze the propagation of
waves on a rod of constant curvature.

B. Rods of constant curvature

First we analyze the case where the curvature is zero, i.e.,
when the rod is straight. In the limit of vanishing curvature
m, we should recover the dispersion relations ω(k) for plane
waves propagating on a straight rod from λ±. On setting
m = 0 and noting that |k| � 1, we see that λ+ = 0 gives us
the linear dispersion relation ω = k, representing extensional
waves propagating on a straight rod. Meanwhile, when m = 0,
we find that λ− = 0 gives us the quadratic dispersion relation
ω = k2 of flexural waves on a straight rod.

For nonzero, but constant curvature, the rod forms part of
a ring. If the curvature is sufficiently weak, then we expect
the eigenvalue λ+ to continue to represent predominantly ex-
tensional waves and λ− to represent predominantly flexural
waves. To verify this, we expand λ± in powers of m2 and drop
powers of k in comparison to unity to find

λ+ = k2 + m2 − ω2 + O(m4),

λ− = k4 − 3k2m2 − ω2 + O(m4)
(k � m). (13)

Clearly, the above expansions can only be valid when the
O(m2) correction terms are less than the lowest-order terms,
which is true only when k � m. The asymptotic dispersion

relations obtained from Eq. (13) are illustrated in Figs. 3(a)
and 3(c), respectively.

We next look at the case where both k and m are small,
but with k � m. We consider this limit to later analyze the
behavior of waves close to a classical turning point where
k = 0. Such waves decay beyond the turning point, and they
never get a chance to complete a full-wavelength oscillation
with k � m, so the short wavelength assumption, namely that
the wavelength is shorter than the radius of curvature [17], is
not violated. To consider the limit k � m, we expand λ± in
powers of km−1 and find

λ+ = k2 + m2 − ω2 + O(k4),

λ− = k2m2 − 3k4

[
1 + O

(
k2

m2

)]
− ω2

(k � m).

(14)

Dispersion relations obtained from setting λ± = 0 above show
deviation compared to Eq. (13), especially in the case of flex-
ural waves [see Figs. 3(b) and 3(d)]. For the same reason, in
this limit, we expect waves of both polarizations to have both
longitudinal and transverse characteristics. Despite this, for
the sake of simplicity and identification, we shall continue to
call waves represented by λ+ as extensional waves and those
represented by λ− as flexural waves.

The bending of the rod is associated with the normal
component ζ and stretching with the tangential component
u. To better understand how the two components contribute
to the wave field in the presence of curvature, we define the
amplitude ratio

R = |ζ |
|ζ | + |u| . (15)

With the above definition, for purely transverse and longitu-
dinal waves R = 1 and R = 0, respectively. In the eikonal
ansatz, at the lowest order, the wave field ψ = (ζ , u) is pro-
portional to the eigenvectors τ± of D(0), and so ζ ∼ τ±,1 and
u ∼ τ±,2. Making use of Eqs. (13) and (14), to the lowest order
in k and m, the eigenvectors τ± are

τ+ ∼
(

m
ik

)
and τ− ∼

(
ik
m

)
, (16)
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FIG. 4. (a) Tanh-type curvature profile m1(x) with an inflection
point at x = 0 and (b) the corresponding shape of the rod in Cartesian
space with coordinates X and Z . (c) Sech-type curvature profile
m2(x) with no inflection point and (d) the corresponding shape of
the rod. For both curvature types, as the arclength x → ±∞, the
rod becomes part of a circle. In all figures a = 0.01, b = 0.1, and
ε = 0.01.

so the asymptotic amplitude ratios for the two wave polar-
izations become R+ ∼ |m|/(|m| + |k|) and R− ∼ |k|/(|m| +
|k|). For m = 0, we know that extensional waves become
entirely longitudinal, and as expected the corresponding am-
plitude ratio R+ = 0. In same limit, flexural waves become
entirely transverse as indicated by R− = 1. However, for
small values of k with k � m we see that R+ → 1 and
R− → 0. In other words, in the limit k � m, waves of the
two polarizations would switch their nature from being pre-
dominantly longitudinal to being predominantly transverse,
and vice versa.

C. Rods with varying curvature

For illustrative purposes, we consider rods of two curvature
profiles m1(x) and m2(x), defined by

m1(x) = b tanh(εx),

m2(x) = b − (b − a)sech(εx),
(17)

which we will informally call tanh- and sech-type curvature
profiles, respectively. Above, b and a are positive constants
such that a < b and the parameter ε controls the slowness of
variation of the curvatures. A rod with a tanh-type curvature
profile m1(x) possesses an inflection point at x = 0 where the
curvature vanishes, and the curvature asymptotes to ±b as
x → ±∞ [see Figs. 4(a) and 4(b)]. However, a rod with a
sech-type curvature profile m2(x) remains concave for all x,
with the curvature acquiring its minimum value of a at x = 0
and asymptoting to b as x → ±∞ [see Figs. 5(c) and 5(d)].
For the purpose of illustrating our results, we take b = 0.1 and
a = 0.01, so the smallest ratio between the radius of curvature
and thickness is O(10). Although such a ratio is comparatively
smaller than typical experimental values, it would give us a
clearer picture of the effects of a varying curvature profile. We
also set ε = 0.01, but as we rescale x → ε−1x, the parameter
ε does not always explicitly appear in our discussions. Note
also that the numerical values of the local wave number k is
unaffected by this rescaling.

For a varying curvature profile, using expressions for λ±
from Eq. (18), we find the rays for both polarizations by
integrating the corresponding Hamilton’s equations given by

ẋ = ∂λ±
∂k

and k̇ = −∂λ±
∂x

. (18)

One can also find the rays graphically by simply plotting the
level curves of λ± in the x-k phase space—a specific value of
ω corresponding to a specific ray.

FIG. 5. Ray trajectories for extensional waves on a rod with (a) tanh-type curvature profile m1(x) and (b) sech-type curvature profile m2(x),
with the phase portraits color coded using the amplitude ratio R defined in Eq. (15). The white arrows in panels (a) and (b) indicate rays of the
same frequency as the two bound states in panels (c) and (d). The gray vertical lines in panels (c) and (d) indicate the locations of the classical
turning points.
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D. Extensional waves

We first discuss how a varying curvature profile affects
extensional waves in a rod. As we discussed previously, ex-
tensional waves are to be associated with the ray Hamiltonian
λ+. Without loss of generality, let x = 0 be a point where the
function m2(x) has a local extremum, so that its derivative
[m2(x)]′|x=0 = 0. Then, straightforward algebra reveals that
the origin (0, 0) becomes a fixed point of Eq. (18) with λ+
as the Hamiltonian. Since Eq. (18) is a Hamiltonian system,
the origin becomes a nonlinear center or a saddle depending
on whether the Hamiltonian λ+(x, k), viewed as a function
of x and k, has an extremum or a saddle there [55,56]. For
the present problem, we find two situations1 depending on the
behavior of m2(x) at x = 0.

(i) m2 has a nonzero maximum at x = 0. Then, for any
point x sufficiently close to 0, we have m2(x) < m2(0) =
λ+(0, 0). We also see that λ+(x, 0) − λ+(0, 0) < 0, whereas
λ+(0, k) − λ+(0, 0) > 0. In other words, if we move along
the x axis from the origin (0, 0), then the value of λ+(x, k) de-
creases, whereas moving along the k axis increases its value,
showing that the origin becomes a saddle point.

(ii) m2 has a minimum at x = 0. At any point (x, k) suffi-
ciently close to (0, 0), we have m2(x) > m2(0). Then, using
basic inequality arguments, λ+(x, k) − λ+(0, 0) > 0, show-
ing that λ+ has a minimum at the origin, which means that
it becomes a nonlinear center.

As the extrema of m2(x) are identical to the extrema of
the absolute curvature |m(x)|, we can summarize as follows:
points where the absolute curvature has a minimum become
nonlinear centers of the ray equations associated with λ+,
and points where the absolute curvature has a maximum be-
come saddles. Therefore, we expect extensional waves to get
trapped only around points where the absolute curvature has a
minimum.

