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Dynamical yield criterion for granular matter from first principles
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We investigate, using a recently developed model of liquid state theory describing the rheology of dense
granular flows, how a yield stress appears in granular matter at the yielding transition. Our model allows us
to predict an analytical equation of the corresponding dynamical yield surface, which is compared to the usual
models of solid fracture. In particular, this yield surface interpolates between the typical failure behaviors of soft
and hard materials. This work also underlines the central role played by the effective friction coefficient at the
yielding transition.
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I. INTRODUCTION

Understanding the way solid objects break is a question
relevant to various areas of physics. At a fundamental level,
the determination of the precise mechanism at the origin of
solid failure, be it via elastoplastic models [1–6], statistical
methods inspired from glassy physics [7,8], or modified elas-
ticity theories [9–15], as well the still debated relationship
between the brittle and ductile modes of failure [16–27] are
very active fields of research. However, this topic is also
ubiquitous in applied physics and engineering for the study
of the failure of rocks, soils, and other geomaterials [28–35];
concrete [36–39]; or cellular materials [40]. A particularly
successful approach consists in determining the yield surface
of the solid, a curve that allows to determine whether a solid in
a given state of stress will yield. Many different constructions
of such an object have been proposed [41–51], but for amor-
phous solids, for which determining the yielding point from
ab initio methods used in crystals [52] is not possible, nor has
a generally accepted construction of a yield criterion has been
determined yet.

In this paper, we propose a study of the yielding transition
based not on a theory of the solid, but of the liquid state.
More precisely, using a theory developed to describe the non-
Newtonian features of granular liquid flows [53–59] in the
limit of very low shear rates, we describe how an internal
state of stress develops into the liquid as its behavior becomes
more and more solid-like. Such a determination of a so-called
dynamical yield criterion has previously been done for the
study of colloidal suspensions close to the mode coupling
glass transition [60]. Although there is no evidence suggesting
a complete equivalence between the dynamical yield criterion
determined when approaching the yielding transition from
the liquid side and the yield criteria studied in triaxial tests
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when breaking solids, it is reasonable to assume that some
properties are preserved across the transition. To that extent,
our work brings an original insight on the yielding problem
with an approach, which, contrary to many failure models, is
based on fundamental principles.

The reduction of our liquid state theory to an analytically
solvable model, along the lines presented in previous works
[58,59] allows us to derive an analytical expression of the
yield surface for granular materials. This surface turns out to
display interesting properties, such as the existence a priori
of two continuously related fracture modes (a soft and a hard
one). Furthermore, the solvability of the model allows us to
present a critical analysis of some widely used yield criteria.
Finally, we show that a definition of the effective friction
coefficient from the symmetries of the stress tensor allows us
to build a quantity which behaves very smoothly across the
transition to the solid state, thereby pointing out a potentially
crucial quantity to understand how solid order builds up in
complex liquids.

II. INTRODUCTION TO FRACTURE

Our aim in this section is not to give a complete review
of the theory of fracture in solids. We present some of the fea-
tures of usual yield criteria which are relevant to the following
[61]. For sake of clarity, we restrict ourselves to the most usual
yield criteria, many more refined ones being simple variations
around those.

The state of stress in a solid piece of material can be repre-
sented by a stress tensor σ , which can be further decomposed
onto irreducible representations of the SO(3) group into a
diagonal part (spin 0 representation) and a traceless, deviatoric
component (spin 2 representation):

σ = P I + σ ′, (1)

where P = Tr(σ )/3 is the pressure and Tr(σ ′) = 0. The same
decomposition can be applied to the strain tensor ε. In partic-
ular, for elastic materials, the deviatoric parts of both tensors
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are related by σ ′ = 2Gε′, which defines the shear modulus G
of the solid. Since most of the following work concerns shear
fracture, the other elastic moduli shall not be discussed.

Another useful representation of σ is given by its three
eigenvalues (or principal stresses) σ1, σ2, and σ3, which do
not depend on the basis used to represent the stress tensor.
One can then define three invariants in the following way:

I1 = σ1 + σ2 + σ3,

I2 = σ1σ2 + σ2σ3 + σ3σ1,

I3 = σ1σ2σ3.

(2)

Similar definitions can be used to define the invariants J2 and
J3 from σ ′.

Most of the yield criteria can be understood in terms of an
effective friction coefficient. This coefficient can be defined in
the following ways.

Definition 1. In a solid, the effective friction coefficient μ

compares the strength of the spin 0 and the spin 2 components
of the stress tensor. It can then be expressed as μ = σ0/P,
where the shear stress is σ0 = σ : ε′/|ε′|, “:” denotes a full
tensor contraction, and the norm of the deviatoric strain is
|ε′|2 = 2ε′ : ε′.

Definition 2. For two pieces of a broken solid to be able
to glide onto one another, they have to overcome the solid
friction between the two blocks, as defined by Coulomb’s law.
The effective friction coefficient μ of the solid is defined as the
ratio of tangential to normal stress on a given plane that has
to be overcome for the solid to break along that plane. Both
definitions are related to one another, although not equivalent
[33].

Let us suppose that a piece of solid breaks as soon as the
elastic energy E ′

el accumulated due to the deviatoric strain
exceeds a certain proportion of the isotropic part of the elas-
tic energy ETr

el ∝ P. The first energy can be expressed as
E ′

el = σ ′ : ε′/2 = J2/4G. The corresponding shear stress is
σ0 = √

J2/2G. Finally, using the definition 1 of the effective
friction coefficient, the material yields when μ exceeds a
characteristic value of the material, μDP, which defines the
Drucker-Prager yield criterion [41]. It can also be written in
terms of invariants as I2

1 /I2 = CDP, where CDP is a constant.
The main advantage of definition 1 is that it only depends

on the symmetries of the stress tensor. However, determining
ε′ in a given experimental situation can be challenging. As a
result, many yield criteria are based on the second definition of
μ. In that case, the main difficulty is to determine the fracture
plane on which the tangential and normal stresses must be
compared.

