
PHYSICAL REVIEW E 109, 034903 (2024)

Platonic solids bouncing on a vibrating plate
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The energy transfer between bouncing particles and rigid boundaries during impacts is crucially influenced
not only by restitution coefficients of the material but also by particle shapes. This is particularly important when
such particles are mechanically agitated with vibrating plates. Inertial measurement units are able to measure all
acceleration and rotational velocity components of an object and store these data for subsequent analysis. We
employ them to measure the dynamics of cubes and icosahedra on vibrating plates to study the efficiency of
energy transfer into the individual degrees of freedom (DOFs) of the excited object. The rotational DOFs turn
out to be much less excited than the vertical translational motion. Most remarkably, there is only little difference
between the two Platonic solids in both the absolute energies and the energy partition ratios.
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I. INTRODUCTION

A. Mechanically excited multiparticle ensembles

Mechanical excitation of solid particles with a vibrating
plate is of fundamental practical importance in a number of
industrial applications. For example, this technique can be
used to supply kinetic energy to particle ensembles to fluidize
a granular bed by shaking the container, and it is a standard
excitation technique in statistical experiments with granular
gases; see, e.g., Refs. [1–3]. These ensembles of freely fly-
ing macroscopic particles are intrinsically dissipative because
of the inelastic collisions between individual constituents.
A continuous excitation is needed if one wants to maintain
a quasi-stationary dynamic state with constant total energy.
In many previous experimental studies of three-dimensional
(3D) granular gases, this energy input was realized by vi-
brating container walls (e.g., [4–10]). One of the important
questions in such studies of vibration-excited granular materi-
als is the input and distribution of kinetic energies among the
particles and among the individual degrees of freedom (e.g.,
[10–21]). The energy partition is governed by two processes:
the efficiency of energy entry into the system by contacts of
particles with the vibrating container walls, and the redistri-
bution of this energy in particle-particle interactions.

B. Observation techniques

One of the major difficulties of dynamical experiments
with such multiparticle systems is the recording of the full
dynamics of the individual objects, both translational and ro-
tational motions. The classical approach is optical observation
with either a single video camera (where the 3D informa-
tion is lost) or stereoscopic observation with two or more
cameras. This optical technique has two problems. First, it
usually limits the experiments to very low particle number
densities or shallow layers, because coverage of background

particles can seriously frustrate optical tracking. Second, the
evaluation of positions from different views is not trivial, and
third, particle rotations may impose additional problems not
only in the automatic detection of positions but also for the
correct determination of rotation axes and angles. Alternative
observation techniques like positron emission particle track-
ing [22] can track positions of single particles, but neither this
technique can treat multiple particles at once nor is it sensi-
tive to rotational motion. The technique introduced below is
complementary to these approaches and may solve some of
the open questions; in particular, it can record rotational states
of particles, it works in dense systems, and it can easily detect
collisions.

C. Objects bouncing on vibrating ground plates

The elementary agitation process for the mechanical ex-
citation of granular gases and the fluidization of granular
beds can be studied with a single particle bouncing from a
vertically vibrating plate. This process was extensively inves-
tigated experimentally, analytically, and numerically, in order
to understand the characteristics and efficiency of the energy
input, e.g., in Refs. [23–28]. The history of studies of bounc-
ing spheres on a vibrating table started already more than half
a century ago with work by Zaslavski [29] and Holmes [30],
followed by a large number of publications dealing with the
question of whether the motion is regular in general or if it
can be chaotic (e.g., Refs. [31–35]). In all these investigations,
simple spherical particles were considered. There is only a
limited amount of literature about nonspherical particles, in-
cluding, e.g., dimers [36–41], trimers [38], and rods [27,28].

While nonspherical grains are closer to many natural sys-
tems and more realistic for most applications in industry,
they complicate the description because of the coupling of
rotational and translational motion during collisions of the
particles. All experiments mentioned above were based upon
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optical observation techniques, where the trajectories and
states of rotation were extracted from simple or stereoscopic
video footage.

The purpose of this study is twofold: First, we introduce
an observation technique that does not require the complex
processing of stereoscopic optical data but retrieves informa-
tion about the state of motion directly from the particles, and,
second, we study objects that deviate from sphere shape but
are highly symmetric. We focus on regular polyhedra with
highest possible symmetries, viz., the Platonic solids. They
represent the only shapes where all edges and all sides are
geometrically equivalent. The five Platonic solids span a broad
variety of shapes from the acute-angled, jagged tetrahedron to
the much more rounded dodecahedron, but most importantly,
all of them have an inertia tensor with spherical symmetry,
so that the angular momentum �J is always parallel to the
angular velocity �ω, and nutations are excluded. In contrast to
spherical particles, collisions with a vibrating plate or other
obstacles introduce a torque onto the object and change its
rotational state, except in a very few special cases. Collisions
can convert translational into rotational energy of the body
and vice versa. This changes the character of the bouncing
behavior with respect to spheres qualitatively.

