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Active osmoticlike pressure on permeable inclusions

Mahmoud Sebtosheikh 1,2,* and Ali Naji 1,3

1School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
2School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran

3Department of Physics, College of Science, Sultan Qaboos University, Muscat 123, Oman

(Received 24 January 2023; revised 25 September 2023; accepted 14 February 2024; published 21 March 2024)

We use a standard minimal active Brownian model to investigate the osmotic-like effective pressure generated
by active fluids on fixed hollow inclusions. These inclusions are enclosed by a permeable (albeit nonflexible)
membrane, and the interior and exterior regions of the inclusions have different particle motility strengths. We
consider both rectangular and disklike inclusions and analyze the effects of various system parameters, such as
excluded volume interaction between active particles, hardness of membrane, and active particle density, on the
effective pressure produced on the enclosing membrane. We focus on the range of intermediate to high motility
strengths and analyze the effective pressure in the steady state. Our findings for the active pressure produced
in the interior and exterior regions of the inclusion indicate that the pressure is higher in the region with lower
motility due to the relatively stronger accumulation of active particles.
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I. INTRODUCTION

Active matter has evolved into a rapidly growing and
diverse field of interest at the common interface of soft mat-
ter, statistical physics, biological sciences, and engineering
[1–8]. Active systems comprise a wide range of biologi-
cal organisms, from macroscale entities such as schools of
fish and flocks of birds to microscale entities such as bac-
teria, algae, and spermatozoa [7,8]. These organisms have
inspired the development and synthesis of many artificially
made active self-propulsive particles, such as Janus colloids,
photoactivated particles, and bimetallic nanorods, in the re-
cent past [8–12]. Active particles continuously take up free
energy from their surrounding medium and convert it to
motion through internal mechanisms, such as extracellular
organelles in flagellated bacteria, or chemical surface reac-
tions, as in Janus colloids. Thanks to their out-of-equilibrium
character, self-propelled particles engender intriguing many-
body effects, including self-organized collective motion (see,
e.g., Refs. [3,4,13,14] and references therein), nonequilib-
rium clustering, and phase separation [14–23], as well as
long-range bath-mediated interactions between inclusions and
boundary walls immersed in active suspensions [24–37].

A particularly interesting facet of active suspensions is the
so-called active or swim pressure produced by the constituent
self-propelled particles [18,34–42]. In equilibrium systems,
pressure can be calculated using thermodynamic, mechan-
ical, and hydrodynamical approaches, leading to the same
result. This result follows a state equation and thus varies
only with bulk properties such as temperature and density.
In active systems, a state equation may not generally exist
[40]. Therefore, the pressure is mainly defined via mechanical
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and hydrodynamical approaches [38–40]. More specifically,
in the case of self-propelled spheres next to flat walls, the
pressure can be described as a state function using activity-
dependent effective temperature and bulk number density of
spheres [37,38]. Active elongated particles and rods present a
different situation where the pressure becomes dependent on
particle-wall interactions [40]. Active pressure has been inves-
tigated on boundaries with different geometries such as flat
walls [36,37], curved surfaces [34–36,41], corners [35], and
sinusoidal and flexible interfaces [43,44]. In addition to the
geometry of boundaries, active pressure can vary depending
on intrinsic features of active particles such as chirality [41],
interparticle interactions, and local concentration [18,34,38].

Recently, active pressure has also been used to explain
other phenomena, including motility-induced phase separa-
tion [15–18], active depletion [35,36], deformation of flexible
vesicles [43–49], anomalous droplet ripening [41,50–53], and
negative surface tension [54–56]. Negative surface tension
emerges at the interface between dilute and condensed phases
of repulsive active particles that undergo motility-induced
phase separation. Despite negative surface tension, the in-
terface is stiff and stable [56]. Droplet ripening in active
fluids transpires in a way that contrasts the so-called Ost-
wald ripening in equilibrium (passive) emulsions. For two
interconnected droplets, while Ostwald ripening [57] implies
shrinkage of smaller droplets at the expense of the larger ones,
the reversed process can take place for droplets suspended
in an active fluid [41,52,53]. In the latter case, the internal
droplet pressure shows a nonmonotonic dependence on its
size, enabling two interconnected droplets to reach a final state
of equal size [41].

The penetration of active particles through flexible mem-
branes has been studied among other problems in the recent
past. The effects of the size, shape, and activity strength of
active particles, as well as the stiffness of the membrane on
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particle penetration, have been explored [58–60]. These stud-
ies have identified three scenarios for penetration: trapping
(active particles not being able to go through the membrane),
penetration with self-healing of the membrane, and pene-
tration with permanent disruption of the membrane [58,59].
Despite the insightful results, other aspects of the problem,
such as the active pressure exerted on permeable boundaries,
have remained unaddressed.

In this paper, we investigate the effective (osmotic-like)
pressure exerted on the enclosing membrane of a perme-
able hollow inclusion in a suspension that involves active
Brownian particles. We ignore membrane undulations and
concentrate on the motility field heterogeneity, which is mod-
eled by taking mismatching activity strengths (self-propulsion
velocities) for active particles inside and outside the inclusion.
The system is studied using Brownian dynamics simulation
in a standard two-dimensional (2D) setting by considering
both rectangular and disklike inclusions. The general aspects
of the model are similar to our previous work in which ef-
fective interactions between two permeable inclusions were
studied [27]. In the present work, we address the behavior of
effective pressure (resulting from active pressure inside and
outside the inclusion) across the parameter space spanned by
the inside and outside Péclet numbers of active particles. We
also explore the dependence of effective pressure on the size
and geometry of the inclusion, the hardness of its enclosing
membrane, as well as interparticle interactions and the con-
centration of active particles.

The model inclusions considered here can mimic soft bi-
ological microcompartments such as cells and soft tissues,
with an example being furnished by tumors invaded by active
drug-delivery agents [61–65]. Artificial examples of such in-
clusions include fluid enclosures such as vesicles, stabilized
(immiscible) droplets in emulsions, and chemically active
droplets [41,48–51,66,67]. Spatially inhomogeneous motil-
ity fields, as considered, can also be realized by producing
nonuniform temperature fields, fluid viscosity, or a heteroge-
neous landscape of environmental stimuli such as light and
chemical reactant [9,10]. Such motility fields are generally
known to result in inhomogeneous nonequilibrium distribu-
tions of active particles. This is because active particles tend to
populate regions of low motility strength where they achieve
longer residence times [27,68–70]. We show that a more di-
verse picture emerges across the parameter space, and active
particles can accumulate more strongly inside and outside the
inclusion (depending on the motility strengths and hardness
of the inclusion membrane), causing a similarly diverse range
of behaviors (including sign change) for the pressure on the
inclusion.

The paper is organized as follows: We introduce our model
in Sec. II and discuss our model predictions for distribution
of active particles in Sec. III and followed by an analysis of
effective pressure on the inclusion in Sec. IV. The paper is
summarized in Sec. V.