One of the simplest way to proceed is to assume that the
fracture will take place in one of the principal planes. In that
case, the problem reduces to three two-dimensional problems
which are very easy to solve. The material yields as soon as
μ � μMC on one of the three principal planes, which defines
the Mohr-Coulomb yield criterion.

This approach can be refined further by approximating
the fracture plane by the so-called spatially mobilized plane
[45,48], which is a clever interpolation between the three
principal planes. More precisely, it is defined as the unique
plane, which projections onto the three principal planes gives
back the Mohr-Coulomb problem [45]. By removing the

FIG. 1. Comparison of the different yield criteria presented in
this paper. The big green dots are the points used to adjust the
constants of the Mohr-Coulomb criterion (as well as their images
by rotation of angle 2π/3). The constants of the three other criteria
are adjusted on the upper apex.

possibility that the fracture plane evolves discontinuously
from one principal plane into another, it provides a much
smoother version of the Mohr-Coulomb yield surface (see
Fig. 1). In terms of invariants, this can be written CMN =
I2I1/I3, where CMN is a constant.

Finally, another popular smooth version of the Mohr-
Coulomb criterion is the Lade-Duncan yield criterion [43].
Its geometrical interpretation is not as straightforward as the
previous ones, but it was recently showed [51] that it can
be understood as a correction to the Matsuoka-Nakai cri-
terion taking into account subleading dependence in J2/P.
By cumulating the expressions of the Drucker-Prager and
Matsuoka-Nakai constants, a new quantity CLD = CMNCDP =
I3
1 /I3 can be constructed. The Lade-Duncan criterion can then

be defined by requiring that CLD, rather than CMN and CDP

separately, is constant [51]. The corresponding modification
in terms of effective friction coefficient μLD is given in [51].

A comparison of the different yield criteria is presented
on Fig. 1, which presents a cut of the yield surface along
one of the deviatoric planes (planes at constant pressure).
Remarkably, the Drucker-Prager yield surface is much more
isotropic than all the other ones. This can be related to the
absence of dependence in I3, which confers it a higher degree
of symmetry. The more triangular shape of the three other
criteria, on the other hand, can be related to the nonzero value
of the effective friction coefficient [62], thereby illustrating
the inequivalence between definitions 1 and 2 given above (μ
is obviously also nonzero for the Drucker-Prager yield surface
in Fig. 1).

All in all, the most usual yield criteria used for studying
solid fracture can be captured in terms of an effective friction
coefficient μ, which should not exceed a given value for solid
order to be preserved.

III. RESULTS

A. Yielding transition from the liquid state

The model we present in this paper is based on a simpli-
fication of the granular integration through transients (GITT)
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formalism. For more details about this model, the reader is
referred to the more detailed previous publications on the sub-
ject [53–59], as well as the Appendix. This formalism is based
on the so-called integration through transients (ITT) formal-
ism [60,63–65], which allows to compute statistical averages
in a sheared fluid by relating them to averages computed in
a quiescent state where no shear is applied. We can there-
fore decompose the stress tensor as: σ = σ (0) + �σ , where
σ (0) = P0I because the quiescent fluid is not sheared and �σ

contains all the corrections depending on the shear rate γ̇ .
The pressure P0 can be computed for a fluid at equilibrium
[57], but can also include an isotropic component imposed
by the environment in many situations relevant to geophysics
problems, and is thus left unspecified here. In our model, P0

does not couple with the correction �σ .
The stress correction �σ can also be written in a form

similar to Eq. (1):

�σ = �PI + ηD, (3)

where �P is the correction to the pressure due to shear, η

is the viscosity of the liquid, and Di j = κi j + κ ji is the sym-
metrized flow matrix, κ = ∇v being the velocity gradient.
In this work, we restrict ourselves to incompressible flows
for which Tr(κ ) = 0. Note that the dilation of the granular
packing under shear can be safely neglected here since we
work at a macroscopic scale much bigger than that of the
individual granular particle.

The GITT equations allow to relate �σ to κ via a vis-
cosity matrix 	 through �σab = 	abi jκi j . In this formalism,
the components of 	 can be written explicitly as integrals
over time and wave vectors of the density correlation function
〈ρk (t )ρ−k (0)〉 [59]. Our toy model consists in neglecting the
wave vector dependences which play a subleading role (de-
tails in the aAppendix and [58,59]). In that case, 	 reduces to
integrals over time of the products of the Finger tensor, which
contains information about the deformation of the system,
and the density correlation function (see the Appendix for a
detailed derivation). Then, the density correlation function is
reduced to the following expression:

〈ρk (t )ρ−k (0)〉 ∝ e−t/t� e−γ̇ 2t2/2γ 2
c . (4)

The first factor accounts for the internal dynamics of the liq-
uid, with a typical timescale t� . As the behavior of the liquid
becomes more and more solid-like, t� becomes very large,
mostly due to the cage effect: in dense liquids, the particles’
ability to move tends to be reduced by their neighbors. The
second factor is a screening factor accounting for the effect
of advection: the applied stress tends to force particles to
move and facilitates the escape from the cages. This screening
is characterized by a strain scale γc, which is a constant of
the material describing its compliance to external stresses.
Despite its simplicity, the reduction of the contribution to
the stress tensor of the particle’s dynamics by equations like
Eq. (4) has proven to provide rather accurate constitutive
equations for dense granular liquids [58,59].