D. Selection of the particle shapes
and geometrical considerations

While spheres do not experience torques at normal impact
on a vibrating plate, objects that deviate from sphere shape
like the Platonic solids are in general subject to torques. We
start with the hypothesis that these torques are larger on av-
erage when the deviation from sphere shape is larger. The
“classical” definition of sphericity (similarity to a sphere) as
the ratio of the surface of a sphere with the same volume to the
surface of the polyhedron is not useful for our purpose. We are
interested in parameters that may cause a stronger influence
of collisions on the rotation state. For the highly symmetric
shapes of Platonic solids with given volume and homogeneous
mass density, we consider two criteria that influence the exci-
tation of rotations. On the basis of these criteria, we selected
two of the five shapes for our experiments (the tetrahedron had
to be excluded for technical reasons):

(1) The torque exerted on the object at impact: When
the particle hits the plate with a given velocity and mass,
this torque will be related to the distance � from the contact
point to the perpendicular through the center of mass. The
maximum distance �max is given by the circumcircle radius
RF of the faces of the polyhedra.

(2) The moment of inertia I: If a given torque during im-
pact changes the angular momentum, the latter will be related
to an angular velocity ω that is inversely proportional to the
unique eigenvalue I of the inertia tensor of the body.

The analytical computation of the collision scenarios for
Platonic solids is beyond the scope of this paper, but one
may use a simple model to evaluate the efficiency of torques
during impact: We assume that a body hits the horizontal
nonvibrating plate with a vertical velocity v1 and no rotations,
ω1 = 0. Further, we make the simplifying assumption that the
collision is fully elastic (no dissipation of kinetic energy).
Then we obtain (see the Appendix) the new velocity v2 and

the angular velocity ω2 after the collision as a function of
v1, and also the resulting rotational energy as a function of
the initial kinetic energy. This computation contains many
simplifications. One obvious oversimplification is that often
the objects in the experiment bounce twice before the center
of mass moves upward again. In such “double collisions”, the
angular momentum generated in the first hit is partially com-
pensated by the second one. Also, the distance � differs for
the individual jumps, and thus the efficiency of the excitation
of rotations is statistically distributed. Nevertheless, the model
gives some useful clues: For the icosahedron and the dodec-
ahedron, the optimum distance �opt where the excitation of
rotations is most efficient is close to Rf , the maximum possible
value of �. Namely, for these two shapes the ratios �opt/RF are
comparable, within 2% deviation around �opt/RF ≈ 0.9. Thus,
only collisions where the bottom face is almost horizontal will
give an optimal outcome in rotational energy. This means that
for the icosahedron and the dodecahedron, most of the colli-
sions will produce a much smaller rotational energy than the
maximum possible. For the cube and the octahedron, the ratios
�opt/RF are also quite comparable to each other, within 3%
deviation around �opt/RF ≈ 0.56. Here one may expect that
distances � close to the optimum �opt are probably more often
reached in individual collisions, even though a detailed in-
vestigation is needed to recheck this statement. Nevertheless,
one may draw the conclusion that from the viewpoint of this
simplified model, the efficiency of the excitation of rotations
is rather similar for dodecahedra and icosahedra, and we thus
have restricted the experimental study to the icosahedron. In
the same sense, because of the similarity of the geometrical
results for cube and octahedron, only the cube was chosen
from these two for experiments. The tetrahedron differs most
of all Platonic solids from a sphere shape, and the comparably
small moment of inertia supports fast rotations. It probably
has the best geometrical conditions to obtain high rotational
energies with a single impact, and it would certainly be an
interesting candidate for the experiments presented here, yet
it was not suitable for the available hardware: The integration
of the electronic board into a tetrahedron requires much larger
edge lengths because of the pointed vertices. It would have a
much larger mass, which brings the shaker used here (see the
following section) to its mechanical limits.

II. EXPERIMENTAL

A. Electromagnetic shaker system

The Platonic solids were excited with an electromagnetic
shaker driven by a Fame Audio 8002 amplifier. This shaker
was equipped with a flat circular aluminum platform with
about 30 cm diameter and 1 cm thickness; see Fig. 1(a).
Each experiment was performed with a single polyhedron. A
shallow sidewall prevented the jumping Platonic solid from
leaving the plate. The shaking frequency fpl and amplitude
Apl of the platform can be set by a custom-made LABVIEW
program. The platform position is described by the verti-
cal coordinate zpl(t ) = Apl sin ωplt with ωpl = 2π fpl. During
shaking, the excitation was monitored with an accelerometer
mounted at the plate. Our combination of shaker and amplifier
was limited to a maximum plate acceleration � = Aplω

2
pl �
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FIG. 1. (a) Sketch of the experimental equipment. The excitation
is realized by an electromagnetic shaker. The Platonic solids are
equipped with an autonomous inertial measurement unit (IMU)
board, the MetaMotionC (MMC) from MBIENTLAB, to monitor
the rotation of the bodies and the jump times (time between two
consecutive plate contacts). The shaker platform (black) has a di-
ameter of approximately 30 cm. The side wall at the circumference
of the shaker plate is not shown. (b) Image of the two parts of the 3D
printed icosahedron. The part shown on the left hosts the board.