The black curves in Figs. 5(a) and 5(b) show the exten-
sional rays for the example curvature profiles. Each ray is a
level curve defined by λ+(x, k; ω) = 0 for a specific ω. Since
λ+ is invariant with respect to reflection about the x and k
axes, the ray trajectories also share the same reflection sym-
metry. For both curvature types, there are three fixed points:
the origin (0, 0) and (±∞, 0). The fixed points at (±∞, 0)
are saddles since m2(x) achieves its maximum there. Two
heteroclinic orbits, shown as black dashed curves, connect
the fixed points at (±∞, 0). As per our analysis, the origin
is always a center as m2(x) achieves a minimum there for both
curvature types. Close to the origin, the rays appear in form of
closed orbits indicating bound states.

Two example bound states obtained by solving the rod
equations numerically (see Appendix C for details) are shown
in Figs. 5(c) and 5(d). As we see from these figures, the
components ζ (x) and u(x) have the same parity for odd m(x),
but always have different parity when m(x) is even. This is
not surprising. If ψ (x) = [ζ (x), u(x)] is a bound state, then it

1We can also infer this from the sign of the Hessian determinant
of λ+ at (0, 0) given by det ∇∇λ+|x=0,k=0 = 2(m2)′′|x=0, provided
that (m2)′′ �= 0 so that the origin is a nondegenerate fixed point with
det ∇∇λ+ �= 0.

is easy to check that for an odd curvature profile m(x) with
m(−x) = m(x), the eigenmode ψ (−x) = [ζ (−x), u(−x)] is
also a bound state satisfying the rod equations, Eq. (9), with
the boundary conditions ψ (±∞) = 0. Assuming nondegen-
eracy in the eigenmodes, we must then have [ζ (x), u(x)] =
±[ζ (−x), u(−x)], which means that for an odd m(x), the
components ζ (x) and u(x) must have the same parity, i.e., they
are either both odd or both even. For an even m(x), however,
we find that bound-state solutions must satisfy [ζ (x), u(x)] =
±[ζ (−x),−u(−x)], showing that the components ζ (x) and
u(x) always have different parity.

The rays corresponding to the bound states in Figs. 5(c)
and 5(d) have been marked with white arrows in the phase
portraits in Figs. 5(a) and 5(b). Clearly, the displacement fields
of the bound states of both curvature profiles show a signifi-
cant presence of both normal and tangential components. This
can also be inferred from the phase portraits, which have been
color coded using the amplitude ratio R defined in Eq. (15),
and computed from the components of the polarization vector
τ+. Starting on the k axis, if we move along a closed orbit
towards one of its turning points, then we see that R changes
from 0 to 1, indicating that the wave acquires a strong normal
component, as we see in the numerical examples.

The existence of the bound states can also be intuitively un-
derstood from the dispersion relations for extensional waves.
From Eq. (12), we see that at k = 0, the dispersion curve
given by λ+ = 0 has a nonzero gap and a cut-on frequency
of ω2

cut-on = m2. For waves with ω < ωcut-on, the wave number
k is always complex, preventing the wave from being able
to propagate and the wave decays. Now, as an extensional
wave enters a region of high curvature from a region of low
curvature, the local cut-on frequency increases. This means
that, at some point, the frequency of the wave would fall
below the local cut-on frequency, and the wave gets reflected
creating a bound state. As the cut-on frequency depends only
on the magnitude of the curvature, and not its sign, bound
states do not require the presence of an inflection point—an
observation that was also made by Scott and Woodhouse [10]
while analyzing the musical saw.

An interesting analogy with geometric optics and the
bound states is revealed if we consider the phase velocity
cm = ω/k of extensional waves on a curved rod with curvature
m. Upon defining an effective refractive index c0/cm and using
the dispersion relations in Eq. (13), extensional waves are seen
to have a refractive index of

√
ω2 − m2/ω ∼ 1 − m2/(2ω2),

assuming m � ω. Thus, it would appear that the bound exten-
sional waves seen in our examples are trapped inside regions
of high refractive index (low curvature). This is the working
principle behind many acoustic black holes and insulators
where variations in physical parameters result in a refractive
index gradient, which in turn allows one to trap waves in high
index regions [57].

Bound-state quantization

To evaluate the action in the quantization condition,
Eq. (6), in principle, we should express k in terms of x from
λ+(x, k; ω) = 0. This proves to be difficult as k would then
have to be obtained as the root of a sixth-order polynomial.
Instead, as described in Appendix C, we compute the action
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FIG. 6. Bound-state frequencies obtained from numerics com-
pared to that obtained through quantization for a rod with (a) tanh-
type curvature profile and (b) sech-type curvature profile. In both
plots, the gray guideline in the background represents ω (numerics)
= ω (quantized).

by numerically integrating k(x) between the classical turning
points ±x
. Setting k = 0 in λ+(x, k; ω) = 0, we see that these
points are implicitly given by the equation m2(x
) = ω2. To
quantize the bound orbits, we also need the Keller–Maslov
index, which is α = 2 as the orbits are topologically equiv-
alent to a circle. Now, note that the off-diagonal entries of
the dispersion matrix D(0), Eq. (11), are purely imaginary. In
Appendix A, we show that the additional phase γ in Eq. (6),
vanishes for any dispersion matrix of this form, enabling us
to find the quantized frequencies without additional difficulty.
A comparison between the numerically obtained bound-state
frequencies and those obtained through quantization (Fig. 6)
shows excellent agreement between the two. Furthermore,
these frequencies are independent of the boundary conditions
chosen to solve the rod equations, showing the robustness of
the bound states.

Instead of computing the action by quadrature, we could
have extracted k(x) from the approximate expression for λ+
[see Eqs. (13) and (14)], which gives k(x) ≈ ±

√
ω2 − m(x)2.

This expression can be used, for instance, to estimate the
maximum number of bound states nmax for the two curvature
profiles. The largest frequency for which we see an exten-
sional bound state is ω = b. As shown in Figs. 5(a) and 5(b),
the rays corresponding to this frequency form two heteroclinic
orbits connecting the classical turning points at x = ±∞.
Computing the area inside these orbits, we find

nmax ≈ 1

πε

∫ +∞

−∞
dx k(x) =

{
b/ε (tanh type),
b̄/ε + O(a/ε) (sech type).

(19)

Here, b̄ = π−1b
∫∞
−∞ dx sechx

√
2 cosh x − 1 ≈ 2b. There-

fore, we expect an infinitely long rod with a sech-type
curvature profile to support twice as many bound states as a
rod with a tanh-type curvature profile. A similar expression
for nmax is also derived in the next section where we directly
consider the extensional limit of the rod equations, and find
the quantized frequencies as well as the bound modes.

For the values b = 0.1 and ε = 0.01 we use in our exam-
ples, Eq. (19) predicts a maximum of 10 bound states for a
tanh-type rod and 20 bound states for a sech-type rod. This
prediction is consistent with our numerical experiments with
a finite-sized rod, where we find a total of 10 and 17 bound

states for the two curvature profiles. Despite this, we only
expect a small number of extensional bound states in actual
experiments with curved rods, where we expect the finiteness
of the rod to become more important. For one thing, as the
arc length x → ±∞, self-intersection is inevitable for both
sech- and tanh-type rods having a nonzero thickness (see
Fig. 4). (Self-intersection effects, however, can be ameliorated
if we allow for small motions of the rod perpendicular to
the plane containing it.) Furthermore, as the turning points of
the higher-frequency bound states are far apart, they would
not always appear to be spatially localized, even though they
decay exponentially as x → ±∞.

It is natural to wonder if the bound modes we have ob-
served are related to the more elementary vibrational modes
seen in curved rings. For instance, we see from the rod profiles
in Fig. 4 that for large x, the two ends of the rod spiral around
a ring whose curvature is b = 0.1. If we approximate the two
ends of the rod as ideal rings, then we see that the ring fre-
quency at this curvature is just b (extensional waves have unit
speed in our conventions). Waves at the ring frequency have
a wavelength equal to the circumference 2π/b and beyond
them lie other elementary modes of the ring such that the
circumference is equal to integral multiples of the wavelength.
However, from the results in Fig. 6, we see that all the bound
states lie below these elementary modes and are independent
of them, which is not so surprising given that two farthest
classical turning points in phase space must be on or inside
an orbit with frequency ω = b.