The final element of our toy model is the sampling of pos-
sible flow geometries. First, we restrict ourselves to the basis
in which σ is diagonal, so that κ is also diagonal. Then, we
map the space of traceless diagonal matrices by the following

two parameters family of reduced flow matrices

κ =

⎛
⎜⎜⎝

A2 0 0

0 −A2
( 1−A1

2

)
0

0 0 −A2
( 1+A1

2

)

⎞
⎟⎟⎠, (5)

where (A1, A2) defines the flow geometry and κ = κγ̇ . For
this family of flows, and in the case of stationary flows, the toy
model integrals giving the components of 	 can be evaluated
exactly. Finally, we can examine the limit γ̇ → 0, which al-
lows two distinct behaviors. For low packing fraction systems,
the ITT correction vanishes with γ̇ , the system remains a
liquid. For denser systems, a nontrivial yield stress develops in
this limit, which signals the onset of solid-like behavior. The
corrections to the eigenvalues of the stress tensor predicted
by the toy model in the latter case can then be expressed as
follows:

�σ1 = S0 + S1

2

√
π [F (κ1γc) + F (κ2γc) + F (κ3γc)]

+ S1
√

πF (κ1γc),

�σ2 = S0 + S1

2

√
π [F (κ1γc) + F (κ2γc) + F (κ3γc)]

+ S1
√

πF (κ2γc),

�σ3 = S0 + S1

2

√
π [F (κ1γc) + F (κ2γc) + F (κ3γc)]

+ S1
√

πF (κ3γc),

(6)

where F (x) = x ex2
erfc(−x), and S0 and S1 are constants

from the toy model giving the typical strength of the yield
stress developing in the liquid (they have very little influence
on the geometry of the yield surface).

The yield surface equation Eqs. (6) is quite remarkable.
Indeed, it was shown in [50] that all the usual yield criteria
defined above can be expressed as roots of a polynomial
equation of degree three. Here, to the contrary, the eigenvalues
of the stress tensor, defined from the function F are highly
nonpolynomial, which make Eqs. (6) quite unique to the best
of our knowledge. As shown in the Appendix, the Drucker-
Prager criterion can be recovered from a A2γc 	 1 expansion
of Eqs. (6), but the relation to the other usual yield criteria is
more involved [66].

B. Geometry of the yield surface

In Fig. 2, we represent the surface Eqs. (6) in various
deviatoric planes, corresponding to various values of I1. More
precisely, fixing a pressure amounts to fixing the pressure
correction �P, which is our control parameter along the hy-
drostatic axis since P0 does not couple to the shear corrections
to the stress. All quantities are dimensionless, the global scale
of the axis in physical units being fixed by the value of the
parameters S0 and S1.

The yield surface presents two qualitatively different be-
haviors from which we identify two fracture modes: For
�P 
 S0, S1, the shape of the yield surface cuts is trian-
gular, similar to that of Fig. 1, which corresponds to the
typical shape observed in the failure of sedimentary rocks
and soils captured by yield criteria from the family of
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FIG. 2. Cuts of the toy model yield surface along the deviatoric
plane for various values of �P. The parameters are S0 = S1 = 1,
γc = 0.4, �P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green),
and �P = 2 (blue).

Mohr-Coulomb–Matsuoka-Nakai–Lade-Duncan, we call this
mode of fracture hard; For �P 	 S0, S1 on the other hand,
the yield surface cuts become isotropic, and the yield surface
has a Drucker-Prager like shape, we call this fracture mode
the soft mode. This can be used to classify material according
to their preferred mode of fracture, softer materials being the
ones for which the shear induced pressure component of the
stress is small compared to the typical scale of stress involved.

The soft fracture mode was already described in the yield-
ing of soft colloids close to the mode coupling glass transition
[60]. This picture fits well our current framework: close to
the mode coupling glass transition, the shear correction to the
pressure is rather mild compared to the other stress scales in
the system. One of the main nontrivial additional outcomes
of our model is that this fracture mode is only observed
under certain conditions (more precisely A2γc 	 1, see the
Appendix for details), and can be continuously transformed
into a hard type of fracture by changing the conditions of
fracture.

Coming back to the physical picture presented before, the
soft fracture mode corresponds to materials where the primary
mechanism of fracture is the excess of accumulated deviatoric
energy compared to the isotropic elastic energy. As �P/S0

increases, the stress becomes more and more localized in
specific regions inside the material, which is represented by
the transition to the hard fracture mode. In the limit of large
excess pressure �P, the yield surface resembles that obtained
by identification of the spatially mobilized plane, where the
stress becomes asymptotically localized in a two-dimensional
manifold.

There are a number of reasons though why this tran-
sition between both fracture modes could not be observed
experimentally. (i) While our model allows us to explore the
variations of the yield surface with respect to any value of
�P, there is no guarantee that there exists an experimental
protocol which allows to explore such a region for a given
material. Indeed, �P is itself a function of the applied shear
stress. (ii) Our model so far only includes shear failure, but
it is expected that adding the possibilities of dilation and
compression failure puts material-dependent boundaries on

the hydrostatic axis, which may prevent it from exploring the
full variation of the yield surface geometry.

Finally, the analytical expression of the yield surface
Eqs. (6) allows us to analyze the performance of other yield
criteria in various deviatoric planes. The results are dis-
played in Figs. 5–7 in the Appendix. While unsurprisingly
the Drucker-Prager criterion performs all the best that �P is
small, there is no such monotonous behavior for the precision
of the Matsuoka-Nakai and Lade-Duncan criteria. It can be
noted, though, that those later two perform all the best that the
pressure P0 is large.

C. Effective friction coefficient

We discussed in the first section how all usual yield criteria
can be expressed in terms of an effective friction coefficient.
Effective friction coefficients can also be defined for complex
liquids. It is even a crucial quantity in the context of the
study of granular liquids for which it has been shown that the
dependence of μ on the shear rate is largely universal [67–69],
and provides a useful tool to relate the rheology of granular
liquids and granular suspensions [58,70–73].

