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Influence of anomalous agents on the dynamics of an active system
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Swarming behavior in systems of self-propelled particles, whether biological or artificial, has received
increased attention in recent years. Here, we show that even a small number of particles with anomalous behavior
can change dramatically collective dynamics of the swarming system and can impose unusual behavior and
transitions between dynamic states. Our results pave the way to practical approaches and concepts of multiagent
dynamics in groups of flocking animals: birds, insects, and fish, i.e., active and living soft matter.
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I. INTRODUCTION

Natural or artificial active (self-propelled) particles, exten-
sively studied in recent years, manifest a diverse range of
phenomena unattainable in equilibrium systems. Examples in-
clude motility-induced phase separation [1–6], giant number
fluctuations [7–9], active turbulence [10,11], and multistabil-
ity [12–14]. However, one of the most fascinating features
of these systems is their capability of forming various dy-
namic patterns of collective motions, prominently observed
in living systems: collectively moving cells [7,15], insect
swarms [16–19], fish schools [20–22], bird flocks [7], and
animal herds [23]. The mechanism of swarming behavior
varies depending on the system, but it should provide effective
attraction and alignment of the moving agents.

The combination of self-propelling and alignment mech-
anisms is what forms the famous Vicsek model [24],
foundational for modern collective motion science. Simple
modified Vicsek models allow one to describe diverse col-
lective behaviors, such as fish schooling [22,25,26]. The
“swarmalator” system [27], based on the Kuramoto [28] and
Vicsek models, introduces the internal parameters for ac-
tive particles and exhibits sophisticated patterns of dynamic
synchronization [29–31]. Moreover, bioinspired swarm algo-
rithms are actively used in complex optimization problems
[32] and, potentially, can be applied for decentralized logistics
and controlling unmanned vehicles [33]. Finally, in certain
cases, people groups behave similarly to simple swarm mod-
els [34–36], and this can be used for modeling of public
centers to prevent crowding.

The concepts of collective decision making and leadership
[37,38] are crucial for understanding diverse swarm behavior
phenomena, including those discussed above. In particular,
leadership implies the existence of nonreciprocal interactions
among agents [39]: as a result, certain agents (leaders) exert
a greater influence on the behavior of surrounding agents.
To achieve this, specific mechanisms exist within systems:
agents can align their behavior with that of older (experi-
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enced) [40–42], more dominant [43,44], socially preferred
[45], faster [46–48], or signal-emitting agents [15,46,49]. It
has been shown [46,50,51] that even a relatively small fraction
of leader agents can control the direction of the entire swarm
movement. For instance, less than 2 − 5% of signaling bees
(leaders) are sufficient to lead the entire swarm to a new hive
[46,51]. However, the question arises, what happens if several
agents start behaving differently from the rest but are not
perceived as leaders? What influence will they have on the
system, and will they be able to alter its dynamic regime? This
can occur, for example, if some agents receive additional in-
formation but are not recognized by the others as new leaders,
or if some agents undergo structural or cognitive disruptions,
causing them to no longer behave in the normal manner. Fur-
ther, we will refer to these agents as anomalous to distinguish
them from leader agents (where the symmetry of leader-
follower interaction is disrupted [39]). However, with a few
exceptions [35,50,52,53], the role of such anomalous agents
is poorly studied in swarming systems, to our knowledge.

In this paper, we study a fish-school-like system, exhibiting
stable swarming, schooling, and milling dynamics. With a
method we developed to analyze parameters in the system,
we obtained a state diagram and discovered the region of
bifurcation behavior, accompanied by sporadic jumping of the
system between the pure dynamic states, as well as the regions
of dynamic multistability. We further analyze the dynamics in
the presence of two kinds of anomalous agents: trying to move
horizontally and along circles. We reveal that even 2% of the
anomalous agents can impose schooling-milling transitions,
thus completely altering the dynamic regimes of the system to
a desirable one.