II. MODEL AND METHODS

Our model consists of disklike active Brownian particles of
diameter σ moving with a constant self-propulsion speed on a
2D confining surface of area Lx × Ly [71]. Realistic examples

of this type of model include shaken granular matter [13],
swarming bacteria [72], and microswimmers confined to the
interface of two different fluids [73]. The confining surface
embeds a hollow permeable inclusion of rectangular or disk
shape fixed at its center. The inclusion comprises a membrane
enclosure (wall) of thickness w that separates the inside and
outside media, which themselves impart different activities on
the particles. In the case of a rectangular inclusion, the length
of the inclusion in the y direction matches the entire length of
the confining surface, and the centerlines of its walls (black
vertical lines) are separated from each other by a distance of
L2 in the x direction; see Fig. 1(a). In the case of a disklike
inclusion, the effective diameter of the inclusion (distance
between the center and middle of its membrane, shown by
a black circle) is denoted by σc; see Fig. 1(b). The membrane
enclosure is represented by a soft, repulsive potential of range
σ ′ (to be specified later) and thus acts as a permeable interfa-
cial region of thickness

w = σ. (1)

The active Brownian particles move with different self-
propulsion speeds, v1 and v2, outside and inside the inclusion,
respectively. This discontinuous motility field [27,68] is for-
mally expressed as:

vsp(r) = v2 + (v1 − v2)�(r′), (2)

r′ =
{

|x| − L2/2: rectangular inclusion,

|r| − σc/2: disklike inclusion,
(3)

Here r = (x, y) represents the spatial coordinates with respect
to the origin at the center of the confining surface, and �(·)
is the Heaviside step function, which is standardly defined as
�(r′ > 0) = 1 if r′ > 0 and 0 otherwise.

The overdamped Brownian dynamics of active particles is
described by the Langevin equations,

ṙi = vsp(ri ) ni − μT
∂U

∂ri
+ ηi(t ), (4)

θ̇i = ζi(t ), (5)

where {ri(t )} = {(xi(t ), yi(t ))} are the position vectors and
{ni(t )} = {(cos θi(t ), sin θi(t ))} are the self-propulsion orien-
tation vectors of active particles labeled by i = 1 . . . , N . The
angular orientation θi is measured from the x axis, μT is the
translational particle mobility, U = U ({r j}, RI ) is the sum of
the interaction potentials between the constituent particles,
where RI = (0, 0) is the position vector of the inclusion. ηi(t )
and ζi(t ) in Eqs. (4) and (5) are translational and rotational
Gaussian white noises, respectively, that are characterized by
zero mean, 〈ηi(t )〉 = 〈ζi(t )〉 = 0, and the correlators

〈ηi(t )η j (t
′)〉 = 2DT δi jδ(t ′ − t ), (6)

〈ζi(t )ζ j (t
′)〉 = 2DRδi jδ(t ′ − t ), (7)

where DT and DR are the translational and rotational diffu-
sion coefficients, respectively. The Einstein-Smoluchowski-
Sutherland relation implies DT = μT kBT , and the low-
Reynolds-number (Stokes) hydrodynamics for no-slip spheres
gives DR = 3DT /σ 2 [74].
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FIG. 1. Schematic view of (a) rectangular and (b) disklike permeable inclusions in a bath of active Brownian particles (of diameter σ ) with
mismatching Péclet numbers outside (Pe1) and inside (Pe2) the inclusions. Dashed white lines in (a) and dashed white circles in (b) show the
inner and outer borders of permeable membranes (of thickness w) that enclose each inclusion. Correspondingly, the solid black lines and circle
show the midlines of the membrane.

The active particles interact with each other via a
short-ranged steric pair potential, utilized through the Weeks-
Chandler-Andersen (WCA) pair potential, UWCA; i.e., for the
ith and jth active particles, we have

U (i j)
WCA =

⎧⎨
⎩ε

[(
σ
ri j

)12 − 2
(

σ
ri j

)6 + 1
]
: ri j � σ,

0: ri j > σ,
(8)

where ri j = |ri − r j |. When active particles go through the
interfacial region of the inclusion, they experience a soft
repulsive WCA (sWCA) potential, which for the ith active
particle, is assumed to be of the form [27]

U (i)
sWCA = F̃max β

[
σ ′ 12(

r′2
i + α2

)6 − σ ′ 6(
r′2

i + α2
)3 + 1

4

]
, (9)

for |r′
i | � σ ′, and U (i)

sWCA = 0 otherwise. Here r′
i is defined

through Eq. (3) and we have

σ ′ = (σ + w)/2, α = (21/3 − 1)1/2σ ′,

β = 8.038×10−5kBT, (10)

where β is a coefficient used to normalize the maximum value
of the derivative of the expression enclosed by brackets in
Eq. (9) with respect to r′

i . The dimensionless parameter F̃max

represents the magnitude of the maximum force produced by
the sWCA potential. In Appendix A, we demonstrate that
F̃max = 2Pep, where Pep can be viewed as the characteristic
Péclet number the active particles would require to success-
fully transit through the inclusion membrane in the absence
of thermal noise and interactions between active particles. We
utilize Pep to identify the hardness of the inclusion membrane.

A. Simulation methods and parameters

We employ standard Brownian dynamics methods [75] to
numerically solve Eqs. (4) and (5). We calculate the effective
pressure imparted on the inclusions in the steady state. The
results are analyzed in terms of dimensionless Péclet numbers
(which we may interchangeably refer to as motility strengths)

with the definitions

Pe1,2 = σ v1,2

2DT
(11)

for the regions outside (1) and inside (2) the inclusion, respec-
tively, Péclet numbers are varied over a wide range of values
from 20 up to 100. These values correspond to persistence
lengths for active particles, ranging from lp = v/DR = 13.3σ

up to 66.6σ .
In the simulations, we consider a rectangular simulation

box with periodic boundary conditions that imitate linear and
two-dimensional arrays of inclusions for the cases of rectan-
gular and disklike inclusions, respectively. For the most part,
we fix the global average density of active particles as ρ̄ =
Nσ 2/A = 0.128, corresponding to an area fraction of φ =
Nπσ 2/(4A) = 0.1. The surface area of the 2D simulation
box is taken as A = LxLy = 800σ 2. In the case of rectangular
and disklike inclusions, we use Lx = 2Ly and Lx = Ly, re-
spectively. We shall consider a higher global average density
of active particles, ρ̄ = 0.255, corresponding to φ = 0.2, in
Sec. IV D, where we focus on the case of interacting active
particles and examine the role of their area fraction. As de-
fined, ρ̄ gives the rescaled bulk density of active particles
without excluding the inclusion area. The width of the rect-
angular inclusion is taken as L2 = 5σ , 10σ , and 20σ , and the
diameter of the disklike inclusion is denoted as σc = 5σ , 10σ ,
and 20σ . We use a fixed value of ε = 10kBT and vary Pep

from 26.3 to 78.9 to study the effects of membrane hardness.
The simulations involve 100 to 204 active particles and a

rescaled simulation time step of δt̄ = DT δt/σ 2 = 1.33×10−4.
We use a total of 1.5×107 to 2.5×108 simulation time steps,
with an initial 2.5×106 to 1.2×108 number of steps used for
relaxation purposes. For lower Péclet numbers, we use longer
simulation times because the system slowly reaches the steady
state and the measured quantities slowly fluctuate around their
mean values. We extend the measurement time to ensure that
the noise cancels out, allowing for more accurate computation
of the desired quantities. The averaged quantities are calcu-
lated by further averaging them across 4 to 10 statistically
independent simulations.
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FIG. 2. (a) Fraction of particles remaining inside the rectangular inclusion during depletion plotted on a logarithmic scale as a function of
rescaled time for various motility strength values. (b) Rescaled time constant, τ , see Eq. (12), plotted as a function of motility strength for the
rectangular inclusion. In both panels, the width of the rectangle is L2 = 20σ and the membrane hardness is Pep = 25.6. Additionally, in panel
(b), the error bars are the same size as the symbols.