E. Flexural waves

Flexural waves are associated with the ray Hamiltonian λ−
and by inspecting the corresponding Hamilton’s equations in
Eq. (18), we see that the derivatives ẋ and k̇ vanish everywhere
on the x axis. Since there are no isolated fixed points anywhere
on the x axis for these rays, we do not expect flexural waves
to form bound states. Two example phase portraits for flexural
waves are showcased in Figs. 7(a) and 7(b). As we see from
these figures, even though the rays do not form closed orbits,
in regions where k � m, they have a nontrivial appearance.
This can be explained by the triple-well nature of the flexural
dispersion curves at low k [see Fig. 3(d)], which results in four
separate rays for a single value of ω. That said, waves that
lie entirely within the k � m region have wavelengths larger
than the local radius of curvature, and are beyond the range
of applicability of the rod model we use. For this reason, we
forgo a more detailed analysis of rays with low wave numbers.

Two unbound flexural eigenmodes obtained numerically
are displayed in Figs. 7(c) and 7(d). Rays corresponding to
these modes have been marked by black arrows in Figs. 7(a)
and 7(b). Although the normal component ζ dominates in
these modes, they acquire a significant tangential component
with increasing curvature, which we also see from the color
coding of the phase portraits.

Although the frequencies of the extensional bound states in
Figs. 5(c) and 5(d) and the flexural eigenmodes in Figs. 7(c)
and 7(d) are rather close, the mode profiles differ significantly
in appearance. Also, the frequencies of the flexural eigen-
modes depend on the specific boundary conditions chosen and
other physical parameters, e.g., the total length of the rod.
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FIG. 7. Ray trajectories for flexural waves on a rod with (a) tanh-type curvature profile m1(x) and (b) sech-type curvature profile m2(x),
with the phase portraits color coded using the ratio R defined in Eq. (15). The black arrows in panels (a) and (b) indicate rays of the same
frequency as the two eigenmodes in panels (c) and (d).

When the rod length increases, we expect flexural waves to
form a near continuum in the frequency spectrum, whereas
the frequencies of the extensional bound states would con-
tinue to be determined by the quantization condition, Eq. (6).
Setting λ− = 0 and putting k = 0 in Eq. (12), we also see
that flexural waves in a rod are gapless and start propagating
well below the first bound extensional state. The zero mode
with ω = 0 and (ζ , u) ∼ (0, 1) is a symmetry-protected mode
of the rod equations, Eq. (9), that exists irrespective of the
form of the curvature profile m(x). This mode corresponds
to uniform translations along the x (arclength) direction, but
it is a physically valid solution only for free boundary con-
ditions of the rod equations. Given that the flexural waves are
gapless, in very long rods, the extensional bound states appear
as quasibound states in a continuum of flexural waves.

While the extensional bound states seen in our examples do
not interact with flexural waves, subtleties may arise in certain
cases. For instance, it is not impossible to construct curvature
profiles such that the bound extensional states can exchange
energy with the flexural waves and undergo mode conversion
or cause extensional waves to tunnel through regions of high
curvature to reach regions of low curvature [19,58]. In both
situations, the extensional states gradually spread outward and
appear unbound. That said, the practical relevance of such
pathological curvature profiles remains to be investigated.

IV. EXTENSIONAL LIMIT OF THE ROD EQUATIONS

In the previous section, using the semiclassical approxima-
tion, we showed that extensional waves form bound states in
a curved rod. We could also compute the frequencies of the
bound states rather well. However, finding the shapes of the
bound modes using semiclassical asymptotics is a formidable
task [28]. Instead, in this section, we will use the extensional
limit of the rod equations to find the bound states.

We define the extensional limit of the rod equations as
the limit in which the average bending energy of a deformed
rod is considerably smaller than its stretching energy. The
bending energy in the rod model described in Sec. III is
B[∂2

x ζ + m(x)∂xu(x)]2 [19], which gives rise to the third- and
fourth-order spatial derivatives in the rod equations, Eq. (9).
Upon neglecting this term, we find the extensional limit of the
rod equations, which, after Fourier transforming in time, take
the form

m(x)[m(x)ζ (x) − ∂xu(x)] = ω2ζ (x), (20a)

∂x[m(x)ζ (x) − ∂xu(x)] = ω2u(x). (20b)

The above equations possess a soft-mode solution with ω = 0
satisfying m(x)ζ (x) = ∂xu(x), which corresponds to all linear
isometries that do not stretch the rod to the lowest order.

We now look for bound-state solutions of Eqs. (20a)
and (20b) satisfying ζ (±∞) = u(±∞) = 0 with vanish-
ing derivatives at x = ±∞. Let us additionally assume
that the tangential component u(x) = ∂xφ(x), where φ(x) is
an unknown differentiable function satisfying2 φ(±∞) = 0.
Equation (20b) then becomes a total derivative, which on
integration yields

m(x)ζ (x) = ∂2
x φ(x) + ω2φ(x). (21)

Putting the above equation in Eq. (20a) and ignoring the
soft-mode solution with ω = 0, we see that ζ (x) = m(x)φ(x),
from which we deduce that φ(x) satisfies a Schrödinger-like

2Assuming φ(±∞) = 0 does not result in any loss in general-
ity. Without this assumption, on integrating Eq. (20b) we see that
φ(±∞) = C (constant). We then obtain Eq. (22) in terms of φ̃(x) =
φ(x) − C with ζ = mφ̃, so that we can work in terms of φ̃ alone,
which is equivalent to setting C = 0.
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FIG. 8. The first five extensional bound states of a rod with a tanh-type curvature profile showing (a) the normal component ζ (x) and (b) the
tangential component u(x), with lighter curves depicting higher-frequency states. The dashed black curves in panels (a) and (b) represent
the solutions in Eq. (24). (c) Comparison between the bound-state frequencies ω obtained through quantization, and those from numerics
[cf. Fig. 6(a)].

equation with the potential m2(x), and given by

−∂2
x φ(x) + m2(x)φ(x) = ω2φ(x). (22)

As is well known from elementary quantum mechanics [59],
Eq. (22) always admits a bound-state solution provided that
potential m2(x) has a minimum.

For the tanh-type curvature profile with m = m1(x) =
b tanh(εx), Eq. (22) becomes the time-independent
Schrödinger equation for a particle in a Pöschl–Teller
potential [60,61], whose solutions φ(x) can be written in
terms of the associated Legendre polynomials Pμ

ν ( · ) [62]. On
defining

κ (x) = tanh(εx),

ν = 1
2 [
√

1 + 4b2/ε2 − 1],

μ = n − ν � 0 (n ∈ N0),

(23)

and solving for φ(x), we find the (unnormalized) components
ζ (x) = m(x)φ(x), u(x) = ∂xφ(x), and the quantized frequen-
cies to be

ζ (x) = bκ (x)Pμ
ν [κ (x)],

u(x) = ∂xPμ
ν [κ (x)],

ω2 = b2 − ε2μ2.

(24)

Figure 8 presents a comparison of the bound states described
by Eq. (24) and the numerical results for extensional bound
states. The agreement is remarkable given the fact that the
numerical results were obtained by solving the full wave
equations, Eq. (9), without employing any additional approx-
imations. From Eq. (23) we also see that maximum number
of bound states is nmax ≈ ν = b/ε + O(b2/ε2), which agrees
with the semiclassical prediction in Eq. (19).

We are currently unaware of an exact solution of Eq. (22)
for the potential m2

2(x) = [b − (b − a)sech(εx)]2 correspond-
ing to a sech-type curvature profile, even though exact
solutions for similar potentials exist [63–65]. Although we
have had success in approximating this potential as a modified
Pöschl–Teller potential [58], as the results are qualitatively
similar, we do not report them here.