Since the definition of a fracture plane is not appropriate
for liquids, μ is naturally defined from the symmetries of the
stress tensor, like in definition 1 above. More precisely, the
spin 0 component of the stress tensor of the liquid is the total
pressure P = P0 + �P, and its deviatoric component defines
a shear stress σ l

0 as σ l
0 = σ : κ/|κ| [59], with |κ|2 = D : D/2.

This defines an effective friction coefficient as μ = σ l
0/P.

In a Newtonian liquid, the deviatoric stress is σ ′ = ηD
[from Eq. (3)]. Because η is a constant, this component of the
stress vanishes in the limit γ̇ −→ 0. For complex liquids how-
ever, σ ′ = η(γ̇ )D. Hence, provided that η ∼ 1/γ̇ in the limit
of low shear rates, this term survives and solid-like behavior
builds up. All in all, analyzing the deviatoric component of
the stress tensor in the limit of low shear rates makes the
connection between the liquid and solid definitions of the
shear stress σ0. However, both definitions of σ0 are not nec-
essarily equivalent to one another. Indeed, outside the regime
of small strains, the deviatoric part of the deformation tensor
is not proportional to the symmetrized velocity gradient D
[74].

Within our model, it is possible to identify from the stress
equations (6) the contribution of the strain tensor (see the
details in the Appendix), and thus to get access to its devia-
toric component. Hence, we can compare σ l

0, computed from
the velocity gradient, to σ s

0 = σ : ε′/|ε′|, computed from the
solid-like expression of the stress tensor Eq. (1). The results
are displayed in Fig. 3 for various values of �P [75]. We can
see that, although some variation is indeed present, both defi-
nitions yield very compatible numerical values. Consequently,
μ defined from the ratio of the spin 2 and spin 0 component of
the stress tensor behaves very smoothly across the liquid-solid
transition, and therefore appears to be a particularly interest-
ing quantity to study the onset of solid order in freezing liquids
under shear.

Finally, our model allows us to perform a more in-depth
analysis of the behavior of μ in a given deviatoric plane (data
in the Appendix). First, μ is not constant along those planes,
although relative variations are quite small. Provided that our
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FIG. 3. Comparison of the definition of the shear stress from the
solid state stress tensor σ s

0 and from the liquid state stress tensor σ l
0 .

The data are represented as a function of A1, the variation of which on
the presented scale corresponds to a sector of the 2π/3 Lode angle.
The parameters are S0 = S1 = 1, γc = 0.4, �P = 0.05 (red), �P =
0.5 (orange), �P = 1 (green), and �P = 2 (blue).

model still holds for solid fracture, this means that a way
to improve the existing yield criteria could be to allow for
a such a deviation to the constant value, a feature which is
present in none of the solid yield criteria presented in the first
section of the paper. Then, the relative variation of μ with the
Lode angle are all the bigger that the fracture mode becomes
harder. Given that, as shown above, the hard fracture mode
corresponds to cases very well described by criteria based on
definition 2 of the effective friction coefficient, this raises the
question of a possible transition between the two definitions
as the isotropic stress �P caused by shear becomes more and
more comparable to the intrinsic stress scale of the material
fixed by S0 and S1: the definition of μ from the liquid stress
tensor (3) accounts for the build up of solid-like behavior as
the liquid’s behavior gets less and less Newtonian, then for the
soft type of solid fracture mode, the approximation of μ, set
by definition 1, by a constant is quite accurate, but deteriorates
as the fracture mode becomes harder, where, given the good
performance of yield criteria based on definition 2, a constant
μ based on definition 2 could still be observed. Furthermore,
since the value of μ on the fracture plane is determined by
the value of the yield criterion constant [51], we can also
study the variations of μ from definition 2 within our toy
model. Notably, there seems to be a regime where P0 
 1
(in units of S0, S1) where the relative variation of μMN and
μLD is suppressed at best. However, since the value of P0,
playing a central role in that case, is not prescribed by our
model, quantitative comparison to the relative variations with
definition 1 is not possible.

IV. CONCLUSION

All in all, we built an analytically solvable toy model that
allows us to predict the shape of the dynamical yield surface
of soft materials and granular matter. Importantly, our yield

criterion is based on fundamental equations of liquid state
theory rather than some phenomenological rule. The study of
this model allowed us in particular to highlight the role of the
effective friction coefficient μ that appears to be a particularly
interesting quantity to relate the properties of the liquid close
to the yielding transition and those of the corresponding solid
state. It also predicted a nontrivial shape for the yield surface
that smoothly interpolates between known shapes for soft and
hard materials.

The picture emerging from this study raises a number of
questions. (i) How is the yield surface shape modified by
the addition of the compression and dilation fracture modes?
This question can be answered by extending our toy model to
compressible flows, in which case the liquid-like stress tensor
provides both a shear and a bulk modulus in the limit γ̇ → 0.
(ii) Is there a meaningful transition between definition 1 and
2 of the effective friction coefficient as the solid becomes
harder? Would an extension of our model to account for shear
banding highlight some mechanisms of this transition? (iii)
What is the influence of the dependence of μ on the Lode
angle, and thus on the stress geometry on the definition of
the jamming transition, where μ is supposed to reach a fixed
value through a power-law evolution controlled by a critical
exponent?
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APPENDIX A: GITT EQUATIONS AND TOY MODELS

In this Appendix, we quickly review the foundations of the
toy model used in the main paper.