III. SPATIAL DISTRIBUTION OF ACTIVE PARTICLES
AND CROSS-MEMBRANE PERMEATION

In this section, we examine the penetration of active
particles through the inclusion’s membrane and the spa-
tial distribution of active particles both inside and outside
the inclusion. When we disregard the effects of thermal
fluctuations and interactions between active particles in the
Langevin equations (4), we observe that the membrane hard-
ness strength, Pep, serves as the threshold motility strength
that allows particles to cross the membrane. In this situation,
the inclusion’s membrane effectively resists active particles
and prevents them from crossing the membrane when motility
strengths are weaker than Pep. This finding aligns with pre-
vious studies [58,59], which have suggested that a threshold
motility strength governs the penetration of individual active
particles (without considering thermal noise in their dynamic
equations) through the membrane. In contrast, in our standard
minimal, active Brownian model, which accounts for thermal
fluctuations and inter-particle interactions, active particles can
cross the membrane even when motility strengths are below
Pep. This phenomenon arises due to the facilitative effects
of thermal fluctuations and particle collisions on membrane
crossing.

A. Membrane crossing

To investigate the penetration of active particles through
the enclosing membrane to the outside region, when particle
interactions are disabled, we analyze a rectangular inclusion
with a width of L2 = 20σ and a membrane hardness of Pep =
52.6. Initially, all particles are located inside the inclusion. As
particles move across the inclusion and cross the membrane,
they become unable to return to the inclusion. We investigate
the depletion of active particles within the inclusion and ob-
serve that the number of particles, N , decays exponentially
over time according to the equation

N = N0 exp(−t/τ ), (12)

where N0 is the number of particles at t = 0 and τ is the
time constant, characterizing the time at which the number
of particles drops by a factor 1/e.

Figure 2(a) illustrates the logarithmic fraction of particles
that remain inside the inclusion over time for various motility
strength values. By decreasing the strength of motility, ac-
tive particles deplete the inclusion more slowly. Figure 2(b)
displays the time constant τ as a function of the motility
strength Pe. We observe that τ increases significantly as Pe
decreases.

To allow for the penetration of active particles through
the membrane, it is necessary for the combined effect of
the active force and stochastic force to exceed the repulsive
force exerted by the membrane at the particle’s position. The
thermal stochastic force is generated by thermal fluctuations
and follows a Gaussian distribution with a mean of zero and
a variance of

√
2/δt̄ kBT/σ = 122.6kBT/σ , which is equiva-

lent to a motility strength of Pev = 61.3. Active particles are
able to cross the membrane through a series of movements
over multiple time steps, with the number of steps typically
being less than τR/δt (where τR = 1/DR represents the per-
sistence time of active particles). This is because particles
must cross the membrane before their direction changes and
they move away from the membrane. The probability for the
combined forces (active and stochastic force) to surpass the
repulsive force at the particle’s position in each time step
is not necessarily too small for a given motility strength.
However, the probability of a successful membrane crossing
event, which would be related to the product of the afore-
mentioned single-time-step probabilities, will particularly be
small. As the motility strength of particles decreases, thermal
fluctuations need to generate a sequence of stronger stochastic
forces in order for particles to overcome the potential barrier
of the membrane. The Gaussian distribution of the thermal
stochastic force makes the generation of this force sequence
less likely. As a result, active particles make more frequent
attempts to cross the membrane, leading to an increased
membrane crossing time. Additionally, reducing the motility
strength Pe [76] reduces the accumulation of active particles
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FIG. 3. (a) The rescaled density difference between region 2 (inside the inclusion) and region 1 (outside the inclusion) is shown as a
color-coded density map in terms of Pe1 and Pe2 for noninteracting active particles in a rectangular inclusion with a width of L2 = 10σ .
(b) Same as (a) but here we show the results for a disklike inclusion with a diameter of σc = 10σ . Panel (c) presents the density difference
for interacting active particles in a rectangular inclusion with a width of L2 = 10σ . Panel (d) depicts the rescaled density differences for a
disklike inclusion with a diameter of σc = 10σ . In all panels, the parameters ρ̄ = 0.128 and Pep = 52.6 are maintained. The middle dashed
line represents the contour line of zero density difference. The dashed lines within the red and blue areas indicate the contour lines of density
difference for values of 0.99�ρ̄trp and 0.99�ρ̄dep, respectively [the latter lines are only visible in panels (a) and (b)]. The solid diagonal lines
depict the reference bisector Pe1 = Pe2.

against the membrane, resulting in a slower depletion (escape)
of active particles from within the inclusion.

Figure 2(b) indicates that the distribution of active particles
inside and outside the inclusion reaches their steady-state
distribution more slowly from a given initial distribution as
the motility strengths Pe1 and Pe2 decrease. To accelerate the
achievement of a steady state, we homogeneously distribute
the active particles throughout the simulation box. However,
when it comes to extremely low motility strengths, reaching
a steady state is not feasible with the computational resources
currently available. Therefore, we restrict our study to inter-
mediate and high motility strengths, where 20 � Pe1,2 � 100,
in order to analyze the system in a steady state where the com-
puted properties have relatively constant mean values over
time. The dashed lines indicate the limitations of our com-
putational resources, where Pe = 20 and τDT /σ 2 = 21 700.
This requires more than 108 time steps for the system to reach
a steady state.

In the case of interacting active particles, collisions be-
tween particles further facilitate membrane crossing. Here the
time it takes for an individual particle to cross the membrane
depends not only on the motility strength but also on the
average density of particles inside the inclusion. One might
naively expect that a constant fraction of active particles is

depleted from inside the inclusion over a specific period of
time, implying an exponential time dependence for the deple-
tion process. However, due to the fact that the average speed
of membrane crossing for individual particles is influenced
by the time-varying interior average density of particles, we
find that there is no specifically simple trend for the depletion
process.

B. Spatial distribution of active particles

To investigate the densities of active particles within and
outside the inclusion (regions 2 and 1) across different motil-
ity strengths Pe1 and Pe2, we calculated the difference in
average density between the two regions, denoted as �ρ =
ρ2 − ρ1. Here ρ1,2 = N1,2/(L1,2Ly), where N1,2 represents the
number of particles present in region 1 (outside the inclusion)
and region 2 (inside the inclusion), and L1,2 denotes the cor-
responding region widths. Figure 3(a) presents a color map
illustrating the difference in rescaled average densities, �ρ̄,
as a function of Pe1 and Pe2 for a rectangular inclusion with
a width of L2 = 10σ and noninteracting particles. Contour
lines of constant density difference, obtained by interpolat-
ing discrete data acquired at resolutions of �Pe1 = 2.5 and
�Pe2 = 2.5, are represented by dashed lines. Positive density
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differences are indicated by warm colors, while cool colors
signify negative density differences. As depicted in Fig. 3(a),
regions with lower motility generally exhibit higher average
density due to particles spending more time in these areas and
facing increased difficulty in crossing the membrane. Greater
disparities in motility strengths result in more significant vari-
ations in density. The range of rescaled density differences,
�ρ̄, spans from −0.17 to 0.51, indicating complete particle
depletion from the inclusion at the lower end of the range and
complete particle trapping within the inclusion at the higher
end. Positive density differences vary over a wider range
compared to negative differences, which can be attributed to
the smaller area of the inclusion leading to a higher average
density. By reducing the width of the inclusion L2, the range
of positive density differences increases while the range of
negative density differences decreases. The dashed lines in
the blue and red regions of the color map shown in Fig. 3(a)
represent the parameter space {Pe1, Pe2} where particles are
nearly depleted from the inclusion and almost completely
trapped within the inclusion, respectively. The dashed line on
the border of the red and blue areas represents the contour
line of zero density difference. Notably, this line is positioned
above the reference line, denoted as Pe1 = Pe2, which we
refer to as the reference line for brevity. The reference line is
depicted as a solid black line in Fig. 3. For L2 = Lx/2 = 20σ ,
where the areas inside and outside the inclusion are equal,
the zero contour line coincides with the reference line. As
L2 decreases from 20σ (data not displayed), the contour line
gradually shifts further above the reference line.