II. MODEL

We studied a monolayer of N = 100 self-propelled parti-
cles, whose dynamics is described by the equations

ṙi = e‖
i ,

θ̇i = 〈 fi j (ρi j sin θi j + I‖ sin φi j )〉Vi + Inη(t ) + Ai, (1)

where ri and θi are the radius vector and orientation angle of
the ith particle, and e‖

i = (cos θi, sin θi ) is the (unit) velocity
vector; the distance ρi j between the particles i and j, as well
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FIG. 1. The model under consideration. (a) A couple of agents
with the angles and vectors used in Eq. (1); the gradient circles show
the fields of view for oriented particles (triangles). (b)–(d) Swarming,
milling, and schooling states.

as the angles θi j and φi j between their velocities and relative
radius, are shown in Fig. 1(a); fi j = 1/(ρi j + 1) is the cutoff
factor (discussed below); I‖ and In are the magnitudes of par-
ticle alignment and noise, respectively; η(t ) is white Gaussian
noise with 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = δ(t − t ′), where δ is
Dirac delta function; 〈◦〉Vi = ∑

j∈Vi
◦wi j/

∑
j∈Vi

wi j is aver-
aging with weights wi j = 1 + cos θi j (imitating the view field
of each particle) over the particles j ∈ Vi in the neighboring
Voronoi cells around the ith particle. Ai in Eq. (1) is the torque
we added to introduce anomalous behavior of some particles
(i.e., Ai = 0 for normal particles).

The model (1) is similar to that proposed in Ref. [22] for
a fish school, except for some differences: for simplicity, we
omitted hydrodynamic interactions [22], introduced the cutoff
factor fi j to prevent an artificial linear increase of particle
(fish or agents) attraction with distance ρi j , and replaced the
Wiener process with a Gaussian to make the system stationary
(otherwise, the rotation of particles begins to accelerate over
time). The model (1) is known to have three stable dynamic
regimes, sketched in Figs. 1(b)–(d): (i) swarming, where
the agents move and rotate chaotically within a cluster; (ii)
milling, where the agents form spinning circlelike structures;
and (iii) schooling, where the agents are “polarized” and move
almost in the same direction. Note that, due to the averaging
over Voronoi cells in Eq. (1), agents interact with a small
number of neighbors, similar to models with short-range or
topological interactions [24,54,55]. At the same time there
are models with long-range interactions for swarm dynamics
[56–58]. In typical condensed matter systems, it is well known
that transition from short- to long-range interactions results in
a drastic change in system behavior [59,60]. A similar effect
can be expected in the case of swarms. Indeed, considering

a larger number of interecting agents leads to the stabiliza-
tion of new regimes, including turning (see Supplemental
Material [61]), which was stabilized by long-range hydrody-
namic interactions in the original work [22]. Thus, our results
correspond to systems with a small number of interacting
neighbors, while the effects of long-range interactions deserve
a separate study.

We conducted three sets of simulations, whose parameters
are provided in Table I. Here, Nr is the number of inde-
pendent runs for each combination of parameters. We used
Set 1 to obtain the “phase” diagram in the system of identi-
cal (Ai = 0) particles. Then, to reveal the role of anomalous
agents, we selected randomly Nα particles and set a nonzero
torque Ai in Eq. (1) for them. We considered two types of
anomalous agents: (i) the agents trying to move in the pre-
ferred (horizontal) direction θ = 0, that we describe with Ai =
−α sgn(sin θi )| sin(θi/2)|, where α = 0.02–0.9 is the magni-
tude of anomaly (Set 2 in Table I); (ii) the agents trying to
move along the circles, that we describe with a constant torque
Ai = α, α = 0.04–0.6 (Set 3 in Table I). Set 2 corresponds
to scenarios where anomalous agents intend to move in a
particular direction; for instance, a specifically trained sheep
leading the rest of the herd in a particular direction [50].
Set 3 corresponds to cases where, for example, an agent,
due to physical or cognitive impairments, loses the ability
to move straight and constantly turns slightly. In both cases,
the parameter α characterizes the force that drives anomalous
agents to move in a specific way, compared to the intention
of aligning or free will regulated by I‖ and In, respectively.
Note that in the second and third sets of simulations we used
variable steps �In, �Na, and �α; see Supplemental Material
[61] for details. Each simulation was performed for 1.2 × 105

steps with �t = 0.01, where the first 0.2 × 105 steps were
used to relax the system (with Ai = 0 for all agents), whereas
the rest of the steps were used for analysis. At the initial
step, the agents had random orientations θi and coordinates ri

uniformly distributed within a square box with an edge a = 5.
In each new run for the same In and I‖, the initial positions
of the particles did not repeat, and, similarly, the positions
of anomalous particles did not repeat when an additional
moment Ai was activated (0.2 × 105 steps). By that time, the
anomalous particles had “forgotten” their initial positions and
were uniformly distributed within the formed swarm (see Sup-
plemental Material [61]). Finally, note that the model we are
considering does not have leader-follower asymmetry, making
all agents equivalent in this regard.