1. Dynamics

The dynamics of the particles is accounted for through
the evolution of the dynamical structure factor �q(t ) =
〈ρq(t )ρ−q(0)〉/Sq, where ρq is the density operator in Fourier
space, and Sq = 〈ρq(0)ρ−q(0)〉 is the static structure factor. Its
evolution with time is given by a mode coupling equation of
motion, which has the following schematic structure:

�̈q(t ) + νq�̇q(t ) + �2
q�q(t ) + �2

q

∫ t

0
dτ mq(t, τ )�̇q(τ ) = 0,

(A1)

where νq and �q are characteristic frequencies, and mq is
called the memory kernel. The explicit expression of those
terms is not needed for the following argument. The qual-
itative behavior of the solutions to Eq. (A1) is as follows.
When the memory term is small enough, Eq. (A1) reduces to a
linear second-order differential equation whose solutions have
a decaying exponential envelope. When the memory term is
large, typical solutions saturate to a finite plateau value at large
time, signaling the onset of solid behavior.
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There are no analytical expression that captures well the
global expression of the solutions to Eq. (A1), hence building
analytically solvable models require to do some approxima-
tions. A finer way to capture the behavior of �q(t ) is to use the
Vineyard approximation, which decomposes it in a product of
static structure factor and self correlation function, and then
use an exponential ansatz for the latter term:

�q(t ) 
 Sq e−q2〈�r2(t )〉, (A2)

where 〈�r2(t )〉 is the mean squared displacement. It is not
difficult to check that the usual evolutions of 〈�r2(t )〉 yields
the expected qualitative phenomenology: for simple liquids,
the large time behavior of 〈�r2(t )〉 is given by the law of
diffusion 〈�r2(t )〉 ∼ t , which corresponds to the case of neg-
ligible memory effects with an exponential envelope of the
decay, whereas in a solid, particles acquire a well-defined
mean position, 〈�r2(t )〉 reaches a finite limit value, and �q(t )
evaluated from Eq. (A2) does indeed saturate.

From this qualitative analysis, we draw two main con-
clusions: (i) the wave-vector dependence is irrelevant to
understand the time evolution of �q(t ), at least in a lowest-
order approximation (notice that the same type of argument
is used when using schematic mode coupling models, such
as those used in [60,64]) and (ii) the whole complexity of
Eq. (A1) can be captured in a very crude way by a simple
exponential ansatz �q(t ) 
 exp(−�t ), where � = 1/t� is the
structural relaxation rate. Of course, we do not pretend to
capture all the mode coupling physics by this very simple
ansatz, but it already captures the most relevant physical
phenomena at play (in that case the slow down of the dy-
namics due to the structural relaxations in dense systems),
and with only minor modifications [namely, the addition of
a second step in the decay of �q(t )], it provides a convincing
model of the rheology of dense granular flows [57,58], allow-
ing, for example, to recover the universal μ(I ) of granular
rheology.

Finally, when going to the case of a sheared complex fluid,
the effect of the advection of particles by the external shear
stress has to be taken into account. Within our approach, this
is done by evaluating the dynamical structure factor � at
the wave vector q(t ) advected by the shear flow, rather than
simply q. Equation (A2) then becomes

�q(t )(t ) 
 Sq e−q(t )2〈�r2(t )〉, (A3)

where q(t ) = F (t ) · q, and F (t ) = exp(−κt ) is the deforma-
tion gradient [74]. For simple shear flows, κ is nilpotent,
and F (t ) = I − κt exactly, but this relationship is not valid
anymore for more general flows. Since q(t ) is typically ever
increasing, this provides a new channel of decay for �:
Even when the packing fraction is so dense that 〈�r2(t )〉
should saturate to a constant value, the q(t )2 factor in the
exponential guarantees that � decays to zero. Physically, this
corresponds to the fact that the motion imposed by the advec-
tion of particles by the applied shear stress is strong enough
to break the cages, so that the systems always flow on some
timescale.

Because our toy model is so far independent of q, it is
blind to the change of q to q(t ). To account for advection, we
therefore add a screening term that introduces the advection

channel of decay. Guided by results in the case of simple shear
flows [58], and the useful properties of Gaussian functions, we
define the screening factor as exp(−γ̇ 2 t2/2γ 2

c ), where γc is a
typical strain scale. As a matter of fact, the precise form of the
screening is not really important to grasp the main properties
of the rheology, [60] for example, use a Lorentzian profile
with similar results.

All in all, at the level of the dynamics, our toy
model can be summarized by �q(t )(t ) 
 �toy(t ) = exp(−�t )
exp(−γ̇ 2t2/2γ 2

c ). It has two parameters: the structural relax-
ation rate � and the strain scale γc.

2. Link to the rheology

The dynamics evolution is then linked to the rheology
by use of the integration through transients (ITT) formula
[56,60,63–65]. Using this approach, the shear correction to the
stress tensor is expressed as an integral over the time evolution
of a fictitious reference state, where the fluid is not sheared

�σαβ = 1

2T

∫ +∞

0
dt

∫
k
Vσ

k(−t )�k(−t )(t )2Wσ
k,αβ, (A4)

where the mode coupling vertices Vσ
k = ∑

κθωVσ
k,θω and

Wσ
k,αβ are introduced, and

∫
k = ∫

d3k/(2π )3. Without going
into the details, the vertices can be expressed as

Vσ
k,αβ = k̂α k̂β k�σ + δαβσ⊥,

Wσ
k,αβ = 1 + ε

2S2
k

[k̂α k̂β k�σ + δαβσ⊥], (A5)

as a function of the following reduced scalars:

σ⊥ = T
[
Sk − S2

k

]
,

�σ = −T S′
k,

(A6)

the restitution coefficient of the granular particles ε, S′
k =

d Sk/dk, and the normalized wave vector components k̂α .
Note that the above formula can be applied to colloidal sus-
pensions by taking the elastic limit ε → 1.