Figure 3(b) displays the density difference for a circular
inclusion with a diameter of σc = 10σ in the case of non-
interacting particles. The range of density difference varies
significantly, from −0.142 (density difference in full deple-
tion, �ρ̄dep) to 1.274 (density difference in full trapping,
�ρ̄trp), which is considerably wider than the range observed
for the rectangular inclusion of L2 = 10σ . This is because
the circular inclusion has a smaller area than the rectangular
inclusion. As a result, when active particles are fully trapped
within the inclusion, there is a greater density difference. In
contrast to the rectangular inclusion, the contour line repre-
senting zero density difference lies below the reference line.
This characteristic becomes increasingly prominent for higher
motility strengths.

Figures 3(c) and 3(d) display the density differences for
interacting particles in the case of a rectangular inclusion with
a width of L2 = 10σ and a circular inclusion with a diameter
of σc = 10σ , respectively. As shown in the panels, the density
differences exhibit weaker variations within a narrower range
(ranging from −0.162 to 0.437 for the rectangular inclusion
and from −0.140 to 0.691 for the disklike inclusion) com-
pared to the density differences observed in the noninteracting
case depicted in Figs. 3(a) and 3(b). This is because colli-
sions between interacting particles facilitate the crossing of
membranes, thereby reducing the difference in residence time
of active particles between regions 1 and 2. However, it is
important to note that there are limitations on the average par-
ticle density inside or outside the inclusion when dealing with
interacting particles. Excluded volume interactions between
particles prevent the density from exceeding the density of
hexagonal close packing, ρ̄hcp = 1.159, which corresponds to

a packing fraction of φhcp = 0.91 [15]. For the disk with a
diameter of σc = 10σ , active particles cannot be completely
trapped inside the inclusion due to the high average density
of particles inside the inclusion, which exceeds ρ̄hcp. The
excluded volume interaction allows for a maximum difference
in density of �ρ̄ = 1.146. Figure 3(d) shows that the maxi-
mum density difference is not achieved for motility strengths
within the range of 20 � Pe1,2 � 100. In Fig. 3(c), which
illustrates the density difference for a rectangular inclusion
with a width of L2 = 10σ and interacting particles, the zero
contour line (dashed line) lies higher above the reference
line (Pe1 = Pe2) compared to the noninteracting case. The
dashed line in Fig. 3(d) indicates the contour line for zero
density difference of a disk-shaped inclusion with a diameter
of σc = 10σ in the case of interacting particles. By increasing
Pe1, the zero contour line initially shifts above the reference
line but eventually shifts below it.

Figure 3 gives an overall view of how the active particles
are distributed in both regions. To gain a more comprehensive
understanding of their distribution, we analyze the density
of active particles near the inclusion membrane and in the
bulk, both in the interior and exterior regions. Since, in the
distribution of active particles, there is axial symmetry relative
to the y axis in the case of rectangular inclusion and circular
symmetry in the case of disklike inclusion, we examine the
density profile based on the distance from the midline of the
inclusion membrane which we denote by r′ [see Eq. (3)]. The
value of r′ represents the nearest distance from the membrane,
with the plus and minus signs referring to positions located
outside (+) or inside (−) the inclusion. Figures 4(a) and 4(b)
display the density profile of noninteracting active particles
for a rectangular inclusion with a width of L2 = 10σ and a
disk-shaped inclusion with a diameter of σc = 10σ , respec-
tively. Figures 4(c) and 4(d) display the density profiles for
interacting particles in the case of a rectangular inclusion
with a width of L2 = 10σ and a disk-shaped inclusion with
a diameter of σc = 10σ , respectively. We set the motility
strength inside the inclusion to Pe2 = 30 and adjust the motil-
ity strength outside, Pe1, within the range of 20 to 40. This
range corresponds to a persistence length, lp, that is 1.33 to
2.66 times larger than the width or diameter of the inclu-
sion. In cases where the persistence lengths exceed the size
of the inclusion, active particles tend to accumulate strongly
against the membrane. This is reflected by significant peaks
in the density profiles at distances near the membrane, as
shown in all panels of Fig. 4. By comparing Figs. 4(c) and
4(d) (interacting case) with Figs. 4(a) and 4(b) (noninter-
acting case), we observe that excluded volume interactions
between the particles result in smaller peaks near the mem-
brane. These interactions also induce a second peak in the
density profile due to the layering of active particles around
the membrane [25–28]. In both regions (inside and outside
the inclusion), the density profile displays one or more peaks
that decrease as the distance from the membrane increases,
eventually reaching a constant value in the bulk. The over-
all trend observed in all panels is that the density near the
membrane and in the bulk is higher in the region of lower
motility strength compared to the region of higher motility
strength.
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(a) (b)

(c) (d)

FIG. 4. Rescaled density profiles of active particles as a function of rescaled distance from the inclusion membrane with a membrane
hardness of Pep = 52.6 are shown for fixed Pe2 = 30 and different values of Pe1 as indicated on the graphs; r′, the distance from the inclusion
membrane, is defined as Eq. (3). For the rectangular inclusion, r′ is the lateral position (distance) relative to the midline of the inclusion
membrane while for the disklike inclusion, the radial position (distance) is from the middle circle of the inclusion membrane (see Fig. 1). The
plus and minus signs of the distance indicate whether the position is outside or inside the inclusion, respectively. Panel (a) displays the density
profile for noninteracting active particles in a rectangular inclusion with a width of L2 = 10σ , while panel (b) shows the density profile for
noninteracting active particles in a disklike inclusion with a diameter of σc = 10σ . Panel (c) illustrates the density profile for interacting active
particles in a rectangular inclusion with a width of L2 = 10σ , and panel (d) presents the density profile for interacting active particles in a
disklike inclusion with a diameter of σc = 10σ . The interfacial region around the inclusions is indicated by three dashed lines.

Figures 4(a) and 4(c) depict the density profile of nonin-
teracting and interacting active particles, respectively, in the
case of a rectangular inclusion with a width of L2 = 10σ . The
blue curves in Figs. 4(a) and 4(c) indicate that the densities are
almost the same near the membrane and in the bulk for Pe1 =
Pe2 = 30. However, Figs. 3(a) and 3(c) show that the density
difference between the two regions is positive, indicating that
the average density of active particles inside the rectangular
inclusion is higher than outside. This discrepancy can be
explained as follows: The average densities inside and out-
side the inclusion are equal to 2

∫ 0
−L2/2(ρ(r′) − ρbulk

2 )dr′/L2 +
ρbulk

2 and 2
∫ L1/2

0 (ρ(r′) − ρbulk
1 )dr′/L1 + ρbulk

1 , respectively.
Here ρbulk

1,2 represent the density of active particles in the bulk
(i.e., sufficiently away from the boundaries) for regions 1 and
2 (i.e., outside and inside the inclusion, respectively). These
bulk densities are almost the same in both regions. However,
[ρ(r′) − ρbulk

1,2 ] equals zero everywhere except near the mem-
brane in both regions. As a consequence, the foregoing spatial

integrals are equal to the number of active particles accumu-
lated near the membrane per unit of the membrane length
(Ly) [76]. Also, the number of particles accumulated near the
membrane, both inside and outside the inclusion, are equal.
This is because the density peaks near the membrane have the
same heights and widths in both regions. Since L2 < L1, the
average density inside the inclusion is larger than outside. For
large motility strengths, the accumulation of active particles
against the membrane is weakened due to likelier membrane
crossing events. This is the reason we see a decrease in the
density difference around the reference line Pe1 = Pe2 (shown
by the solid black line) in Figs. 3(a) and 3(c). Additionally, we
observe that the contour line of zero density difference gets
closer to the reference line at large motility strengths.