5 g (gravitational acceleration g = 9.81 m/s2). In all exper-
iments reported here, we chose the maximum acceleration
� = 5 g to reach long jump times t j (time between two con-
secutive contacts of plate and jumping body) and heights. The
corresponding combinations of frequency fpl and amplitude
Apl can be found in Table I.

B. Platonic solids

We selected two different Platonic solids for the experi-
ments, a cube and an icosahedron. Both were printed with a
Form 2 SLA 3D printer with the suitable clear resin v4. The
cured material has an ultimate tensile strength of 65 MPa and
a tensile modulus of 2.8 GPa, so it is similar to acrylic glass

TABLE I. Frequency, amplitude, and maximum plate velocity
for experiments in this study. Each object was excited by the elec-
tromagnetic shaker system for a few minutes using these parameters.
The maximum plate acceleration was � = 5 g in all experiments.

Experiment no. 1 2 3 4

Frequency fpl [Hz] 20 30 40 50
Amplitude Apl [mm] 3.11 1.38 0.78 0.5
Maximum plate velocity Vpl [m/s] 0.39 0.26 0.195 0.156

TABLE II. Physical parameters of the two Platonic solids.

Platonic Side length Mass Moment of inertia
solid a [mm] m [g] Ips [g cm2]

Cube 26 22.04 24.83
Icosahedron 20.4 22.07 24.04

(polymethyl methacrylate). Each body consists of two parts
that are glued together with the aid of aligning pins. Within the
bodies are cutouts to equip them with the autonomous inertial
measurement units (IMUs), shown in Fig. 1(b). The cutout is
positioned such that the center of mass of the complete parti-
cle coincides with its geometrical center. Physical properties
of these Platonic solids are given in Table II. Interestingly,
these two objects have not only similar masses but also almost
the same moments of inertia.

C. Smart inertial measurement units

In order to record the body motion, the Platonic solids
were equipped with an autonomous IMU, the MetaMotionC
(MMC) from MBIENTLAB. This chip allows one to monitor
the rotations of the body around the body-fixed x, y, and z
axes (up to ±2000◦/s) and the linear accelerations in x, y,
and z directions (up to ±16 g) with a rate of 800 samples
per second. To reach this sample rate, the chip is used in
the onboard storage mode. We recorded the body motion
for a few hundred seconds, so that each data set consists
of several thousand individual jumps. The reconstruction of
the exact trajectories from the accelerometer and gyroscope
data may be possible in principle but was not attempted here.
For simplicity, we used the accelerometer data to detect the
contacts of the Platonic solid with the plate. These contacts
appear as strong peaks in the acceleration data. During the
free-flight phase, the recorded acceleration data are practically
zero. From the peaks, we retrieve the jump times t j and the
corresponding upward particle velocity v0 at the beginning of
each individual jump, given by

v0 = g

2
t j + �zpl

t j
. (1)

Here g is the gravitational acceleration and �zpl is the height
difference of the shaker plate between the end and the start
of each jump. The angular velocity �ω representing the three
rotational degrees of freedom can be directly taken from the
stored chip data. From the velocity v0 and rotation rate we
obtain both the translational energy in the vertical z direction,

Ez = 1
2 mv2

0, (2)

and the rotational energy,

Erot = 1
2 Ips| �ω|2, (3)

of each jump. Ips is the moment of inertia of the Platonic
solid for rotations about any axis that contains the center of
mass. Since the inertia tensor is a sphere, we do not need to
distinguish the different rotational degrees of freedom (DOFs)
but treat them as equivalent and evaluate their sum only.
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III. RESULTS

A. Energy distributions

A characteristic property of particles excited by a vibrating
plate is the probability density of energies in different DOFs,
e.g., p(Ez ) and p(Erot ), where in the gravitational field Ez is
the sum of the potential energy and the kinetic energy of the
vertical motion. In the absence of gravity, it represents the
kinetic energy in the translational degree of freedom normal to
the wall. Investigations on a single sphere [24] on a vibrating
plate showed that the distribution p(Ez ) of a jump with the
energy Ez can be described by

p(Ez ) ∝ Ez
(1−γ )

2(1+γ ) exp

[
4(γ − 1)Ez

(1 + γ )2mV 2
pl

]
, (4)

where γ is the restitution coefficient. When the jumps be-
come ideally elastic (γ → 1), a Boltzmann distribution is
approached. This probability density can be used for a
straightforward calculation of the mean kinetic energy 〈Ez〉
per jump. Note, however, that this value is not equivalent to
the time-averaged energy 〈Ez〉t : Higher jumps enter the time
average with a higher statistical weight because their duration
is longer.