III. BEHAVIOUR WITHOUT ANOMALOUS AGENTS

For each simulation, we calculated parameters character-
izing polarization P(t ), milling M(t ), and size S(t ) of the

TABLE I. Parameters of simulations.

Set no. Noise In Alignment, I‖ Anomalous agents, Na Magnitude of anomaly, α Number of runs, Nr Total number of runs in the set

1 0–0.95 0–9.5 0 100 40000
2 0.2–0.5 3 1–15 0.02–0.9 50 35100
3 0.1–0.6 8 1–15 0.04–0.6 50 40500
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FIG. 2. Dynamic states in the system without anomalous agents (Na = 0, Set 1). (a) The distribution of ln(〈min10% M〉) for all simulations;
the red-colored wing corresponds to the milling. The inset shows an example of M(t ) in a simulation; 10% of points with minimal M values
used to calculate ln(〈min10% M〉) value are colored in magenta. (b) The no-milling states [gray-colored points in (a)] in the plane �P vs 〈S〉,
colored in green, orange, and blue for the schooling, swarming, and bifurcation regimes, respectively. (c) Probability distributions of different
regimes at different noise and alignment magnitudes In and I‖. (d) The “phase” diagram of dynamic regimes; colors of each point mark the
regimes observed for given magnitudes In and I‖. The color coding in (c) and (d) is the same as that in (a) and (b).

system:

P(t ) = |〈e‖
i 〉|, M(t ) =

∣∣〈er
i × e‖

i

〉∣∣
∣∣〈er

i

〉∣∣ · ∣∣〈e‖
i

〉∣∣
,

S(t ) = max
i

|ri − 〈ri〉|, er
i = ri − 〈ri〉

|ri − 〈ri〉| , (2)

where 〈◦〉 = 1
N

∑N
i=1 ◦ denotes averaging over the system. To

obtain a “phase” diagram for the studied system, we devel-
oped the algorithm based on consistent analysis of M(t ), P(t ),
and S(t ) obtained in the simulations.

First, we identified the milling states. We calculated M(t )
[a typical example is shown in the inset in Fig. 2(a)]
and took a 10% subset of points with minimal M values
(magenta colored in the same inset). Then, we averaged
the M values over this subset, to obtain 〈min10% M〉. Hav-
ing done this for all simulations, we summarized the data
and obtained the distribution shown for ln〈min10% M〉 in
Fig. 2(a).

The distribution in Fig. 2(a) splits into two data groups
separated by a sizable gap. The right wing (colored in red)
corresponds to the milling states; M values here never get
too small. Using the gap, we used ln(〈min10% M〉) > T∗ with
T∗ 	 2.8 as the condition for milling identification. We tested
that the threshold T∗ can vary within a certain range without
a noticeable effect on the following results. Note that as the
percentage in ln(〈min10% M〉) increases, approaching 100%,
the gap in Fig. 2(a) vanishes. This is because the bifurcation
regime combines dynamic states with low and high M values,
and corresponding ln(〈min100% M〉) average values fill the
gap.

At the second stage, the rest (no-milling) simulations
with ln(〈min10% M〉) < T∗ were represented in the coordi-
nates �P and 〈S〉, as shown in Fig. 2(b). Here, �P =
maxt P(t ) − mint P(t ) is the magnitude of P(t ) fluctuations
along the simulation, and 〈S〉 is the time average for S(t ).
We see in Fig. 2(b) that the data points become remarkably

separated into three groups. The first one, colored green,
occupies a region of small �P and 〈S〉, and corresponds
to the schooling regime. The groups colored in yellow and
blue correspond to the swarming and bifurcation regimes,
respectively.