Figures 4(b) and 4(d) display the density profile for a
disklike inclusion with a diameter of σc = 10σ in the case
of noninteracting and interacting active particles, respectively.
For Pe1 = Pe2 = 30, inside the inclusion, the densities of
particles near the membrane and in the bulk are lower than
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FIG. 5. Rescaled effective pressure acting on a model inclusion as a function of Péclet numbers {Pe1, Pe2} for noninteracting active particles
and enclosing membrane hardness Pep = 52.6. The first row of panels displays the effective pressure on a rectangular inclusion with different
rescaled widths: (a) L2/σ = 20, (b) 10, and (c) 5. The second row of panels shows the effective pressure on a disklike inclusion with different
rescaled diameters: (d) σc/σ = 20, (e) 10, and (f) 5. Dashed lines represent pressure contours at the tick values of the color sidebar for each
panel.

outside for the case of noninteracting particles [see the blue
curve in Fig. 4(b)]. For the case of interacting particles, these
are reversed [see the blue curve in Fig. 4(d)].

IV. EFFECTIVE PRESSURE ON THE INCLUSION

We thoroughly investigate the roles of system parameters
on the effective pressure acting on the inclusion. These pa-
rameters include the mismatch in motility fields between the
inside and outside regions of the inclusion, the geometry of
the inclusion, the excluded volume interaction between ac-
tive particles, the membrane hardness, as well as the global
average density of active particles on the effective pressure.
The effective pressure on the inclusion membrane is obtained
following its mechanical definition [40] and is expressed in
rescaled form as:

P̄ = 1

ρlkBT

N∑
i=1

[1 − 2�(r′
i )]

〈∣∣∣∣ ∂

∂ri
U (i)

sWCA

∣∣∣∣
〉
, (13)

where l is the perimeter of the membrane enclosure, ρ is
the global average density of active particles, and r′

i is defined
by Eq. (3) and the brackets denote steady-state time aver-
aging over different simulation runs. The expression inside
the brackets represents the instantaneous force due to the ith
active particle as it interacts with the inclusion membrane.
P̄ > 0 (P̄ < 0) indicates an outward (inward) pressure.

A. Noninteracting active particles

Figures 5(a)–5(c) presents the effective pressure exerted on
a rectangular inclusion as a function of motility strengths, Pe1

and Pe2, ranging from 20 to 100 for noninteracting active

particles with different widths of the inclusion, L2, in the
range of [5σ, 20σ ]. This range of motility strengths corre-
sponds to persistence lengths that vary from 13.3σ to 66.7σ .
The color scheme in the figure uses red to indicate positive
(outward) pressures and blue for negative (inward) pressures.
Dashed lines represent constant-pressure contour lines calcu-
lated by interpolating discrete data obtained with resolutions
of �Pe1 = 2.5 and �Pe2 = 2.5.

The effective pressure on a rectangular inclusion is primar-
ily determined by the difference in average particle densities
between the two regions and the strengths of motility fields.
As discussed in the previous section, the density difference
between region 2 (inside the inclusion) and region 1 (outside
the inclusion) is positive when the motility strength inside the
inclusion is less than that outside (Pe2 < Pe1), owing to the
stronger concentrate of active particles in the region of lower
motility. This density difference plays a dominant role in de-
termining the sign of the effective pressure, which is positive
when Pe2 < Pe1 and negative in the reversed situation (Pe2 >

Pe1). For Pe1 = Pe2, the density difference is positive when
L2 < Lx/2 = 20σ [as shown in Fig. 3(a)], but the density of
active particles near the inclusion membrane is almost equal in
both regions [as depicted in the blue curve in Fig. 4(a)]. This
leads to zero effective pressure on the rectangular inclusion
[as observed in Figs. 5(a)–5(c)].

Figure 6(a) illustrates the rescaled effective pressure on
a rectangular inclusion with width L2 = 10σ in relation to
exterior motility strength, Pe1, for various fixed interior motil-
ity strengths, Pe2. When Pe2 = 20, the effective pressure is
consistently positive due to Pe2 � Pe1 within the given range
of Pe1, resulting in a positive density difference. As Pe1

034607-8



ACTIVE OSMOTICLIKE PRESSURE ON PERMEABLE … PHYSICAL REVIEW E 109, 034607 (2024)

−400

−200

 0

 200

 400

 20  40  60  80  100

P−

Pe1

Pe2=20  
Pe2=40  
Pe2=60  
Pe2=80  
Pe2=100

−200

 0

 200

 400

 600

 20  40  60  80  100

P−

Pe2

Pe1=20  
Pe1=40  
Pe1=60  
Pe1=80  
Pe1=100

(a) (b)

FIG. 6. (a) Rescaled effective pressure acting on the rectangular inclusion, P̄, as a function of Pe1 for different fixed values of Pe2, and
(b) as a function of Pe1 for different fixed values of Pe2, as shown in the graphs. In both panels, L2/σ = 10 and enclosing membrane hardness,
Pep = 52.6. Errors are smaller than the size of the symbols.

increases, the effective pressure monotonically increases until
it reaches a constant value. This is because an increase in
Pe1 leads to a rise in density difference until the maximum is
reached, trapping total active particles within the inclusion. At
this point, the exterior active pressure vanishes while the inte-
rior active pressure remains constant due to the fixed interior
motility strength. Conversely, when Pe2 > 20, the effective
pressure initially decreases as Pe1 increases until it reaches
a global minimum at Pe∗

1, after which it increases. Figure 6(a)
indicates that by increasing Pe2, the global minimum shifts to
the right and Pe∗

1 increases up to 35.
Although the density difference reaches its minimum value

at the lowest level of exterior motility strength, Pe1 = 20, the
effective pressure has a minimum value at Pe∗

1 > 20. This is
because, for Pe1 � Pe∗

1, the density difference remains almost
constant with Pe1, and its value is close to the minimum where
active particles are completely depleted from the inclusion.
In this situation, the exterior active pressure increases with
Pe1 due to stronger interaction between exterior active
particles and the inclusion membrane, resulting in a decrease
in effective pressure. However, for Pe1 > Pe∗

1, the density
difference increases (the density outside the inclusion
decreases) as Pe1 increases, and this effect is stronger than
the effect of increasing the strength of interaction between
exterior active particles and the membrane. As a result, there
is an increase in effective pressure.