In experiments with a rod on a vibrating plate [28], it was
found that p(Ez ) can be roughly approximated by

p(Ez ) ∝ E2
z exp

(
− Ez

E0

)
. (5)

In our current experiments, we find a clearly different situa-
tion; see Fig. 2. For all excitation schemes, we observe peaks
in the distributions p(Ez ) and p(v0). This means that p(Ez )
cannot be described by a simple exponential relation like that
in Eq. (5). A comparison between the cube and icosahedron
experiments shows that higher energy jumps are more likely
for the icosahedron than for the cube at the same excitation.

Since Ez and v0 are directly related to the jump time t j

[see Eqs. (1) and (2)], it seems reasonable to compare the
most probable jump durations (peaks in Ez) with the excitation
period of the vibrating plate. Figure 2 (bottom) shows the
distribution p(t j/Tpl ) with the jump time t j normalized by the
excitation period Tpl = 1/ fpl at 20 Hz excitation. The most
probable jump times [peaks in p(Ez ), p(v0), and p(t j/Tpl )] are
located around integer multiples of the excitation period Tpl

for all investigated frequencies fpl. The reason for this syn-
chronization trend is probably found in the comparably low
vibration frequency of the ground plate and the relatively low
jump heights. Both conditions are related to technical limita-
tions of the experiment: In comparison to earlier studies, (e.g.,
[28]), the bodies are much heavier and the achieved jump
heights h j are moderate, so that the flight times t j = √

8gh j

of the individual jumps are of the same order of magnitude
as the excitation period. Technically, the particle sizes and
masses could not be reduced because of the restrictions set
by the board inside. Increasing fpl would not help either since
the efficiency of excitation goes down with increasing fpl due
to limitations of the available shaker to a maximum �.

In contrast to experiments with a sphere on a vibrating
plate, the rotational DOFs of the Platonic solids are directly
excited during the frictional contacts with the plate. The three

TABLE III. Fit parameter 〈Erot〉 and amount of jumps with at
least one saturated rotational component (Sat.) for all experiments.
Values in parentheses are underestimated because of the gyroscope
limits.

Cube Icosahedron

fpl 〈Erot〉 [mJ] Sat. [%] 〈Erot〉 [mJ] Sat. [%]
20 (1.39) 22.80 (1.29) 25.5
30 0.77 7.20 0.84 11.4
40 0.53 1.00 0.52 2.6
50 0.31 0.10 0.29 0.25

individual rotational degrees of freedom are recorded individ-
ually by the gyroscopes, yet we did not treat the components
of �ω separately but evaluated only the amount, the scalar ω.
Since the inertia tensors of the Platonic solids are spherically
symmetric with three equal eigenvalues, there is no distin-
guished axis for rotations. The angular momentum is always
in the direction of �ω. The rotation axis is conserved until the
next collision with the ground plate. This is confirmed by the
gyroscope data. When comparing rotations and translations,
we have to keep in mind that the rotational energy is the sum
of the contributions of three rotational DOFs.

The probability density distribution p(Erot ) has an appear-
ance that differs qualitatively from that of the translational
motion. In Fig. 3 the probability density functions p(Erot ) for
the cube and the icosahedron at an excitation with fpl = 30 Hz
is shown. The probability density can be described reasonably
well by a Boltzmann distribution

p(Erot ) = 1

〈Erot〉 exp

(
− Erot

〈Erot〉
)

. (6)

The fit parameter 〈Erot〉 represents the mean rotational energy.
It is given in Table III for both shapes and all excitation
parameters. One problem of the MMCs is the limited range
of the gyroscope. Depending on the excitation parameters one
or more of the measured gyroscope axes may occasionally be
saturated. Thus some of the measured values for Erot appear
smaller than they are. This is especially the case for the 20 Hz
gyroscope data. In Table III the percentage of Erot values with
at least one saturated rotation axis is shown. The maximum
detectable rotational energy is about 4.5 mJ per jump for
both Platonic solids. In the distributions p(Erot ) for 20 Hz
and 30 Hz excitation we found slight peaks around 1.5 mJ.
These peaks seem to be measurement artifacts caused by this
saturation effect. They vanish if we calculate the distribution
only from unsaturated values of Erot. For 40 Hz and 50 Hz
excitation, the peaks are not present because of the negligibly
small number of saturated Erot values. The reason for the
decreasing mean energy at higher excitation frequencies is
that the maximum plate velocity, and not the maximum plate
acceleration, plays the decisive role for the excitation. When
� is kept constant, higher vibration frequencies correspond to
a reduced Vpl (Table I) and thus to less efficient excitation.