At this juncture, let us remark that Eq. (22) can also be de-
rived by diagonalizing the full wave equation in Eq. (9) using
the asymptotic method outlined by Littlejohn and coworkers
[31,32,50], without appealing to any physical arguments. In

this method, the operators of the diagonalized equations in
symbol form are the two eigenvalues λ± of the dispersion
matrix D(0). To find the extensional bound states, we focus
on λ+, the ray Hamiltonian for extensional waves. Instead
of using λ+ from Eq. (12), which involves a radical expres-
sion, we use the approximate version λ+ ≈ k2 − m2 − ω2 [see
Eqs. (13) and (14)]. Next, we promote k → k̂ = −i∂x, which
“quantizes” the ray Hamiltonian λ+ and we obtain Eq. (22)
for an unknown wave function φ(x). The full wave field can
be recovered from φ(x) using (ζ , u) ∼ τ̂+φ(x), where τ̂+ is
a two-component operator obtained by promoting k → k̂ in
the symbol form of the polarization vector τ+. From Eq. (16),
we see that τ+ ≈ [m(x), ik], so τ̂+ ≈ [m(x), ∂x]. We then
find ζ (x) ∼ m(x)φ(x) and u(x) ∼ ∂xφ(x), consistent with our
analysis.

V. WAVE LOCALIZATION IN A CURVED SHELL

We now turn to the localization of waves in singly curved
shells. One of the simplest shell theories that involve a
curvature-mediated coupling between the tangential and nor-
mal components of the displacement field is the widely used
Donnell–Yu shell model [66,67]. It is simple in the sense that
it describes the undulations of a three-dimensional shell solely
in terms of the deformation of the shell’s two-dimensional
midsurface, ignoring higher-order effects and retaining only
the lowest-order derivatives. For an arbitrarily parameterized
midsurface, it is easiest to extract the equations of motion
from the covariant form of the Donnell–Yu shell equations de-
rived by Pierce [17,20].

A. Equations of motion

We consider the middle surface of the shell to be a gen-
eralized cylinder [68] obtained by translating a plane curve
σ : X → R3, parameterized by x ∈ X ⊂ R, perpendicular to
the plane containing it. Thus, the shell is defined by � : X ×
Y → R3, �(x, y) = σ(x) + yey, where ey = ∂y� is a constant
unit vector perpendicular to the plane containing σ(x). Also,
y ∈ Y is the coordinate along ey. For simplicity, and to make
comparisons with the rod equations easier, we assume that x is
the arclength. So, ex = ∂x� = t is the unit tangent along the
curve σ. Furthermore, we orient ey such that surface normal
ex × ey coincides with the normal n to σ. Then, the only
nonvanishing principal curvature of the shell is equal to the
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curve’s signed curvature m(x). Propagating waves displace
the shell from � → � + δ�. We write the displacement field

δ� as δ� = uex + vey + ζn. Assuming no external forces, the
dynamic Donnell–Yu equations are

�
∂2ζ

∂t2
= −B̃�2ζ − Ẽm2(x)ζ + Ẽm(x)

(
∂u

∂x
+ η

∂v

∂y

)
, (25a)

�

Ẽ

∂2u

∂t2
= −∂[m(x)ζ ]

∂x
+ ∂2u

∂x2
+ (1 − η)

2

∂2u

∂y2
+ (1 + η)

2

∂2v

∂x∂y
, (25b)

�

Ẽ

∂2v

∂t2
= −ηm(x)

∂ζ

∂y
+ (1 + η)

2

∂2u

∂x∂y
+ (1 − η)

2

∂2v

∂x2
+ ∂2v

∂y2
. (25c)

Here � is the two-dimensional Laplacian, η is the Poisson’s ratio and � is the density per unit area. Also, the extensional stiffness
K̃ = Y h/(1 − η2) and bending stiffness B̃ = Y h3/[12(1 − η2)], with Y being the Young’s modulus and h being the thickness
of the shell. On setting the length units to

√
B̃/K̃ and time units to

√
B̃�/K̃ , we arrive at the nondimensional form of these

equations, which in matrix form reads

∂2
t

⎛⎝ζ

u
v

⎞⎠+ Ĥ

⎛⎝ζ

u
v

⎞⎠ = 0, where Ĥ =

⎛⎜⎝ �2 + m2(x) −m(x)∂x −ηm(x)∂y

m(x)∂x + m′(x) −∂2
x − 1

2 (1 − η)∂2
y − 1

2 (1 + η)∂x∂y

ηm(x)∂y − 1
2 (1 + η)∂x∂y − 1

2 (1 − η)∂2
x − ∂2

y

⎞⎟⎠. (26)

A set of equations analogous to the rod equations (see Appendix B, for instance) can be obtained by suppressing the y derivatives
in the submatrix obtained by deleting the third row and column of the operator Ĥ given above.

Translation invariance of Ĥ along y lets us look for time-harmonic solutions with the common factor ei(ly−ωt ), where l is
the transverse wave number in the y direction and ω is the frequency of oscillation. This makes the wave field depend only on
the coordinate x, and makes the transverse wave number l an additional parameter of the operator Ĥ. But the operator Ĥ now
has complex coefficients, and the components of its eigenmodes are complex functions. For this reason, while discussing the
numerical results, we use a phase convention such that ζ , u are always real and v imaginary. Note that such a phase convention
will no longer be necessary if we consider shells that are finite in the transverse y direction.

Similar to what we did for the rod equations, we perform a change of variables x → ε−1x and recast the spatial derivatives in
terms of the momentum operator k̂. Finally, we find the dispersion matrix

D(0) =

⎛⎜⎝(k2 + l2)2 + m2(x) − ω2 −ikm(x) −iηlm(x)

ikm(x) k2 + 1
2 (1 − η)l2 − ω2 1

2 (1 + η)kl

iηlm(x) 1
2 (1 + η)kl 1

2 (1 − η)k2 + l2 − ω2

⎞⎟⎠ (27)

and its first-order correction

D(1) = 1

2

⎛⎝ 0 m′(x) 0
m′(x) 0 0

0 0 0

⎞⎠. (28)

For later analysis, it is also useful to note down the determinant of D(0), which is

det D(0) = m2(x)
{[

ω2 − 1
2 (1 − η)l2

]
[ω2 − (1 − η2)l2] − 1

2 (1 − η)k2ω2
}

− [ω2 − (k2 + l2)2]
[
ω2 − 1

2 (1 − η)(k2 + l2)
]
[ω2 − (k2 + l2)]. (29)

Before we continue, it is insightful to examine the dispersion
relations for plain waves propagating on singly curved shells
of constant curvature.

B. Shells of constant curvature

First we analyze the zero curvature limit, i.e., when the
shell becomes a flat plate. In this limit, the wave equation,
Eq. (26), decouples into two equations, the first of which
involves only the normal component ζ , and represents flexural
waves. The second equation, representing extensional and
shear waves, only involves the tangential components u and

v. Shear waves propagate transversely to the in-plane wave
vector kex + ley, whereas extensional waves are longitudinal
to it. Setting m = 0 in Eq. (29), we find the following flat-plate
dispersion relations:

ω2
0 = (k2 + l2)2,

ω2
0 = 1

2 (1 − η)(k2 + l2),

ω2
0 = (k2 + l2),

(30)

which we recognize as the dispersion relations of flexural,
shear, and extensional waves, respectively [69]. The above
dispersion relations for a fixed transverse wave number l are
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FIG. 9. Dispersion curves for plain waves propagating on a cylinder of constant curvature m = 0.05 for (a) flexural, (b) shear, and
(c) extensional waves. In each plot, the solid blue curves represent the actual dispersion curves obtained by finding ω from Eq. (29). The
dashed red curves represent the approximate dispersion relation in Eq. (33). Also, the lower dashed curves, depicted in black, indicate the
dispersion curves for an uncurved flat plate, i.e., when m = 0 [Eq. (30)]. The transverse wave number l = 0.1 and Poisson’s ratio η = 0.3 for
all curves.

indicated by the dashed black curves in Fig. 9. Because l
is nonzero, there is a gap in all the dispersion curves and
a corresponding nonzero cut-on frequency for each of these
waves.