The relationship between effective pressure and interior
motility strength, while holding exterior motility strength
Pe1 constant, exhibits an opposite trend compared to the
relationship between effective pressure and exterior motility
strength, Pe1 at fixed interior motility strengths [compare
Figs. 6(b) and 6(a)]. This is due to the fact that as Pe2

increases, the density difference decreases, whereas it
increases with Pe1. Figure 6(b) shows the global maxima
for various fixed exterior motility strengths, while Fig. 6(a)
displays the global minima for different fixed interior motility
strengths. The maxima have a larger absolute value than
the minima because the inclusion area is smaller than the
surrounding region, leading to a higher average density of
active particles inside the inclusion.

Returning to Fig. 5(a), we present the effective pressure
for a rectangular inclusion width of L2 = Lx/2 = 20σ . The

red and blue colors and contour lines exhibit symmetry with
respect to the line Pe1 = Pe2, indicating that exchanging Pe1

and Pe2 reverses the direction of the effective pressure. This is
due to the fact that the regions inside and outside the inclusion
have equal widths of L2 = L1 = Lx/2. However, this symme-
try is disrupted for L2 �= Lx/2, as shown in Figs. 5(b) and
5(c). By decreasing the inclusion width, L2, outward (positive)
and inward (negative) pressures become stronger and weaker,
respectively, as shown from Figs. 5(a) to 5(c); the red colors
become darker while blue colors become lighter. Tables I
and II provide the maximum and minimum pressure values
and their corresponding coordinates in the parameter space
{Pe1, Pe2} for Figs. 5(a)–5(c).

The coordinates of the maximum and minimum pressure
remain fixed in the parameter space {Pe1, Pe2} for different
inclusion widths, L2. However, the values of the maximum
and minimum pressures change with L2. As L2 decreases,
the increase rate of the maximum pressure, P̄max, exceeds the
decrease rate of the minimum pressure, P̄min. This rate of
change in the maximum and minimum pressures depends on
the rate of variation in the difference of the average densities
in the two interior and exterior regions. By reducing the width
of the region of lower (higher) motility, the average densi-
ties of active particles in both regions increase (decrease),
and the absolute value of difference between them increases
(decreases). Consequently, positive (outward) and negative
(inward) pressures increase and decrease, respectively.

We now discuss the scenario of a disk-shaped inclusion
present in an active bath. The effective pressure in this case
is somewhat similar to that of a rectangular inclusion, but
there are also some subtle differences that arise (as can be
observed by comparing the bottom row of panels with the top

TABLE I. Maximum pressure P̄max, and its coordinates in the
parameter space {Pe1, Pe2} for Figs. 5(a)–5(c).

Panels P̄max Pe1 Pe2

(a) L2/Lx = 0.5 495 100 35
(b) L2/Lx = 0.25 608 100 35
(c) L2/Lx = 0.125 687 100 35
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TABLE II. Minimum pressure P̄min and its coordinates in the
parameter space {Pe1, Pe2} for Figs. 5(a)–5(c).

Panels P̄min Pe1 Pe2

(a) L2/Lx = 0.5 −496 35 100
(b) L2/Lx = 0.25 −419 35 100
(c) L2/Lx = 0.125 −389 35 100

ones in Fig. 5). The contour lines in the case of a disk-shaped
inclusion differ from those in the rectangular case. Figure 7
displays the contour lines of zero pressure for disk-shaped in-
clusions of varying diameters, namely σc/σ = 20, 10, and 5.
Unlike the rectangular case, the contour lines of zero pressure
for the disk-shaped inclusion do not align with the straight
line of Pe1 = Pe2 (which we refer to as the reference line and
illustrate by the solid black line in Fig. 7). The contour lines
lie entirely below the reference line because the density dif-
ference is negative for Pe1 = Pe2 in the case of noninteracting
active particles and disk-shaped inclusion [as demonstrated in
Fig. 3(b)]. For low and moderate motility strengths, the con-
tour line of zero pressure almost coincides with the contour
line of zero density difference. For a larger inclusion diameter,
both contour lines match each other over a more extensive
range of motility strengths (although this data is not shown).
However, for sufficiently high motility strengths, the contour
line of zero pressure lies below the contour line of zero density
difference. This is because the density difference becomes
zero when Pe1 is moderately greater than Pe2 [see the middle
dashed line in Fig. 3(b)], resulting in a moderately stronger
interaction between active particles outside the inclusion and
the membrane than inside the inclusion. As a result, the effec-
tive pressure is negative when the density difference is equal
to or slightly more than zero.

Figures 5(d)–5(f) demonstrate that the effective pressure
increases more significantly with a decrease in size (diameter)
for disklike inclusions compared to rectangular inclusions [as
seen in Figs. 5(a)–5(c)]. This is due to the fact that the area
of the disk inclusion varies proportionally with the square of
its diameter, while the area of the rectangular inclusion varies
linearly with its width. As a result, the density difference of
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FIG. 7. Contour lines of P̄ = 0 as a function of Pe1 and Pe2 for
disklike inclusions of different diameters, as indicated on plot. The
solid line represents the reference line Pe2 = Pe1.

the disklike inclusion increases more strongly as the diameter
of the inclusion decreases.

B. Interacting active particles

In Sec. IV A, we analyzed the behavior of noninteracting
active particles, and now we will explore the interplay be-
tween effective pressure and steric interactions between active
particles. To accomplish this, we will enable steric interac-
tions and compare the results for both cases of interacting
and noninteracting active particles. In the case of interact-
ing particles, many-body effects come into play. Figure 8
displays the effective pressure on the inclusion exerted by in-
teracting active particles for both rectangular (top-row panels)
and disklike inclusions (bottom-row panels). By comparing
the effective pressure in the case of interacting (Fig. 8) and
noninteracting particles (Fig. 5), we observe that the effective
pressure in the former case is weaker and varies more gradu-
ally with the motility strengths, Pe1 and Pe2. This is due to the
weaker accumulation of interacting active particles against the
membrane in both regions and a lower magnitude of density
difference (see Fig. 3 and 4 and compare their bottom-row
panels with the top-row panels).

Figures 8(d)–8(f) present the effective pressure on the
disklike inclusion with diameters σc/σ = 20, 10, and 5, re-
spectively, in the case of interacting active particles. As the
diameter of the inclusion decreases, the absolute value of
negative pressures consistently decreases due to the reduc-
tion in exterior average density of active particles, resulting
in a decrease in the absolute value of negative density dif-
ference. Positive pressures increase when the diameter σc is
changed from 20σ to 10σ but they decrease the diameter
is changed from 10σ to 5σ . When the motility strength in-
side the inclusion is significantly less than outside, active
particles predominantly or entirely occupy the region in-
side the inclusion. By decreasing σc, the average density of
active particles inside the inclusion increases up to a max-
imum value corresponding to the density of particles in a
lattice with a close-packing hexagonal arrangement, ρ̄hcp =
1.159. In reality, excluded-volume interactions between active
particles prevent the density from exceeding ρ̄hcp = 1.159.
Conversely, the average density of active particles outside
the inclusion decreases by reducing the inclusion diameter
until it reaches a minimum area capable of trapping all ac-
tive particles within the inclusion (when the interior average
density reaches ρ̄hcp = 1.159). For this range of σc values,
positive effective pressures increase by reducing the diam-
eter. After that, while the interior average density remains
constant, the exterior average density increases due to more
active particles remaining outside the inclusion. As a result,
the values of positive pressures decrease. In the range of
motility strengths (20 � Pe1,2 � 100) that we consider, the
interior average density cannot reach ρ̄hcp for σc/σ = 10 and
5. However, when the density difference is maximum for both
diameters at Pe1 = 100 and Pe2 = 20, the exterior average
density of active particles for σc/σ = 5 is greater than for
σc/σ = 10. As a result, the exterior active pressure weakens
the effective pressure more for σc/σ = 5, resulting in a lower
maximum effective pressure than the maximum pressure for
σc/σ = 10. Therefore, the disk with a diameter of σc/σ = 10
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FIG. 8. Rescaled effective pressure acting on a model inclusion as a function of Péclet numbers {Pe1, Pe2} for interacting active particles
with rescaled global average density, ρ̄ = 0.128 (φ = 0.1) and enclosing membrane hardness Pep = 52.6. The first row of panels displays the
effective pressure on a rectangular inclusion with different rescaled widths: (a) L2/σ = 20, (b) 10, and (c) 5. The second row of panels shows
the effective pressure on a disklike inclusion with different rescaled diameters: (d) σc/σ = 20, (e) 10, and (f) 5. Dashed lines represent pressure
contours corresponding to the tick values indicated on the color sidebar for each panel.