B. Correlations of energy data

An interesting aspect is the question of whether energies in
subsequent jumps are correlated with each other. Naturally,
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FIG. 2. Probability density of the velocity v0 (top), the energy Ez (middle), and the normalized jump time t j/Tpl (bottom) for an excitation
with f = 20 Hz and A = 3.1 mm. The left column shows the distributions for the cube and the right column for the icosahedron. The velocity
distributions p(v0) and energy distributions p(Ez ) clearly show peaks at similar energies for both Platonic solids. For the cube, low energy
jumps (lower jumps) are more common than for the icosahedron. The corresponding distributions p(t j/Tpl ) for the cube and the icosahedron
(same data as in the graphs above) show peaks that are located near integer multiples of the excitation period. Jumps shorter than t j/Tpl = 1
are treated as double collisions and ignored here.

one might assume that a jump with high altitude and thus
higher energy is also followed by a jump with an above-
average energy. In order to analyze this problem, we have
calculated the correlations between the nth and (n + 1)-st
jumps. Figure 4 shows the correlations of the energy in the
vertical degree of freedom (potential plus kinetic) in suc-
cessive jumps. Each box shows the probability of a jump n
with energy Ez(n) followed by the next jump with energy
Ez(n + 1). The graphs on the left show the experimental data,
while on the right we show the pattern that would result from
completely uncorrelated jumps with the probability densities
p(Ez ) similar to those shown in Fig. 2. The upper images

represent the cube, the lower two images are those of the
icosahedron. Within statistical error, the plots are nearly iden-
tical. Thus, we can conclude that there is no significant global
correlation between the heights of successive jumps. With
regard to the mechanical excitation of grains in a granular
ensemble this means that a “hot” particle practically does
not have a higher probability than a “colder” one to leave
the exciting plate with a high translational kinetic energy.
Note that this is significantly different from collisions with a
static wall where the faster particle always remains faster after
reflection. With the peak velocity of the wall being of the same
order as that of the bouncing particle, the kinetic states of the
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FIG. 3. Probability density distribution p(Erot ) for the cube (top)
and the icosahedron (bottom) at an excitation with f = 30 Hz and
A = 1.6 mm. The distributions almost coincide for both bodies.
Jumps with energies of Erot ≈ 1.5 mJ are slightly overpronounced
in the experimental data compared to the empirical fit (red solid line)
for both cases. The functional form of the fit can be found in the
insets.

latter are strongly mixed because of the different phases of the
plate motion at impact. Some correlations may exist on a small
scale, which are not resolved in the crude grid structure of our
plots. The box size was a compromise of sufficient statistical
data in each box and reasonable energy resolution.

There appears to be just a marginal overpopulation of
the boxes near the diagonal, i.e., the probability that a cer-
tain jump is followed by a jump of comparable height is
slightly more probable than consecutive jumps of very dif-
ferent heights.

A similar statistics is shown for the correlations of the
translational energy Ez and the rotational energy Erot in in-
dividual jumps in Fig. 5 in order to find out whether larger
rotational energies are correlated with a reduced jump height
or kinetic energy of the vertical motion. Again, the left-hand
side shows the experimental result, the right-hand side the
product of the respective probability densities, representing
the prediction for totally uncorrelated quantities. As one can
see, there is also no significant correlation. For each column
(given Ez), the rotational energies are distributed with the
same weights as shown in Fig. 3. Within statistical uncer-
tainty, the rotational and translational energies in individual
jumps are uncorrelated.

C. Mean energy transfer

An important characteristics of our experiments, relevant
for the application of vibrating walls for the excitation of
granular gases, are the mean energies (〈Ez〉, 〈Erot〉, 〈Etot〉)
transferred to the bouncing objects. In addition to the ex-
perimental results we show simulation data, obtained by a
numerical approach described in [42]. The simulated bodies
had the same masses m and the same moments of inertia Ips as
the experimental ones. The chosen restitution coefficient was
γ = 0.8. In contrast to the results presented in [42], we define
a jump as the time between two consecutive plate contacts,
and not as the time between sign changes of the vertical veloc-
ity. This minor detail does not influence the general outcome
of the simulations. Similar to the experiments we neglected
jumps that are shorter than Tpl, which can be considered as
double contacts. Such collisions occur when the Platonic solid
hits the vibrating plate with one corner first and then makes
another contact immediately after with another corner. Such
double contacts were described earlier for rods on a vibrating
plate [28].

In the simulations, the energy of translations in the horizon-
tal plane Exy is accessible in addition. This quantity is difficult
to retrieve with our observation technique from the sensor
data, because they provide only accelerations. A numerical
integration is in principle possible but requires complex math-
ematical efforts (because of the concurrent rotations) and
would lead to large uncertainties in the obtained in-plane
velocities. The energy Exy obtained from the simulations is
on average small compared to the energy in the vertical trans-
lational motion. It is about 0.1 〈Etot〉 for the cube and about
0.15 〈Etot〉 for the icosahedron. For compatibility with the
experiment, we neglect it in the calculation of Etot = Ez + Erot