For nonzero but constant curvature, plain waves continue
to propagate on the shell, which now becomes part of a thin
cylinder. For simplicity, we shall continue to call these waves
as being flexural, extensional, or shear in nature. However,
as with the curved rod, we expect some amount of mixing
of the tangential and normal displacements due to nonzero
curvature. Also, to find the dispersion relations from Eq. (29)
we now need to use the general cubic formula [62], which
results in unwieldy analytical expressions [58]. As an ex-
ample, we find the dispersion curves at a curvature value of
m = 0.05, which are indicated by the solid lines in Fig. 9. We
make two observations on comparing these curves with the
dispersion curves for a flat plate: (i) the gap in the dispersion
curves for flexural and extensional waves [Figs. 9(a) and 9(c)]
have increased, and the flexural dispersion curve now has a
double-well appearance; (ii) although the dispersion curve for
shear waves has changed in appearance [Fig. 9(b)], the gap re-
mains the same and the cut-on frequency remains unchanged.
The cut-on frequencies at nonzero m can be computed from
Eq. (29) after setting k = 0, and we find three roots:

ω2
cut-on = 1

2 [±
√

(l2 − l4 − m2)2 + 4η2l2m2

+ l2 + l4 + m2] and 1
2 (1 − η)l2. (31)

Our intuition and a series expansion in m suggests that the
lowest of the first two roots above must be associated with
flexural waves and the highest root must be associated with
extensional waves. The third root, which is independent of the
curvature m, must then correspond to the cut-on frequency for
shear waves. As we shall see, this association is only correct
at very low curvatures.

Although the exact dispersion relations for nonzero curva-
ture are unwieldy, we can find an approximate expression for
the dispersion relations in the very weak curvature limit. To
this end, we write the roots ω2 as a regular perturbation series
[70] in even powers of m, i.e.,

ω2(k, l ) = ω2
0(k, l ) +

∞∑
n=1

m2nQn(k, l ), (32)

where ω0 is one of the three roots in Eq. (30) and Qn(k, l ) are
coefficients to the correction terms that we have to determine.
Since the curvature is assumed to be very weak, the dispersion
relations obtained this way can be associated with a wave
type based on the choice we make for ω0. Putting Eq. (32)
in Eq. (29), and dropping powers of k and l in comparison to
unity, we find, to O(m4),

ω2 �

⎧⎪⎪⎨⎪⎪⎩
(k2 + l2)2 + (1 − η2)m2 l4

(k2+l2 )2 ,

1
2 (1 − η)(k2 + l2) + 2(1 − η)m2 k2l2

(k2+l2 )2 ,

(k2 + l2) + m2 (k2+ηl2 )2

(k2+l2 )2 ,

(33)

which we identify as the approximate dispersion relations
of flexural, shear, and extensional waves, respectively. Sim-
ilar expressions are also found in the literature, where they
have been derived using alternative arguments [17,71–73].
Also, in their analytical characterization of bound waves in
a musical saw, Shankar et al. [13] works exclusively with
the above approximate dispersion relation for flexural waves,
which has also been observed experimentally [74]. In Fig. 9,
the approximate dispersion relations for m = 0.05 are indi-
cated by the red dashed curves, from which we can see that
Eq. (33) captures the true dispersion relations to a reasonably
good accuracy. Finally, although we only consider waves with
nonzero l in our analysis, from Eq. (33), we see that when
l = 0, both flexural and shear waves become gapless with the
associated zero modes corresponding to uniform translations
along x and y.

Equation (33) must break down beyond a certain value of
the curvature. Indeed, we only expect it to capture the true dis-
persion when the O(m2) correction term in Eq. (32) is smaller
than ω2

0, and more conservatively, only when m � l2 + k2.
We would expect the dispersion relation to deviate signifi-
cantly from Eq. (33) as m increases. In fact, for small k and l ,
Eq. (33) completely breaks down at a curvature at which the
cut-on frequencies for flexural and extensional waves become
equal. For nonzero l , from Eq. (31), we see that this happens
at a curvature value

m2
‡ = (1 + η)l2

[
1
2 (1 − η) − l2

]
(1 + 2η)(1 − η)

= 1

2

(
1 + η

1 + 2η

)
l2 + O(l4). (34)
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FIG. 10. Cut-on frequencies for a singly curved shell as a function of the curvature m for (a) flexural, (b) shear, and (c) extensional waves.
The blue dashed curves represent the cut-on frequency predicted by Eq. (33), which holds only when m is small. The solid curves represent
the actual cut-on frequency obtained by finding ω from Eq. (29) using the general cubic formula, and taking the limit k → 0 numerically. The
vertical gray guideline represents m = m‡. The transverse wave number l = 0.1 and Poisson’s ratio η = 0.3 in all plots.

We graphically demonstrate this in Fig. 10, from which we
can see that the expressions for the cut-on frequencies for
shear and flexural waves get interchanged at large m. Hence,
for m > m‡, the lowest of the first two cut-on frequencies
in Eq. (31), should be associated with shear waves, whose
dispersion curves would now have a curvature-dependent gap.
The cut-on frequency for flexural waves, however, would now
be equal to 1

2 (1 − η)l2. We remark that this switching of
the cut-on frequencies does not happen if l2 > 1

2 (1 − η) as
Eq. (34) fails to have a real root. Also, as the cut-on fre-
quencies of flexural and shear waves are equal for m = m‡,
in principle, mode conversion can occur close to the entire
k axis on the phase plane. Despite such a possibility, we did
not observe any discernible effects of mode conversion in our
numerical experiments, and we shall it ignore in our analysis.

C. Shells with varying curvature

We shall now consider singly curved shells with vary-
ing curvature profiles. Given the complexity of the general
dispersion relations and the myriad of subtleties, we shall,
however, perform a less exhaustive analysis compared to what
we did for the rod. We shall only look at a limited number of
examples, and to simplify matters, we set the transverse wave
number l = 0.1 and Poisson’s ratio η = 0.3 (corresponding
to that of steel) throughout. As for the rod, we will consider
both tanh-type and sech-type curvature profiles, but we as-
sume that the largest absolute curvature b > m‡. This would
let us examine the problem beyond the range of validity
of the approximate dispersion relations in Eq. (33). For the
sech-type curvature profile, we additionally assume that the
smallest curvature a < m‡. With l = 0.1 and η = 0.3, we have
m‡ ≈ 0.06, and these assumptions are satisfied by the choices
a = 0.01 and b = 0.1 that we made for the rod, and we use
them for the shell as well.

From our earlier analysis, we saw that the spectral gap in
the dispersion relation for all three wave polarizations grows
with increasing curvature. Now, consider a wave traveling
from a region of low curvature to one of high curvature. As
the wave moves, at some point, the frequency of the wave
would fall below the local cut-on frequency of waves, where it
gets reflected back. Additionally, one can use the approximate
dispersion relations in Eq. (33) to show that, analogous to the
curved rod, regions of low curvature act as regions of high
refractive index, and vice versa [75]. Intuitively, we therefore
expect bound states to occur for all three wave polarizations.

For ray analysis, we usually directly work with the eigen-
values of the dispersion matrix D(0). This proves to be
difficult for the shell as the expressions for the eigenvalues
are unwieldy. In the absence of mode conversion, however,
only one eigenvalue, say λ, will vanish at a given phase-
space point (x, k), causing the determinant det D(0) to vanish
as well. Hence, the rays determined by λ(x, k; ω) = 0 and
det D(0) = 0 are identical, allowing us to use det D(0) as the ray
Hamiltonian. Using det D(0) instead of λ would amount to a
trivial reparameterization of Hamilton’s equations [41]. Judi-
cious choices of the initial conditions, i.e., the coordinates
(x, k) and frequency ω, obtained from the local dispersion
curves at a given (x, k), would determine the type of wave
the ray represents.

When analyzing a given wave type, it is also useful to
compute an amplitude ratio, analogous to the one we used for
the curved rod, and defined by

Rs = |ζ |
|ζ | + |u| + |v| ∼ |τ1|

|τ1| + |τ2| + |τ3| . (35)

Above, we have also made use of the fact that the wave field
is asymptotic to the polarization vector τ to write Rs in terms
of the components of τ . With the above definition, flexural
waves in a flat plate have Rs = 1, whereas both shear and
extensional waves have Rs = 0. In a curved shell, because we
expect both the normal and tangential components of the wave
field to be significant, Rs for the three wave polarizations
would deviate from their flat-plate counterparts. For all three
wave types, a significant amount of normal and tangential
contribution to the displacement field is indicated by values
of Rs in the range 1/3 � Rs � 1/2. We discuss flexural
waves first.