Given that we defined above a procedure of approximation
of the �2

k(−t )(t ) term, the next step is to reduce the tensorial
structure of the mode coupling vertices. Factoring out the κθω

term embedded in the vertex Vσ
k , our integral becomes a tensor

of rank four corresponding to the viscosity tensor 	αβθω. The
vertex product is then developed:

Vσ
k,θωWσ

k,αβ ∝ δαβδθωσ 2
⊥ + δθωk̂α k̂βkσ⊥�σ

+ δαβ k̂θ (−t )k̂ω(−t )k(−t )σ⊥�σ

+ k̂α k̂β k̂θ (−t )k̂ω(−t )kk(−t )�σ 2. (A7)

Then, we use the deformation gradient F (t ) introduced above
to extract the remaining time dependence carried by the wave
vectors by κ̂α (t ) = Fαν (t )k̂ν . The remaining time-independent
wave-vector component being the only nonisotropic terms, the
spherical part of the k integral can be performed. We use the
following formula:∫

k
kik j f (k2) = δi j

3

∫
k

f (k2), (A8)
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and ∫
k

kik jkakb f (k2) = Xi jab

15

∫
k

f (k2), (A9)

where we defined the fully symmetrized product of kronecker
symbols as

Xi jab = δi jδab + δiaδ jb + δibδ ja. (A10)

Finally, �k(−t )(t ) is replaced by �toy(t ), and the remaining
integral over the norm of k reduces to a constant prefactor.

After all the above steps are performed, the viscosity tensor
can be decomposed along the three following terms:

Bcomp
αβθω = δαβδθω

∫ +∞

0
dt �2

toy(t ),

B0
αβθω = δαβ

∫ +∞

0
dt �2

toy(t )[δθω + Fνθ (−t )Fνω(−t )],

B1
αβθω = Xαβνι

∫ +∞

0
dt �2

toy(t )Fνθ (−t )Fι ω(−t ). (A11)

In the above formula, Bcomp comes from the σ 2
⊥ term. It never

contributes to �σ for incompressible flows. B0 comes from
the σ⊥�σ term in Eq. (A7), the constant prefactor defines
S0. It includes both the effect of restitution coefficient and the
remnants of the k integral. The first term in the bracket only
contributes in the case of compressible flows. The second term
is the Finger tensor, the inverse of the right Cauchy-Green
deformation tensor. Lastly, B1 comes from the �σ 2 term in
Eq. (A7) and its prefactor defines S1. Thus, in the case of
incompressible flows, two scaling constants (S0 and S1) are
needed, and all the contributions to 	 have the form of a time
integral of the product �toy(t ) and two deformation gradients,
with varying types of tensor contractions.

For the last step, let us place ourselves in the basis in which
the flow matrix is diagonal. In that case, it is possible to show
that the remaining contributions in Eqs. (A11) only involve
one component of κ at a time, say κ j j . A typical term will
hence have the following form:

κ j j

∫ +∞

0
dt exp

(
−2�t − γ̇ 2t2

γ 2
c

+ κ j jt

)

=
√

π

2
κ j j exp

[
γ 2

c (κ j j + �/γ̇ )2
]
erfc[γc(κ j j + �/γ̇ )].

(A12)

Finally, our study is restricted to the study of dense granular
liquids and suspensions, close to the yielding transition, which
Weissenberg numbers Wi are very large, hence � 	 γ̇ , so
that Eqs. (6) is recovered. Note that in the mode coupling
paradigm, such systems are characterized by � = 0 because
they would be solid if the system were not sheared. However,
a weaker version of the argument is needed here: we only
use the fact that Wi � 1. This corresponds to taking a limit
γ̇ → 0 under the constraint that � 	 γ̇ .

APPENDIX B: DRUCKER-PRAGER LIMIT

Let us discuss the limit of small �P. The value of �P can
be deduced from Eqs. (6), and depends mainly on the behavior

of the function F . Hereafter are some of its basic properties:

lim
x→+∞F (x) = +∞,

lim
x→−∞F (x) = − 1√

π
.

(B1)

Then, the typical size of the argument of F in Eqs. (6) is set
by the combination A2γc, A1 fixing the relationship between
the different components of κ [see Eq. (5)]. This combination
contains both information of the strength of the shear flow,
through A2, and the material’s response, through γc. Because
of Eq. (B1), and since Tr(κ ) = 0, which ensures that at least
one of its components is positive, if A2γc � 1, �P is large.
Consequently, the regime of small �P correspond to small
or moderate values of A2γc, which can be explored by an
expansion in powers of A2γc.

The expansion of F around x = 0 is as follows:

F (x) = x + 2√
π

x2 + O(x3). (B2)

Because Tr(κ ) = 0, the first-order term in the expression of
�P vanishes, leaving at leading order

�P = I1 − P0 = (3S0 + 5S1)
(
3 + A2

1

)
2

A2
2γ

2
c + O

(
A3

2γ
3
c

)
.

(B3)
Since I1 and P0 are parameters of our model, the above rela-
tionship truncated at this order allows us to compute A1 as a
function of A2, and the parameters of the model on a given
deviatoric plane.

The corresponding geometry of the yield surface can be de-
duced by studying the evolution of the stress tensor invariants.
For example, applying the same expansion

J2 = S2
1π

3 + A2
1

2
A2

2γ
2
c + O

(
A3

2γ
3
c

)
, (B4)

so that combining it with Eq. (B3) yields

J2

I2
1

= S2
1π

2

I1 − P0

(3S0 + 5S1)I2
1

+ O(A2γc). (B5)

This formula can be read as follows: (i) the cuts of the yield
surface in a given deviatoric plane are circles and (ii) their
radius is all the smaller that �P/(3S0 + 5S1) is small. It is the
behavior of the Drucker-Prager yield surface. Such behavior
is indeed observed with the yield surface of Eqs. (6), as can be
seen on Fig. 4. As A2γc gets closer to 1, �P/(3S0 + 5S1) does
also and the yield surface cuts become less and less isotropic.