(as in the experiment).
In Fig. 6 the dependence of the mean energies 〈E∗〉 on

the plate frequency at � = 5 g is shown (the asterisk sym-
bol stands for “rot,” “z,” and “tot”). There is an acceptable
agreement of the mean energy values 〈E∗〉 between experi-
ment and simulation for the plate frequencies fpl � 30 Hz.
We have to keep in mind that about 25% of the Erot values
were clipped by the limited measurement range at 20 Hz
excitation. Thus, the measured experimental mean energies
〈Erot〉 are somewhat smaller than their actual values. For 20 Hz
the simulation delivers a more effective excitation than the
experiment especially for 〈Ez〉. However, one can reproduce
the experimental values for 〈Ez〉 reasonably well by using
a somewhat lower restitution coefficient of γ = 0.7 in the
simulation of the 20 Hz experiment. It is clearly visible that
all quantities 〈E∗〉 decrease with increasing frequency, so a
higher frequency (lower Vpl) leads to a less effective excita-
tion. This behavior is found both in the experiments and in
the simulations. The explanation was given in the previous
section. The total energy decay can roughly be approximated
by power laws f −β

pl with exponents β in the range 1.8 ± 0.3.
While the frequency parameter is only of secondary im-

portance for the bouncing dynamics, the plate velocity is of
primary interest. The dependence of the mean energies 〈E∗〉
on the maximum plate velocity Vpl is shown in Fig. 7. For a
sphere on a vibrating plate, 〈Ez〉 would be proportional to V 2

pl
for sufficiently large jump heights [23–26]. For other objects
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FIG. 4. Correlation between the translational energy Ez of the (n)th jump and of the (n + 1)-st jump at an excitation with 30 Hz. The top
row shows the data for the cube and and the bottom row the data for the icosahedron. In both cases we do not find a significant correlation.
Explanation is given in the text. Left: experimental results, right: distribution under the assumption of totally uncorrelated energies, just
showing the product of the energy distribution densities.

like rods, 〈Etot〉 ∝ V 1.4
pl [28], or tetrahedrons, 〈E∗〉 ∝ V 1.6

pl [42],
the exponents were found to be significantly smaller. In the
present case, all quantities 〈E∗〉 can be approximated by

〈E∗〉 ∝ V α
pl , (7)

but the fitted exponents α differ considerably. In particular,
there are discrepancies between experimental and simulated
data; see Fig. 7 and Table IV.

One reason for the quite small exponents at 20 Hz exci-
tation in the experiment is that the clipped angular velocity
data lead to an underestimation of the rotational energy at
that low frequency. A larger rotational energy at 20 Hz (by

TABLE IV. Fitted exponents α of the relation 〈E∗〉 ∝ V α
pl for

experimental and simulated data. Corresponding fit curves are shown
in Fig. 7. The uncertainty of these values is ±0.3.

Experiment Simulation

Erot Ez Etot Erot Ez Etot

Cube 1.4 1.9 1.7 1.5 2.0 1.9
Icosahedron 1.3 1.7 1.6 1.5 1.9 1.8

about 20%) would raise the fitted exponent of Erot to ≈1.7.
The establishment of the plate velocity dependence was not
the primary focus of our study. A more accurate determination
of the exponents would require a larger frequency range and
stronger excitations, which were not available for this study.
In particular, one has to be aware that the frequency or plate
velocity dependence of the excitation at constant maximum
acceleration may not give the complete answer, because the
mean energies may depend in a more complex manner on both
amplitude and frequency of the plate vibrations.

D. Energy ratios

Figure 8 shows how the mean energies are distributed
among the different DOFs in the experiment. In Fig. 8 (top),
the ratio 〈Erot〉/〈Etot〉 is presented. The share of rotational
energy is roughly about 32% for the cube and somewhat
smaller for the icosahedron (≈ 27%). At 50 Hz excitation, the
share of rotational energy shows a slight drop for the cube.
The explanation is that at this frequency, the plate velocity
and thus the efficiency of the excitation is already quite low.
and the jump heights are comparable to the side lengths of the
bodies. The mean jump heights at 50 Hz excitation are 2.9 mm
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FIG. 5. Correlation between the rotational energy Erot of the (n)th jump and the translational energy Ez of the same jump at an excitation
with 30 Hz. The top row shows the data for the cube and the bottom row the data for the icosahedron. For both bodies we do not find a
significant correlation. Left: experimental results; right: distribution under the assumption of totally uncorrelated energies, just showing the
product of the energy distribution densities.

for the cube and 3.5 mm for the icosahedron. For the cube,
about 90% of the jumps are lower than 5.4 mm, which is the
necessary level for a rotation of the cube over an edge. In this
situation, flips across edges with a change of the downward
face of the cube are strongly hindered, so that torques of
consecutive collisions with the plate partly compensate each
other. This problem is slightly less acute for the icosahedron,
with its shape being closer to a sphere.

In Fig. 8 (bottom), the ratios of the kinetic energies
〈E cub

∗ 〉/〈E ico
∗ 〉 between cube and icosahedron at the same ex-

citation conditions are shown. Within the experimental error,
the ratios are almost constant. The amount of transferred ro-
tational energy is almost equal for both Platonic solids, while
the transferred amount of energy in the z direction for the cube
is only ≈ 80% of the energy 〈E ico

z 〉 of the icosahedron. For
the total transferred energy, a ratio of 〈E cub

tot 〉/〈E ico
tot 〉 ≈ 85% is

found. The excitation of translational motions with the same
parameters is noticeably more efficient for the icosahedron.