1. Flexural waves

Our intuitive expectation of flexural bound states is con-
firmed by the actual ray trajectories for flexural waves
showcased in Figs. 11(a) and 11(d). For frequencies slightly
above the cut-on frequency at x = 0, the rays appear in
the form of closed, vertically elongated orbits that remain
confined to a region where the curvature is very small. At
larger frequencies, the rays begin to enter regions of higher
curvature, and orbits change from being elliptical to highly
eccentric, “peanut”-shaped curves. For these orbits, we have
a total of six caustics where ẋ = 0. [Compare Figs. 11(a) and
11(d) with Fig. 2(b).] Two of these caustics, which are on the
x axis, are the usual classical turning points where k = 0. At
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FIG. 11. Ray trajectories for a curved shell with a tanh-type curvature profile (top panels) and a sech-type curvature profile (bottom panels)
showcasing (a, d) flexural waves, (b, e) shear waves, and (c, f) extensional waves. In all figures the closed curves represent rays associated with
quantized bound states and the dashed black curves represent the highest frequency for which there is a bound state. The phase portraits have
also been color coded with the ratio Rs defined in Eq. (35).

the other four caustics k �= 0, and they arise due to the two
double-well minima in the (local) dispersion curves where
dω/dk = 0 [see Fig. 9(a), for example].

For the peanut-shaped orbits, bound states do not occur
beyond a frequency where the four caustics with k �= 0 get
pushed to x = ±∞. Since the absolute curvature |m(±∞)| =
b for both curvature profiles, the largest frequency for which
we see a bound state—represented by the dashed rays in
Figs. 11(a) and 11(d)—must be the frequency of the double-
well minimum in the dispersion curves for m = b. For small
enough b, using Eq. (33), we find this minimum to be ω2 ≈
2
√

l4b2(1 − η2). This expression, however, turns out to over-
estimate the actual minimum for large b, and we must find
it numerically. Also, this minimum exists only when b �
l2/
√

1 − η2. For smaller b, rays of the bound states remain
elliptical in nature, with the classical turning points being the
only caustics.

An example profile of a low-frequency flexural bound state
is shown in Fig. 12(a). This state has negligible tangential
components u and v, and remains confined to a region of
similar extent as the classical turning points. At higher fre-
quencies, flexural bound states grow beyond the classical
turning points and enter regions of higher curvature. Here
curvature effects become more prominent, and the states tend
to have both tangential and normal components as seen from
Fig. 12(b), and the color coding of the phase portraits. They,
however, remain confined to a region of similar extent as the
four caustics with ẋ = 0.

It is interesting to note that unlike in the case of rods,
flexural waves on shells form bound states. Intuitively, this
may be explained on the basis of the extra transverse degree
of freedom possessed by waves on a shell, quantified in our
examples by the transverse wave number l . For nonzero l ,

this results in a nonzero spectral gap in the flexural dispersion
curves [see Eq. (33) and Fig. 9(a)] leading to the formation
of bound flexural states. Indeed, if we only consider flexural
waves that are not oscillatory in the y direction, i.e., when
l = 0, then we recover a situation analogous to that of the rod,
and such waves do not form bound states.

2. Shear waves

From the phase portraits in Fig. 11(b) and 11(e), we see
that shear waves also form bound rays confined between
two classical turning points. As the frequency of the orbits
increase, the turning points move to x = ±∞, where the
absolute curvature for both curvature types is b. Thus, the
largest frequency for which we observe shear bound states
is the shear-wave cut-on frequency for a cylindrical shell of
curvature equal to b, obtained by setting m = b in the second
root of Eq. (31). Beyond this frequency, shear waves form
unbound states. The rays of shear bound states are elongated
along the x direction as the spectral gap in the local dispersion
curve does not begin increasing until m(x) > m‡. For the same
reason, shear waves do not get localized if b < m‡. It is then
natural to wonder if the localization of shear waves seen in
the phase portraits is an artifact of having chosen a relatively
large value of b = 0.1. But from Eq. (34) we see that m‡ can
be made arbitrarily small by adjusting the value of transverse
wave number l , so even for small b we would expect shear
bound states.

Example profiles of two shear bound states are shown in
Figs. 12(c) and 12(d). The first one has a frequency that is
only slightly above the shear-wave cut-on frequency at x = 0
and hence its wave number k along the x direction is small
compared to its wave number l = 0.1 along y. Therefore,
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FIG. 12. Numerical eigenmodes of a curved shell with a tanh-type curvature profile showing (a, b) flexural, (c, d) shear, and (e, f)
extensional bound states. In our phase convention, ζ and u are always real, whereas v is always complex, which is why we only show its
imaginary component �(v). Left panels depict low-frequency bound states, whereas the ones on the right panels have a higher frequency. The
dashed vertical lines indicate the locations of the caustics.

its (local) wave vector is predominantly in the y direction
[see Fig. 1(b)]. Furthermore, as expected from the transverse
nature of shear waves, the dominant tangential component is
u, which is the displacement along x. The second shear bound
state shown in Fig. 12(f) has a higher frequency, causing it to
spread to regions of higher curvature, where curvature effects
become more prominent. This can also be inferred from the
color coding of Figs. 11(b) and 11(e), which shows that shear
bound states develop a significant normal component at higher
frequencies.

3. Extensional waves

Color-coded phase portraits of extensional waves indicat-
ing bound states are shown in Figs. 11(c) and 11(f). The
caustics for these bound states are the usual classical turning
points with k = 0. For higher-frequency bound states, these
points move to ±∞, where the absolute curvature is b. Hence,
the largest frequency for which we observe extensional bound
states must be the cut-on frequency for extensional waves in a
shell having a curvature equal to b, obtained by putting m = b
in the first root in Eq. (31).

Example profiles of two extensional bound states are
shown in Figs. 12(e) and 12(f). Low-frequency extensional
bound states, such as the one in Fig. 12(e), are expected to dis-
place the shell predominantly in the y direction as seen from
the comparatively large values of the tangential component v.
The bound state in Fig. 12(f) has a slightly higher frequency,
causing it to spread to regions of higher curvature, where it
develops a significant normal component, which we also infer
from the color coding of Figs. 11(c) and 11(f).

D. Bound states and quantization

To find the bound-state frequencies, we first set k = 0 in
Eq. (29) and rearrange terms to find that that classical turning
points x
 are given by the solutions to the implicit equation

m2(x
) =
[

ω2 − l2

ω2 − (1 − η2)l2

]
(ω2 − l4). (36)

Depending on the value of ω, the turning points found using
the above equation could correspond to turning points on the
bound rays of all three waves. We use the same quantization
procedure as for the rod to determine the bound-state frequen-
cies (Appendix C). Furthermore, the extra phases γG and γNG

in the quantization condition in Eq. (6) vanish for the shell
equations as well (Appendix A). The Keller–Maslov index
continues to be α = 2 for all orbits—including the peanut-
shaped orbits with six caustics—as they can be smoothly
deformed into a circle centered around the origin [47]. From
Fig. 13, we see that the bound-state frequencies obtained
through quantization agree rather well with the numerical
values for both curvature profiles.

Although waves of all three types form bound states, from
our preceding analyses and Fig. 13, we see that flexural bound
states appear first, followed by shear and extensional bound
states. Thus, in very long shells, shear waves form bound
states that lie in a quasicontinuum of flexural waves spread
across the shell. Likewise, extensional bound states would lie
in a quasicontinuum of unbound flexural and shear waves.
Similar to the curved rod, the bound states of the curved shell
are also of definite parity when the curvature profile m(x)
is odd or even. More specifically, when m(x) is even, the
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FIG. 13. Bound-state frequencies of a curved shell obtained
from numerics compared to that obtained through quantization for
(a) tanh-type curvature profile m1(x) and (b) sech-type curvature
profile m2(x). For both plots, the gray guideline in the background
represents ω (quantized) = ω (numerical).

components ζ (x) and v(x) have the same parity, with u(x)
having the opposite parity. For odd m(x), however, ζ (x) and
u(x) have the same parity, with v(x) having the opposite par-
ity, as can be seen from the example bound states in Fig. 12.