Interestingly, the fact that the expression of the yield sur-
face is known analytically also means that we can study
the behavior of the constants associated with the other usual
yield criteria in the same limit, namely the Drucker-Prager,
Matsuoka-Nakai, and Lade-Duncan ones.

Let us first have a look at the Drucker-Prager constant
CDP = I2

1 /I2. To have an idea of its typical values, it is instruc-
tive to have a look at the value of J2 at the point of Lode angle
equal to 0, which in our conventions corresponds to the uniax-
ial extension flow κxx = 1, κyy = −1/2, κzz = −1/2. Indeed,
this point is generally used to adjust the constants of various
yield criteria since it corresponds to the point of maximum
J2, or, said otherwise, the point furthest to the hydrostatic axis
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FIG. 4. Toy model yield surface for �P 	 S0, S1. The parame-
ters are S0 = S1 = 1, γc = 0.4, �P = 0.001 (orange), �P = 0.005
(yellow), �P = 0.01 (green), �P = 0.03 (blue), and �P = 0.05
(violet).

σ1 = σ2 = σ3. In that point, J2 can be expressed as a function
of the Mohr-Coulomb friction angle φMC = arctan(μMC) as

J2 = 4 I2
1 sin2(φMC)

3[3 − sin(φMC)]2
, (B6)

so that, since 0 � μMC � +∞, 0 � J2/I2
1 � 1/3, and conse-

quently, 3 � CDP � +∞. From Eqs. (6), CDP can be expanded
as

CDP

3
= 1 + 3X

[
1 + 3

4
(A2γc)

π − 8√
π

]
+ O

(
A3

2γ
3
c

)
, (B7)

where we introduce the combination

X = (I1 − P0)π3/2S2
1

P2
0 [3S0 + (3 + 4

√
π )S1]

, (B8)

which appears in all the following expansion. X is all the
smaller that �P is, and is constant in a given deviatoric plane.
From Eq. (B7), we can check that CDP does converge toward
1/3 when A2γc is small, and becomes typically bigger than
1/3 when A2γc grows.

A similar analysis can be performed in the cases of the
Matsuoka-Nakai and Lade-Duncan criteria. First, notice that
the ratio of tangential and normal stresses on the spatially
mobilized plane is given by

μ2
MN = CMN

9
− 1, (B9)

which holds independently of the precision of the Matsuoka-
Nakai criterion (μMN is simply more or less constant). Since
this ratio is positive by definition, 9 � CMN � +∞. The
expansion of this coefficient in the limit A2γc 	 1 is given
by

CMN

9
= 1 + 6X

[
1 + 3

4
(A2γc)

P0(π − 8) + 6πS1

P0
√

π

]

+ O
(
A3

2γ
3
c

)
. (B10)

Again, this is consistent with the known limiting behavior of
this coefficient. Note also that in the limit where the hydro-
static pressure dominates the intrinsic strength of the material

−3 −2 −1 0 1 2 3

A1

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

(C
D

P
−
〈C

D
P
〉)/

〈C
D

P
〉

FIG. 5. Relative variation of the Drucker-Prager constant for
various values of �P. The parameters are S0 = S1 = 1, P0 = 1,
γc = 0.4, �P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green),
and �P = 2 (blue).

P0 � S1, the second term in the bracket becomes similar to
that of Eq. (B7).

Finally, using CLD = CMNCDP, 27 � CLD � +∞ [51]. The
expansion of this coefficient in the limit A2γc 	 1 is given by

CLD

27
= 1 + 9X

[
1 + 3

4
(A2γc)

P0(π − 8) + 4πS1

P0
√

π

]

+ O
(
A3

2γ
3
c

)
, (B11)

which is consistent with the boundaries.

APPENDIX C: ANALYSIS OF THE USUAL
YIELD CRITERIA

Most yield criteria can be represented by a certain combi-
nation of invariants of the stress tensor being constant. This
type of assertion is easy to test within the realm of our toy
model. For a given yield criteria of equation fx(I1, I2, I3) =
Cx, where Cx is a constant, we can evaluate fx on a given
deviatoric plane (in most cases, models are tested for a given
value of I1), compute its average on the whole yield sur-
face cut in that plane, 〈 fx〉, and look at the relative variation
( fx − 〈 fx〉)/〈 fx〉. Finally, in a given cut of the yield surface
along a deviatoric plane, the data can be represented as a
function of the Lode angle, or equivalently as a function of
the parameter A1 of our surface parametrization. In this way,
we get the Figs. 5, 6 and 7.

More precisely, the determination of I1, I2, and I3 depend
on P0, which is fixed by the environment and thus not pre-
scribed in our model. As can be expected, as P0 becomes
larger and larger compared to the values of the intrinsic stress
scales S0 and S1, the approximation of CLD and CMN by con-
stant values is of better and better quality.

1. Effective friction coefficient

The effective friction coefficient is defined as a function
of the total pressure P = P0 + �P. However, there is no pre-
scription for P0 in our formalism. The evolution of effective
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FIG. 6. Relative variation of the Matsuoka-Nakai (diamond) and
Lade-Duncan (triangles) constants for various values of �P. The
parameters are S0 = S1 = 1, P0 = 1, γc = 0.4, �P = 0.05 (red),
�P = 0.42 (orange), �P = 1 (green), and �P = 2 (blue).

friction can still be observed through the study of the reduced
friction �μ = σ0/�P. Its evolution as a function of the Lode
angle (represented by A1) for various values of �P is dis-
played in Fig. 8, while Fig. 9 represents its relative variations.

While looking at Fig. 8, it should be kept in mind that what
we represent is only the reduced friction coefficient and not
the total one. Therefore, relatively large values of �μ must
not be deemed too surprising, they are reduced by the total
confining pressure P0.