IV. DISCUSSION

We have employed an experimental technique to record
information on the motion of jumping Platonic solids by
equipping these objects with autonomous IMUs. The storage
of acceleration and rotation data makes the statistical analysis
of the jump dynamics much less time consuming than the
standard technique based on optical video data. In particu-

lar, rotations are much more easily extracted from the IMU
records. This technique may also become an useful substitute,
or at least a strong complement, for the optical observation
of granular gases under microgravity conditions in 3D exper-
iments. One may use much denser ensembles (higher particle
number densities) than in experiments using optical observa-
tion, since background particles are not obscured by others in
the optical path. Also, the extraction of rotational motion is
much easier to achieve. Collision rates are easily detected too.

One of the restrictions of the IMUs used in this study is
the limited measurement range of the gyroscopes. This can
be circumvented when only a moderate excitation strength
is used. For the highly symmetric bodies studied here, all
rotations about the center of mass are equivalent, thus we did
not distinguish between individual rotational DOFs, but treat
them as equivalent. Our rotational energy data represent the
sum of these three DOFs.

The velocities of the particles can in principle be calcu-
lated from the integration of acceleration data, employing the
rotation data and quaternions. In the present study, this was
not necessary since the objects are in free fall between the
collisions and the translational motion is analytically known.

The main result of this study is the comparison of energy
partition between translational and rotational degrees of free-
dom, which is an important issue when vibrating container
walls are used to heat up granular gases in microgravity. It
turns out that the rotations are excited by nearly one order of
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FIG. 6. Mean energies E∗( fpl ) for the simulated (open symbols)
and experimental data (filled symbols) at constant plate acceleration
� = 5 g. For both Platonic solids all mean energies 〈E∗〉 decrease
with increasing plate frequency fpl. For the simulations, a restitution
coefficient of γ = 0.8 was used.

magnitude less than the vertical translational degree of free-
dom. All three rotational degrees of freedom together reach
less than one third of the total kinetic energy. An additional
observation is that the share of the excitation of rotations is
not substantially different between the cube and the icosa-
hedron, even though the icosahedron shape is much closer
to that of a sphere, where ideally rotations are not excited
at all.

FIG. 7. Dependence of the mean kinetic energies 〈E∗〉 on the
plate velocity amplitude Vpl. Filled symbols show experimental data
and open symbols simulated data (γ = 0.8). The lines are fits of the
data with 〈E∗〉 ∝ V α

pl ; see text. Solid lines belong to experimental data
and dashed ones to the simulations. The corresponding excitation
frequencies fpl = 5g/(2πVpl ) are marked in the top image.

Our investigation could easily be extended to octahedra and
dodecahedra, yet we do not expect qualitatively new results.
The geometrical parameters derived in the Appendix sug-
gest that they will behave very similar to the cube and the
icosahedron, respectively. In view of the small differences
between cube and icosahedron, similar values for the two
other polyhedra can be expected. In addition to the methodical
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FIG. 8. Top: amount of rotational energy on the total energy for
both Platonic solids; bottom: ratios of the different kinetic energies
〈E cub

∗ 〉/〈E ico
∗ 〉 of the two Platonic solids at the same excitation pa-

rameters. Data in parentheses are affected by the partially clipped
rotational velocity data.

development and the statistical evaluation of experiments, we
have obtained some results of numerical simulations based
on a DEM code (YADE) [42] and compared them with the
experimental data. These simulations support the conclusion
that octahedra and dodecahedra show comparable energy par-
titions as the polyhedra investigated here.

A remark concerning the edges and vertices of the polyhe-
dra seems appropriate here. While in jumps of ellipsoids and
spheres this problem does not exist, the contacts of polyhe-
dra with the vibrating plate occur almost exclusively at their
vertices, very rarely with edges. Since these structures are not
infinitely sharp in the experiment, the influence of rounded
vertices was tested in the numerical simulations. It was found
that rounded edges and vertices with radii of curvature not
exceeding 1 mm (less than 5% of the edge lengths) had only
minimal impact on the results. The experimental vertices and
edges were much sharper, thus the experimental results can be
regarded as robust.

We also analyzed the correlations between the rotational
and translational energies within the individual jumps, and
correlations of energies of subsequent jumps. We did not
find statistically relevant correlations between the transla-
tional energies in subsequent jumps. This evidences that the
excitation parameters used mix the dynamic states of the
jumping object very well. Neither did we observe a correlation
between the translational and rotational energy shares within

individual jumps. This is an indication that the amount of
energy transferred into rotations or regained from rotations
during collisions does not noticeably influence the energy
contained in the vertical translational motion.