Compared to milling, swarming, or schooling dynamic
states, the bifurcation regime is characterized by sporadic
“jumping” between them: A certain dynamic state turns out
to be short lived: the dynamics of the system is mixed and
represents existence in different “pure” states with sporadic
jumps between them, that is imprinted in the behavior of
M, P, and S parameters. The bifurcation regime becomes
very similar to the swarming one under the condition that
the frequency of the discussed transitions between different
states is sufficiently high. Due to this, the boundary between
the bifurcation and swarming regimes in Fig. 2(b) is not so
pronounced, compared to that for schooling regime, and we
have to choose a threshold �P = 0.35 to separate them.

After we identified the dynamic states, we calculated their
probabilities at different noise and alignment magnitudes, In

and I‖, the results are shown in Fig. 2(c). The overlapping
distributions indicate the presence of multistability, where
several stable dynamic states can be observed depending on
the initial conditions at the same parameters of the system.
The latter is highlighted in Fig. 2(d), wherein the possible
states at various In and I‖ are shown by circles, color coded
in the same manner as in Figs. 2(a)–2(c) for milling (red),
schooling (green), swarming (yellow), and bifurcation (blue)
regimes. Note that multistability is typical for active systems
[12–14]. We see in Fig. 2(d) that, in addition to the regions of
pure dynamic states, the regions of certain parameters provide
bifurcation dynamics, as well as the ability to observe two or
three dynamic states.

IV. REVEALING THE ROLE OF ANOMALOUS AGENTS

We discovered that anomalous agents can change dynamic
states and impose the milling-schooling or schooling-milling
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FIG. 3. Dynamics in the presence of anomalous agents. (a1)–(e1)
Sketches of configurations and transitions between them; anomalous
agents are shown with red arrows. (a2)–(e2) corresponding depen-
dencies P(t ) and S(t ), colored in orange and blue, respectively. The
vertical black dashed lines indicate the start of anomalous particle
action.

transitions. Various scenarios we observed are illustrated in
Fig. 3: Here, Figs. 3(a1)–3(c1) correspond to Set 2 with
anomalous particles trying to move horizontally, whereas
the results for Set 3 with anomalous particles trying to
move through circles are shown in Figs. 3(d1) and 3(e1).

Corresponding evolution of P(t ) and S(t ) is shown in
Figs. 3(a2)–3(e2). Probability distributions for different sce-
narios we discuss below are presented in Figs. 4(a) and 4(b)
for Sets 2 and 3, respectively. System states are depicted in
sketches in Figs. 3 for simplicity; simulation snapshots of the
system can be found in the Supplemental Material [61].

In the case of the anomalous agents tryin to move in a
preferred direction (Set 2), we observed four scenarios. At
small Na and α, there no noticeable effect was observed.
At Na � 2 and large α, we observed another scenario: The
anomalous agents were flying out from the cluster, leaving
it in the initial dynamic state, as shown in Fig. 3(a). Such
cases are characterized by small P(t ) and growing S(t ) with
dS/dt ≈ 1. An increase in the noise magnitude In suppresses
this effect, shifting it to higher α, as seen in Figs. 4(a1)–4(a6).

In the third scenario, shown in Fig. 3(b) (two-step tran-
sition), the system first undergoes a transition from milling
to schooling state and then returns back to the milling
one, that is accompanied by a synchronous change in
P(t ). Corresponding probabilities for various In are shown
Figs. 4(a7)–4(a12). This behavior is practically always ob-
served at high magnitudes In � 0.38, except for a narrow
yellow-colored region in Fig. 4(a7), where the system under-
goes a stable milling-schooling transition, the fourth dynamic
scenario we observed.