We chose to represent �μ for both definitions of the shear
stress σ0, from the solid and the liquid stress tensors, respec-
tively, to illustrate the very close proximity of the predictions
in both frameworks. Indeed, this difference appears to be
visible only for its relative variation, and only for the largest
values of �P (in units of S0, S1).

FIG. 7. Relative variation of the Matsuoka-Nakai (diamonds)
and Lade-Duncan (triangles) constants for various values of �P. The
parameters are S0 = S1 = 1, P0 = 0.5, γc = 0.4, �P = 0.05 (red),
�P = 0.5 (orange), �P = 1 (green), and �P = 2 (blue).

−3 −2 −1 0 1 2 3

A1

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Δ
μ

FIG. 8. Evolution of �μ = σ0/�P as a function of A1 for σ0 =
σ s

0 (triangles) and σ0 = σ l
0 (circles). The parameters are S0 = S1 =

1, γc = 0.4, �P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green),
and �P = 2 (blue).

Then, we can study the variation of the effective fric-
tion coefficients as prescribed by the Matsuoka-Nakai and
Lade-Duncan criteria, and corresponding to definition 2 of
the effective friction coefficient. The relations between μMN

(or μLD) and CMN (or CLD) can be found in [51]. Doing so
requires to choose a value of P0. Results for a sample of values
are shown on Figs. 10, 11 and 12. It should be kept in mind
that comparing the precision to that of the toy-model of this
figure makes no sense since Fig. 9 presents only the reduced
friction coefficient �μ which necessarily varies more than μ.

As for the case of the effective friction from the toy model,
at least for high-enough value of P0, the effective friction is
not constant in a given deviatoric plane, and even more so
that �P is large (or equivalently, that the yield surface cut’s
shape becomes more and more triangular). At high values of

−3 −2 −1 0 1 2 3

A1

−0.15

−0.10

−0.05

0.00

0.05

(Δ
μ
−
〈Δ

μ
〉)/

〈Δ
μ
〉

FIG. 9. Evolution of the relative variation of �μ = σ0/�P as
a function of A1 for σ0 = σ s

0 (triangles) and σ0 = σ l
0 (circles). The

parameters are S0 = S1 = 1, γc = 0.4, �P = 0.05 (red), �P = 0.5
(orange), �P = 1 (green), and �P = 2 (blue).
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FIG. 10. Relative variation of the Matsuoka-Nakai (diamonds)
and Lade-Duncan (triangles) effective friction coefficients for vari-
ous values of �P. The parameters are S0 = S1 = 1, P0 = 0.5, γc =
0.4, �P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green), and
�P = 2 (blue).

P0, both effective friction coefficient variations collapse onto
each other. Perhaps more surprising, it seems to be an optimal
value of mild P0 where the variations are reduced at best.

APPENDIX D: IDENTIFICATION
OF THE STRAIN TENSOR

To get a deeper understanding of the physical content of
our toy model, let us push it a bit further and replace the
screening factor with a Heaviside function �(1 − γ̇ t/γc).
Moreover, since we mainly study the high Weissenberg num-
ber regime Wi � 1, the decay of the structural relaxation
term exp(−�t ) happens outside of the Heaviside window, our
dynamical ansatz reduces to �q(t )(t ) 
 �(1 − γ̇ t/γc).

FIG. 11. Relative variation of the Matsuoka-Nakai (diamonds)
and Lade-Duncan (triangles) effective friction coefficients for vari-
ous values of �P. The parameters are S0 = S1 = 1, P0 = 1, γc = 0.4,
�P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green), and �P = 2
(blue).

FIG. 12. Relative variation of the Matsuoka-Nakai (diamonds)
and Lade-Duncan (triangles) effective friction coefficients for vari-
ous values of �P. The parameters are S0 = S1 = 1, P0 = 10, γc =
0.4, �P = 0.05 (red), �P = 0.5 (orange), �P = 1 (green), and
�P = 2 (blue).

Then, using Eqs. (A11) and the results of the corresponding
Appendix, and the fact that the flow is incompressible, the
correction to the jth component of the stress tensor is given
by

�σ j j 
 2S1κ j j

∫ +∞

0
γ̇ dt exp(2κ j j γ̇ t )�(1 − γ̇ t/γc)2

= S1 [exp(2κ j jγc) − 1]. (D1)

Let us have a close look at the term inside the brackets. The
first term has a form of a Finger tensor for a strain given by
the typical strain scale γc, and the strength of the flow from
which the strain originates, κ j j . The term inside the brackets
can therefore be understood as the difference between the
metric in the deformed state, and the unit metric, which is
by definition the strain tensor (or more precisely here its jth
component). Equation (D1) can thus be straightforwardly read
as a Hooke’s law, with a shear modulus S1 and a strain tensor
exp(2κ j jγc) − 1.

The incompressibility condition Tr(κ ) = 0 ensures that the
determinant of the deformation tensor is equal to 1, or here
that the determinant of the Finger tensor is 1. In the limit
of small deformations, which corresponds to κ j jγc 	 1 (or
more precisely, A2γc 	 1, see the Appendix on the Drucker-
Prager limit) one recovers the well-known result that ε is fully
deviatoric [Tr(ε) = 0]. However, pay attention to the fact that
this result only holds in this limit.

This model is, of course, too simple to be really accurate,
but it shows how ε can be identified in our set of equations.
When the Heaviside profile is replaced by the Gaussian one
used in the paper, the procedure stays the same, although the
results are less obvious to interpret since ε is now expressed
as a function of F , which does not let the difference be-
tween the strained and unstrained metrics appear explicitly.
As it turns out, going from the sharp Heaviside profile to
the smoother Gaussian one amounts to accounting for the
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fact that advection is not an instantaneous process, and as a
result, the final expression of the strain is smoothened. The
use of a Lorentzian profile, such as the one used in [60] would

probably lead to the identification of the same type of func-
tion, although in that case, the integral cannot be performed
exactly.
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