has the largest maximum effective pressure among inclusions
with diameters σc/σ = 20, 10, and 5. This is different from
the case of noninteracting active particles, where the inclu-
sion with a diameter of σc/σ = 5 has the largest maximum
effective pressure.

Figure 9 displays contour lines of zero effective pressure
for disklike inclusions with different diameters. As the di-
ameter decreases, the contour lines deviate more from the
reference line (the line of Pe1 = Pe2). The contour lines lie
above the reference line for 20 � Pe1,2 � 40 and below the
reference line for Pe1,2 > 40. This is different from the nonin-
teracting case where the contour lines are completely below
the reference line (compare Figs. 9 and 7). These contour
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FIG. 9. Contour lines of P̄ = 0 as a function of Pe1 and Pe2 for
disklike inclusions of different diameters as indicated on the plot.
Solid line represents the reference line Pe2 = Pe1.

lines match their contour lines of zero density difference in
the range of low and intermediate motility strengths. For high
motility strengths, the contour lines of zero pressure lie below
their contour lines of zero density difference (data not shown)
due to a moderately larger exterior active pressure, causing
the effective pressure becoming negative when the density
difference is equal to or slightly greater than zero.

C. Role of membrane hardness

In this section, we discuss how the hardness of the enclos-
ing membrane affects the effective pressure on the inclusion.
Figures 10(a)–10(c) displays the effective pressure on the
rectangular inclusion as a function of motility field strengths,
Pe1 and Pe2, for a fixed width of the rectangle, L2 = 10σ ,
and varying values of the membrane hardness parameter,
Pep = 78.9 (a), 52.6 (b), and 26.3 (c). The dynamics of the
system significantly slows down with increasing Pep. Thus,
to ensure that the effective pressure for Pep = 78.9 is com-
puted in the steady state, we allow a relaxation time (3×107

time steps) which is an order of magnitude longer than what
is used for Pep = 52.6 and 26.3 at low motility strengths
(20 � Pe1,2 < 30). As shown, the overall magnitude of the
effective pressure increases with the strength of the membrane
hardness, Pep. The areas of larger (lower) effective pressure
in the parameter space {Pe1, Pe2} expand as the membrane
hardness increases. This is evidenced by the darker red and
blue areas in the panels of Fig. 10. In fact, at specified values
of motility strengths, by increasing the strength of the mem-
brane hardness, active particles encounter more resistance
when passing through the membrane in the region of lower
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FIG. 10. Rescaled effective pressure on the inclusion as a function of Péclet numbers {Pe1, Pe2} for interacting active particles with a
rescaled global average density of ρ̄ = 0.128 (φ = 0.1). The first row of panels displays the effective pressure on a rectangular inclusion with
a rescaled width of L2/σ = 10 and different enclosing membrane hardness: (a) Pep = 78.9, (b) 52.6, and (c) 26.3. The second row of panels
shows the effective pressure on a disklike inclusion with a rescaled diameter of σc/σ = 10 and different enclosing membrane hardness: (d)
Pep = 78.9, (e) 52.6, and (f) 23.6. Dashed lines represent pressure contours at the tick values of the color sidebar for each panel. The solid
diagonal solid lines depict the reference bisector Pe1 = Pe2.

motility. This results in a stronger average density of particles
in that area and intensifies the density difference. Due to the
amplified density difference and stronger interaction between
active particles and the inclusion membrane, the magnitude of
the effective pressure increases with membrane hardness.

For the disklike inclusion, the dependence of effective
pressure on the hardness of the membrane is almost similar
to the case of the rectangular inclusion. Figures 10(d)–10(f)
illustrate the effective pressure on the inclusion of diameter,
σc = 10σ , for Pep = 78.9, 52.6, and 26.3, respectively. By
comparing the contour lines associated with zero effective
pressure in these panels, we observe that the range of motility
strengths where the contour line lies above the reference line
becomes shorter as the membrane hardness decreases. For
Pep = 26.2, where the disk is completely soft for this range of
motility strengths, we see that the contour line is completely
below the reference line.

D. Role of area fraction

Figures 11(a) and 11(b) display the rescaled effective pres-
sure on a rectangular inclusion with fixed width L2 = 10σ

and varying rescaled global average density of active parti-
cles ρ̄ = {0.128, 0.255}, corresponding to area fractions for
active particles φ = {0.1, 0.2}, respectively. The results illus-
trate that the rescaled effective pressure weakens as the global
average density of active particles increases. The rescaled
effective pressure is defined by Eq. (13), which measures
the pressure exerted on the inclusion divided by the global

average density of active particles. In the case of interacting
active particles, the magnitude of the rescaled effective pres-
sure decreases as the density increases because the effective
pressure grows with the density at a slower rate than the linear
relation. Moreover, an increase in the area fraction enhances
the overall magnitude of the effective pressure because the
difference in the average density of active particles between
the interior and exterior regions increases. However, in the
case of a rectangular inclusion, the average density of active
particles inside the inclusion cannot reach a saturation value,
even for φ = 0.2, because the area of the inclusion is large
enough to encompass all active particles. This is the reason
for the increase in the density difference and in the overall
magnitude of the effective pressure.

Figures 11(c) and 11(d) show the rescaled effective pres-
sure exerted on a disklike inclusion with diameter σc = 10σ

for area fractions of active particles φ = 0.1 and 0.2, respec-
tively. In this case, the magnitude of the rescaled effective
pressure also decreases as the area fraction (global average
density) increases. The absolute value of the negative effective
pressure increases as φ increases from 0.1 to 0.2, but this
increase is slower than the linear relation with area fraction
(global average density), resulting in a decrease in the mag-
nitude of the negative rescaled effective pressure. For the
positive pressure, increasing the area fraction from 0.1 to 0.2
not only decreases the rescaled pressure but also decreases
the effective pressure because the inclusion can trap up 45%
of particles within itself at φ = 0.2, compared to 90% at φ =
0.1. Consequently, the average density outside the inclusion
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FIG. 11. Rescaled effective pressure on the inclusion as a function of Péclet numbers Pe1, Pe2 for interacting active particles and enclosing
membrane hardness Pep = 52.6. The top row of panels illustrates the effective pressure on a rectangular inclusion with a rescaled width of
L2/σ = 10 and varying values of rescaled global average density: (a) ρ̄ = 0.128 (φ = 0.1) and (b) ρ̄ = 0.255 (φ = 0.2). The bottom row of
panels displays the effective pressure on a disklike inclusion with a rescaled diameter of σc/σ = 10 and different values of rescaled global
average density: (c) ρ̄ = 0.128 (φ = 0.1) and (d) ρ̄ = 0.255 (φ = 0.2). Dashed lines represent pressure contours corresponding to the tick
values on the color sidebar for each panel.

is generally higher for φ = 0.2 than for φ = 0.1, resulting
in lower positive effective pressures for φ = 0.2. Overall, in-
creasing the area fraction strengthens the effective pressure if
both the regions inside and outside the enclosure have enough
capacity to incorporate all active particles. However, this trend
comes to an end when the average density inside or outside the
inclusion reaches the saturation value, ρ̄hcp = 1.159.