The yellow region in Fig. 4(a7) separates behaviors of the
system. At the top of the region, we observe transitions to
schooling, whereas the anomalous agents are ahead and move
on average faster than the rest of the particles, due to smaller
dispersion in θ . As a result, after a while, the anomalous
particles go ahead far enough that the rest of the particles
lose sight of them and return to their normal regime (milling).
Therefore, the milling-schooling transition observed in this
region is unstable over the long term, but it can be stabilized
by reducing the speed of the anomalous agents. Under the

FIG. 4. Probability distribution functions for the formation of a specific dynamic scenario in the systems with anomalous agents: (a) and
(b) illustrate the results for Sets 2 and 3, wherein anomalous agents induce milling-schooling or schooling-milling transitions, respectively.
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yellow region in Fig. 4(a7), the schooling regime is unsta-
ble and switches sporadically. The distributions in Fig. 4(a)
change dramatically at In < 0.38. The region of the unstable
scenario shown in Fig. 3(b1) becomes rapidly shifted towards
large α. At the same time, the stable scenario illustrated in
Fig. 3(c) starts to prevail, as depicted in Figs. 4(a16)–4(a18).

Note that the state with In = 0.5 from Set 2 falls within
the region where both milling and bifurcation regimes can
occur, as shown in Fig. 2(d). However, according to Fig. 2(c),
the probability of the bifurcation regime is low. Nevertheless,
we suppose that if a bifurcation regime were to be realized
in this case, the presence of anomalous particles would more
strongly bias the bifurcation regime into a schooling regime,
stabilizing it.

Finally, we observed only three scenarios in simulation Set
3: (i) the regime does not change, (ii) there are random jumps
of the system between two states, and (iii) there are transitions
between schooling and milling regimes induced by anomalous
particles. All these cases are imprinted in the behavior of
P(t ) shown in Figs. 3(d2) and 3(e2). Corresponding distribu-
tions are shown in Fig. 4(b), and are practically independent
of Na. The schooling regime is stable at small α (until the
anomaly is too weak) and at large α. In the latter case, the
anomalous agents are forced to rotate in place, and are frozen
and fall behind the entire system. The range of intermediate
α corresponds to a stable schooling-milling transition, while
two-step behavior is observed at larger magnitudes In. With-
out anomalous agents, milling or schooling states can exist
under the parameters of simulation Set 3. Therefore, without a
noise-induced rebound to the initial state, the system lives for
a long time in the induced one, which explains such a large
area of the stable scenario. This is a reason for prevalence of
the stable scenario at intermediate α values. The transitions
between milling and schooling can be induced even by one
particle, under appropriate α and In. However, at small In,
a single anomalous agent will most likely leave the cluster
before the change in collective dynamics.

Our results coincide with the previous studies on anal-
ogous systems featuring anomalous agents. For instance, it
was demonstrated [50] that even 5–10% of anomalous agents
(where the symmetry of leader-follower interaction is not
broken) are sufficient to control the direction of swarm move-
ment. In another study [52], it was experimentally shown
that a specially trained sheep, which we can consider as an
anomalous agent, can initiate movement and lead a flock of
up to 100 sheep in the desired direction. It is interesting that

they observed a trained sheep (an anomalous agent) being able
to leave the rest of the herd without altering its dynamics,
which corresponds to the fly-out regime observed in our study.
Similarly, a change in the dynamic regime due to anomalous
agents was observed in the simulation of the movement of a
large group of people [35], but under confinement conditions
and with a significantly higher concentration of anomalous
agents.

V. CONCLUSION

We studied a two-dimensional fish-school-like system and
revealed the possible role of anomalous agents. For a system
without anomalous agents, we obtained a “phase” diagram
including milling, schooling, swarming, and bifurcation dy-
namics. Moreover, we showed an inherent multistability of
the system and revealed the regions of bifurcation dynamic
behavior. We found that even a small part of anomalous agents
can change collective dynamics: Even 2% of anomalous par-
ticles can trigger milling-schooling transition. In the case of
fish, even such a tiny part of fish assistants can save the whole
shoal from a disaster by changing its motion.

Our results raise a number of issues, related to the size
effect, the role of interparticle interactions, the capability to
control the collective dynamics in three-dimensional systems,
and the initial position of anomalous particles on the transi-
tion. The method we developed to obtain “phase” diagrams
of active systems can be applied to other ones. We leave
corresponding studies for future works.

The results should be of interest to a broad community in
active and living soft matter, nonlinear dynamics, and collec-
tive behavior. In particular, the discovered role of anomalous
particles offers ideas for future approaches to ecological regu-
lation for animal husbandry, fishing, migration balancing, and
reducing damage to wildlife in environmental disasters.
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