The existence of bound states in shells around points where
the absolute curvature has a minimum complements the pre-
diction by Mohammed et al. [26] regarding the localization
of flexural waves in similar shells around points of maximal
curvature. Given the qualitative similarity between the bound
states observed with such a profile and those seen in this paper,
they have been discussed elsewhere [58].

Similar to the curved rods we analyzed previously, the two
ends of the shells we consider spiral around a cylinder with
curvature equal to b = 0.1. It can be easily seen that the ring
frequency of extensional waves on such a cylinder is equal to
b. Beyond the ring frequency lie the other elementary vibra-
tional modes of the cylinder and from the results in Fig. 13, we
see that almost all the bound states of the shell lie below these
elementary modes. But note that none of these elementary
modes displace the shell in the transverse direction. In com-
parison, since l is nonzero for the bound modes, these modes
displace the shell in the transverse direction. Also, some of the
higher bound modes have frequencies that lie in between that
of these elementary modes.

VI. CONCLUDING REMARKS

In this paper we have studied the localization of waves in
thin elastic structures induced by variations in the structure’s
curvature profile. Wave localization is intuitively expected as
it is known that curvature acts as an effective refractive index
for such waves [72,75]. For both the example structures we
considered, bound states develop around points where the
structure’s absolute curvature has a minimum. In the case of
the shell, flexural, shear, and extensional waves form bound
states. In contrast to shells, bound states in a curved rod
(which are always extensional in nature) only exist around
points where the absolute curvature has a minimum. Addi-
tionally, the extensional bound states in both structures appear
as bound states in a near-continuum of flexural waves. These
findings set the stage for the design of simple devices capable
of inducing wave localization without relying on metamateri-
als with nontrivial microstructure.

Semiclassical approximation and other phase space based
methods have continued to provide new insights into a wide
range of problems in elastodynamics [76–78]. However, such
methods have inherent challenges of their own when used to
study multicomponent waves, particularly due to the presence
of nontrivial phases in the semiclassical quantization rule.
The rod and shell equations we use in this paper, however,
have properties that cause these phases to vanish, making the
quantization results remarkably accurate. Nevertheless, topo-
logically protected waves in continuous media can arise when
this phase is nonzero, especially when time-reversal symmetry
is broken [33]. For this reason, it is worthwhile to explore
the use of semiclassical methods in problems with broken
time-reversal symmetry such as those in rotating elastic media
[79], fluids with odd viscosity [80], and magnetoelastic waves
[81], where one would generically expect this phase to be
nonzero.
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APPENDIX A: ADDITIONAL PHASES

In this Appendix, we will look at situations where the extra
phase γ that appears in the quantization condition in Eq. (6)
vanishes. As we described in the main text, γ = γG + γNG,
where γG is the term that gives rise to a nonzero geometric
phase and γNG is the other (nongeometric) term. First, we shall
analyze general N-component wave equations with an N × N
dispersion matrix D(0).

1. General wave equations

Consider a general N-component polarization vector τ of
the dispersion matrix D(0), given by

τ =

⎛⎜⎜⎜⎝
r1(x, k)eiϕ1(x,k)

r2(x, k)eiϕ2(x,k)

...

rN (x, k)eiϕN (x,k)

⎞⎟⎟⎟⎠. (A1)

Above, we have expressed the μth component τμ in terms of
a real amplitude rμ(x, k) and a phase ϕμ(x, k), both of which
are functions of the phase-space coordinates (x, k). Since τ is
normalized, we have ‖τ‖2 =∑n

μ=1 r2
μ(x, k) = 1 for all (x, k).

Putting Eq. (A1) in Eq. (7), we see that the rate of change of
the first (geometric) phase γG is

γ̇G = iτ ∗
μ{τμ, λ} = irμ{rμ, λ} − r2

μ{ϕμ, λ}
= (i/2){‖τ‖2, λ} − r2

μ{ϕμ, λ}
= −r2

μ{ϕμ, λ}.
(A2)

In the last step above, we have made use of the fact that
‖τ‖ = 1 always, so the Poisson bracket {‖τ‖2, λ} vanishes.
Clearly, if the phases ϕμ(x, k) are constants, then γ̇G vanishes.
More generally, γ̇G would vanish if all (x, k) dependence in
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the phases ϕμ can be removed by an overall rephasing of τ (as
such a rephasing does not affect the normalization of τ ). In
other words, only the relative phases between the components
of τ contribute to γ̇G. From here on we assume that the phases
ϕμ are constants, so all Poisson brackets involving ϕμ can be
set to zero. In that case γ̇G = 0 everywhere on the phase space,
and the accumulated phase γG as we move along an orbit can
be taken to be zero.

But what about the second (nongeometric) phase γNG?
From Eq. (7) we see that the rate of change of γNG is
given by

γ̇NG = (i/2)D(0)
μν{τ ∗

μ, τν} − τ ∗
μD(1)

μντν

= (i/2)
∑
μ<ν

(
D(0)

μνe−iϕμν − D(0)∗
μν eiϕμν

){rμ, rν}

− τ ∗
μD(1)

μντν. (A3)

In the last step above, we have used Eq. (A1) to simplify the
first term on the RHS and have defined ϕμν = ϕμ − ϕk . We
have also made use of the Hermiticity of D(0) to express the
first term in terms of the off-diagonal entries of D(0). From
Eq. (A3) we see that even when the phases ϕμ are constants,
γNG could be nonzero. However, in the following subsection
we show that for wave equations of thin elastic structures with
certain invariant properties, in addition to a vanishing γG, the
phase γNG vanishes as well.

2. Wave equations of thin elastic structures

We begin by noting that the rod equations, Eq. (9), as
well as the shell equations, Eq. (26), remain invariant on
simultaneously inverting the sign of the spatial derivatives and
the tangential components of the displacement field, i.e., un-
der (∂x, ∂y) → (−∂x,−∂y) and (ζ , u, v) → (ζ ,−u,−v). This
invariance can be traced back to the invariance of the strain
expressions used to derive these equations. More specifically,
it arises when the linearized extensional and bending strains
are comprised of terms involving only odd derivatives of u
and v, and even derivatives of ζ , as in models based on the
Kirchhoff–Love assumptions [13]. The same invariance is
also found in many higher-order theories of rods [51,52] and
shells [18]. For these reasons, it is useful to consider a general
linear elastodynamic equation involving a three-component
wave field � = (ζ , u, v) and possessing this invariance, and
given by

∂2
t �(x, y, t ) + Ĥ�(x, y, t ) = 0, (A4)

where the wave operator is of the form

Ĥ =

⎛⎜⎝ Ẑ Â B̂

Â† Û Ĉ

B̂† Ĉ† V̂

⎞⎟⎠. (A5)

Above, the entries of Ĥ are linear differential operators com-
prised of powers of ∂x and ∂y. Also, the diagonal entries Ẑ , Û ,
and V̂ are Hermitian operators and Â† is the Hermitian adjoint
of Â. Additionally, since Eq. (A5) represents an elastodynamic
system, we assume that the coefficients of all the derivatives
in Ĥ are real so that � can be taken to be real as well.

Any invariance possessed by Eq. (A5) must be shared by
the (potential) energy density J = 1

2�TĤ� used to derive
it from Hamilton’s principle. For instance, this invariance can
be readily seen in the rod energy density in Eq. (8). If J is
to be invariant under (∂x, ∂y) → (−∂x,−∂y) and (ζ , u, v) →
(ζ ,−u,−v) for an arbitrary �, then the off-diagonal oper-
ators Â and B̂ must be odd under (∂x, ∂y) → (−∂x,−∂y). In
other words, they can only have terms involving exactly one
odd power of ∂x (or ∂y). Odd powers of ∂x, ∂y acquire complex
coefficients when expressed in terms of the momentum op-
erator: ∂2n+1

x = (−1)nik̂2n+1. Meanwhile, coefficients of even
powers of ∂x, ∂y remain real: ∂2n

x = (−1)nk̂2n. Using the rules
in Eq. (4), we therefore conclude that the lowest-order sym-
bols of the off-diagonal operators Â and B̂ must be purely
complex (as Ĥ did not have complex coefficients to begin
with). From Eq. (4) we also see that the O(ε) corrections to
these symbols must be real. Therefore, we can write down the
symbols of the operators Â and B̂ as

A = iA(0) + εA(1) + O(ε2),

B = iB(0) + εB(1) + O(ε2),
(A6)

where A(0), B(0), etc., are real functions. A similar reason-
ing would reveal that the operator Ĉ must be even under
(∂x, ∂y) → (−∂x,−∂y), and consequently, its symbol is of the
form

C = C(0) + iεC(1) + O(ε2), (A7)

where C(0) and C(1) are real. As Ĥ is a Hermitian operator,
the symbols of the diagonal entries are all real and O(ε)
corrections to these symbols must vanish.