V. SUMMARY

In this study, a minimal active Brownian particle model
was employed to investigate the distribution of active particles
inside and outside permeable inclusions and the effective pres-
sure exerted on the permeable membrane of rectangular and
disklike inclusions that are immersed in an active fluid. The
motility strength of the particles was allowed to vary inside
and outside the inclusion, and the study examined the role of
motility field strengths varied in the range 20 � Pe1,2 � 100.
The findings revealed that active particles tend to concentrate
more strongly inside the fluid region with weaker motility,
leading to stronger active pressure in that area. Consequently,
the effective (osmotic-like) pressure is directed outward from
the fluid region characterized by lower motility.

We have also discussed the differences in effective pres-
sure resulting from the inclusion’s rectangular and disklike

geometries. These differences are primarily reflected in the
constant-pressure contour lines plotted across the parameter
space. Our findings show that the contour line of zero pres-
sure is represented by the straight line of Pe1 = Pe2 for the
rectangular inclusion. In contrast, for the disklike inclusion, it
appears as a curved line that becomes increasingly straight as
the diameter of the inclusion increases.

In this work, we focused on the impact of mismatched
motility fields inside and outside permeable inclusions in
the range of 20 � Pe1,2 � 100, corresponding to persistence
lengths of 13.3 � lp/σ � 66.7 for active particles. These per-
sistence lengths are comparable to or larger than the size
of the inclusions (L2/σ and σc/σ ranging from 5 to 20),
where the effect of strong accumulation of active particles
near the membrane on the effective pressure is pronounced.
We verified that the results do not qualitatively change when
we increase the size of the inclusion to sizes beyond the per-
sistence length while keeping other system parameters fixed.
However, the magnitude of the (rescaled) effective pressure
increases with L2. It is important to note that in the case
of L2 (or σc) being greater than lp, the fraction of particles
that accumulate near the membrane inside and outside the
inclusion with respect to the total particles present within each
region decreases. However, due to the increase in the total
number of active particles for increased L2 (or σc) at the same
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rescaled global average density, the number of active particles
that interact with the inclusion membrane increases, resulting
in a stronger effective pressure. In the case of interacting
particles, there is a limitation on the number of particles that
can accumulate near the membrane and interact with it due
to excluded volume interactions. This limitation results in a
weak increase in the magnitude of the effective pressure with
L2 (or σc). However, the increase of effective pressure with
the size of the inclusion continues until the number of accu-
mulated particles per unit perimeter of the membrane reaches
a maximum value allowed by excluded volume interactions.
For simplicity and numerical efficiency, we assumed that the
model membrane enclosing the interior region of the inclu-
sion is a continuum boundary layer that interacts with active
particles through a short-ranged soft repulsive potential [see
Eq. (9)]. We verified that other choices for the soft repulsive
interaction do not affect the qualitative aspects of our results,
although the effective pressure on the inclusion may quantita-
tively vary depending on the specific choice of the potential.
Future studies may consider the roles of membrane dynamics
and flexibility, as well as inclusion (vesicle) mobility, in the
present context (i.e., on the effective pressure) using coarse-
grained particle-based models such as those considered in
related contexts [47–49,58,59,77], where the membrane can
be deformed or even destroyed due to the presence of active
particles.

Such extensions should bring the model inclusions used
here closer to real-life examples of vesicles and soft per-
meable objects. These examples may be furnished by fluid
enclosures such as lipid and polymer vesicles [66,67], im-
miscible and stabilized emulsion drops, and active droplets
[41,50,51]. Other examples of permeable objects include
polymersomes (polymer vesicles) that can be designed with
controlled permeability [62] and polymer stomatocytes ob-
tained from controlled deformation of polymersomes [78],
which have recently been used for the selective entrapment
of catalytically active platinum nanoparticles. In biologi-
cal cells, phagocytosis (representing the cell’s ability to
ingest and internalize foreign particles) has been used for
the controlled internalization and cell-assisted assembly of
nonactive polystyrene microparticles, as well as crystallites
inside fibroblast cells [79]. Our work should inspire fur-
ther studies in such contexts with active particles utilized as
phagocytosed components. Active particles have also been
used for targeted drug and cargo delivery [61–64]. In these
contexts, soft tissues such as tumors can play the role of
permeable objects as they exhibit enhanced permeation to
suitably designed active agents, e.g., platinum-sputtered poly-
mersome nanomotors [61] and magneto-aerotactic bacteria
[64,65].

Our model is also based on a minimal model for ac-
tive particles that are taken as disklike particles with
merely steric interactions. Therefore, effects of more com-
plex shapes of active particles [20–22], particle chirality,
and other types of particle-particle interactions such as Vic-
sek interaction [34,41] remain to be addressed. We have
considered relatively low area fractions of active particles;
hence, another possible venue to explore later includes higher
area fractions where motility-induced phase separation can
emerge [15].

FIG. 12. The figure illustrates the rescaled force, F (r′)σ ′/(kBT )
produced by the sWCA potential is plotted as a function of the
rescaled distance from the midline of inclusion membrane [see
Eq. (3)], r′/σ ′, being varied over the interval 0 � r′/σ ′ � 1. Here we
have fixed F̃max = 1 and used Eq. (A1) to calculate. The red dashed
line represents the rescaled distance at which the maximum force
occurs (r′

max/σ
′ = 0.141).
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APPENDIX: MAXIMUM FORCE FROM
THE SWCA POTENTIAL

The force field F (r′) produced by the inclusion membrane
can be obtained by differentiating Eq. (9) with respect to r′
(after replacing r′

i with r′) as

F (r′) = 12F̃max β

[
σ ′ 14

(r′2 + α2)7
− σ ′ 8

2(r′2 + α2)4

]
r′

σ ′2 . (A1)

The maximum force occurs at r′
max = 0.141σ ′. Figure 12

depicts the rescaled force, Eq. (A1), as a function of r′/σ ′
where F̃max is fixed as F̃max = 1. As noted in the text, F̃max

gives the magnitude of the maximum force produced by the
sWCA potential and that F̃max = 2Pep, with Pep being in-
terpreted as the characteristic Péclet number signifying the
successful transit of active particles through the inclusion
membrane in the absence of thermal noise and interactions
between active particles. This can be established as follows.
We set the left-hand side of Eq. (4) to 0, ignore the trans-
lational thermal noise, ηi(t ), and replace the term −∂U/∂ri

with F̃maxkBT/σ ′. Since the range of the sWCA potential is
equal to the diameter of active particles [σ ′ = σ , see Eqs. (1)
and (10)], we have

(μT kBT/σ )F̃max = vp, (A2)
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where vp is the minimum velocity magnitude for an
active particle to pass through the membrane. Utiliz-
ing μT = DT /(kBT ) and the corresponding Péclet number,

Pep = vpσ/(2DT ), see Eq. (11), we then have

F̃max = 2Pep. (A3)
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