It may be appropriate to emphasize that the results are
valid independent of the particle sizes. The geometrical and
mechanical quantities relevant in the present experiment have
different dependencies on the side length a of the polyhedra:
While the mass m is related to the third power of the side
length, a3, the moment of inertia scales with a5. The mean
velocities and jump heights remain practically unchanged
because they depend solely on the plate motion and the resti-
tution coefficient. Thus the translational energy scales with
a3 via the mass, while rotational energy depends upon the
moment of inertia I and the square of the rotation frequency
ω. It remains to be shown that under these conditions the ratio
of the kinetic energies does not depend upon a.

The reasoning is as follows. The torques scale with a4 via
the mass m and the length �. Angular velocities ω, which
involve the torques and the moment of inertia, will scale
with 1/a. The kinetic energy of rotations Iω2/2 will therefore
also scale with a3, as the translational energies. As expected,
all ratios of the mean energies in the individual degrees of
freedom are independent of the size of the objects. The only
change is the slowing of rotations with increasing edge lengths
a. This will change the relations between ω and the vibration
frequency fpl of the plate, with consequences for the details of
the particle trajectories.

A. Summary

In our study we measured the dynamics of two represen-
tative Platonic solids (cube and icosahedron) excited by a
vibrating plate. The results can be summarized as follows:

(1) Rotations of the two investigated particle shapes are
much less excited than the vertical translational motion
(Figs. 6 and 8).

(2) Even though the deviation from sphere shape is much
larger for the regular hexahedron (six faces, eight vertices)
than for the icosahedron (20 faces, 12 vertices), there is only
a little difference in the energy partition. Within the statistical
uncertainty, these solids behave similarly (Fig. 6).

(3) The energy distribution of rotational energies follows
an exponential decay (Fig. 3). The authors are not aware of
comparable results in the literature or theoretical work that
predicted this behavior. For translational motions of spheres,
the kinetic energy distribution follows a completely different
scheme [24].

(4) The observation that energies in successive jumps are
only weakly correlated is not trivial. Naturally, one might
have expected that a particle impacting at high speed on the
vibrating plate would also leave the plate on average with
larger speed than a slowly impacting body. This is clearly not
the case in our experiments.

One may extend the proposed observation technique easily
to less symmetric particles such as ellipsoids or cylinders
(oblate or prolate). In general, the inertia tensor will not be
symmetric anymore, and thus one has to distinguish three
different rotational degrees of freedom. This is not a prob-
lem because the IMU provides separate information on the
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individual rotational DOFs. Nevertheless, it seems that the
comparably weak excitation of rotational degrees of freedom,
which was also reported for the “extreme” case of thin rods
[28], is a general feature of mechanical excitation with vibrat-
ing plates.
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APPENDIX: ENERGY TRANSFER
IN ELASTIC COLLISIONS

We assume that a nonrotating solid object hits a plate at
rest with a velocity v1, perpendicular to the plate. It will have
the moment of inertia I , with a spherically symmetric inertia
tensor, and a mass m. The distance from the vertical through
the center of mass and the contact point will be �. After the
collision, the velocity is v2 and the angular velocity becomes
ω2. The normal force F (t ) at the contact point generates a
torque �F (t ). Then the momentum equation reads

m(v2 − v1) =
∫

Fdt, (A1)

where the integral is over the contact time and the contact
point is assumed to be fixed (no sliding). For the angular
momentum, one has

Iω2 = �

∫
Fdt . (A2)

The combination of these equations yields

ω2 = m�

I
(v2 − v1). (A3)

TABLE V. Optimal distance of the contact point �opt for the
excitation of rotations and maximum possible distance RF in units
of the edge length and their ratio.

Body �opt/a RF/a �opt/RF

Tetrahedron 0.224 0.577 0.388
Cube 0.408 0.707 0.577
Octahedron 0.316 0.577 0.547
Dodecahedron 0.779 0.851 0.916
Icosahedron 0.511 0.577 0.885

Inserting this relation into the kinetic energy balance

m

2

(
v2

1 − v2
2

) = I

2
ω2, (A4)

and introducing a reduced length λ = √
m/I � one obtains the

quadratic equation

v2
1 (1 − λ2) − v2(1 + λ2) + 2λ2v1v2 = 0 (A5)

with one physically relevant solution

v2 = λ2 − 1

λ2 + 1
v1, ω2 = −2λ

λ2 + 1

√
m

I
v1. (A6)

The related rotational energy after the collision is

Erot = 2λ2

(1 + λ2)2
mv2

1, (A7)

which achieves its maximum at λopt = 1, that is,

�opt =
√

I/m. (A8)

When the distance � is equal to that value, the maximum
rotational energy is gained by an initially nonrotating object
bouncing on a plate at normal impact. For the five Platonic
solids, the optimum distances are listed in Table V.

Of course, these considerations yield only a crude approx-
imation of the efficiency of torques on Platonic solids. When
the body is rotating before the collision, the computation
contains many more parameters and requires a much more
detailed analysis. In addition, a restitution coefficient <1 will
change the result. Nevertheless, the simplified model gives a
rough indication what rotational energies can be expected for
the different Platonic solids.
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