For finding the eigenmodes, after Fourier transforming in
time, we define D̂ = Ĥ − ω2I3 and convert D̂ to its symbol
form D = D(0) + εD(1) + O(ε2). From the above discussion,
we see that the most general dispersion matrix D(0) and its
O(ε) correction D(1) that can be written down are of the form

D(0) =

⎛⎜⎝Z (0) − ω2 iA(0) iB(0)

−iA(0) U (0) − ω2 C(0)

−iB(0) C(0) V (0) − ω2

⎞⎟⎠,

D(1) =

⎛⎜⎝ 0 A(1) B(1)

A(1) 0 iC(1)

B(1) −iC(1) 0

⎞⎟⎠.

(A8)

A polarization vector τ is defined up to an overall phase and
normalization by D(0)τ = 0. Direct inspection reveals that for
D(0) defined in Eq. (A8), we can take τ to be of the form3

τ =
⎛⎝ τ1

iτ2

iτ3

⎞⎠, (A9)

where τ1, τ2, and τ3 are real functions defined on the phase
space. Clearly, the relative phases ϕ12 and ϕ13 between the

3To see this more explicitly, take τ = (r1eiφ1 , τ2, τ3) and solve for
the components τ2 and τ3 from D(0)τ = 0. Upon rephasing τ by e−iφ1 ,
we find that τ is of the general form in Eq. (A9).
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components of τ are either ±π/2 or 0 (when τ1 or τ2 van-
ishes). Likewise, the relative phase ϕ23 is either 0 or π .
Because the relative phases are constants, from our discussion
in the previous subsection, it then follows that the geometric
phase γG = 0. When the matrix D(1) is of the form in Eq. (A8),
using the polarization vector τ in Eq. (A9), a straightforward
computation shows that second term in the expression for γ̇NG,
Eq. (A3), vanishes. Next, we note that D(0)

12 e−iϕ12 = ±A(0),
D(0)

13 e−iϕ13 = ±B(0), and D(0)
23 e−iϕ23 = ±C(0), are all real. From

Eq. (A3) it then follows that γ̇NG vanishes, and we can take
γNG to be zero as well.

The dispersion matrices for the thin shell we considered
in Eq. (28) of the main text is of the form in Eq. (A8), and
hence the phase γ = γG + γNG is zero for the shell. It can
be verified that the dispersion matrices for many higher-order
shell theories [18] would also be of this form. For the curved
rod, the dispersion matrices in Eq. (11) are identical in form
to the general dispersion matrices in Eq. (A8) once we delete
the third row and column. Proceeding by arguments similar to
previous ones, we see that the extra phase γ vanishes for the
rod as well.

APPENDIX B: WAVE LOCALIZATION
IN A SIMPLER ROD MODEL

A simpler rod model [19,58], which can be considered as
the one-dimensional analog of the Donnell–Yu shell equa-
tions can also be used to demonstrate the localization of
extensional waves in a curved rod. This model is derived
by dropping the curvature-dependent term m(x)∂xu in the
bending energy in Eq. (8), but keeping the stretching energy
unaltered. Although this may seem like an excessive approxi-
mation, as we outline below, the new equations give nearly the
same results as the rod model in Eq. (9). In nondimensional
form, the simplified rod equations can be written as

∂2
t

(
ζ

u

)
+ Ĥ

(
ζ

u

)
= 0, (B1)

where

Ĥ =
(

∂4
x + m2(x) −m(x)∂x

m(x)∂x + m′(x) −∂2
x

)
. (B2)

The above equations can also be derived from the Donnell–Yu
equations, Eq. (26), by dimensional reduction.

Following the usual procedure of converting derivatives
into operators, and operators into symbols, we find that disper-
sion matrix for the eigenvalue problem is D = D(0) + εD(1),
where

D(0) =
(

k4 + m2(x) − ω2 −im(x)k

im(x)k k2 − ω2

)
,

D(1) = 1
2

(
0 m′(x)

m′(x) 0

)
.

(B3)

The same dispersion matrices as the ones above can be recov-
ered from the dispersion matrices in Eq. (11) if we drop k2 and
m2 in comparison to unity. As we work in the limit were both
k2, m2 � 1, this shows why the simpler rod equations are an
excellent approximation to the rod model in Eq. (9).

FIG. 14. (a) Ray trajectories for extensional waves described by
the simpler rod equations, Eq. (B1), for the sech-type curvature
profile [cf. Fig. 5(b)]. (b) Bound-state frequencies obtained from
numerics compared to those obtained by quantization.

A straightforward analysis, by inspecting the Hamilton’s
equations obtained from the eigenvalues of D(0) in Eq. (B3),
reveals again that only extensional waves form bound states
with the simpler rod model. Figure 14 shows the ray trajec-
tories for extensional waves described by Eq. (B1). Clearly,
these rays are nearly identical to those seen previously in
Fig. 5, showing again that Eq. (B1) is an excellent approx-
imation to Eq. (9). For the same reason, the frequencies of
the extensional bound states obtained through quantization
and numerics also tend to agree rather well with our previ-
ous results; compare, for example, Fig. 6(b) with Fig. 14(b).
Other aspects of quantization, e.g., the lack of the extra
phase γ , location of the turning points, m2(x) = ω2, etc., also
carry over.

APPENDIX C: NUMERICAL DETAILS

1. Eigenfrequencies and eigenmodes

To find the eigenmodes numerically, we solve the rod
and shell equations, Eqs. (9) and (26), with x ∈ X =
[−1000, 1000], using Dedalus [82] with a Chebyshev spectral
decomposition and 2048 modes.4 Bound states are identi-
fied by manual examination of the eigenmode profiles. To
test the robustness of the bound states, we independently
use clamped, simply supported, and mixed clamped–simply
supported boundary conditions for both the rod and the shell.
At the clamped end of a rod, the geometric boundary condi-
tions are ζ (x) = ∂xζ (x) = u(x) = 0 [19]. For the shell, at the
clamped end, we additionally have v(x) = 0 as well. At a sim-
ply supported end of a rod, we have the geometric boundary
condition ζ (x) = u(x) = 0 and the natural boundary condition
∂2

x ζ (x) = 0 (no bending moment) [69]. In the case of a shell,
at a simply supported end, we have ζ (x) = u(x) = v(x) = 0
and ∂2

x ζ (x) − ηl2ζ (x) = 0 [67].

2. Numerical quantization

For computing the quantized frequencies, for a given n ∈
N0, we start with an approximate guess for the frequency ω

based on the numerical results. We then numerically integrate
the ray equations starting at one of the classical turning points

4The code we use for all our numerical calculations is publicly
available [83].
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on the x axis, say at x = −x
, until the ray reaches the other
turning point at x = x
 (see Fig. 2). Next, we compute

n(ω) = (πε)−1
∫ x


−x


dx k(x) − 1

2
(C1)

using points [x, k(x)] from the ray trajectory, with the inte-
gral evaluated by quadrature. For a general ω, the estimated

n(ω) will not be integer-valued. Quantized frequencies ω

can be obtained by solving n(ω) = n using a numerical root
finder. Alternatively, we could minimize the absolute “error”
|n − n(ω)| using random values of ω spread around the initial
guess, and take the quantized frequency to be argminω |n −
n(ω)|. For the results reported in the main text, this error is
less than 10−10.
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