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Trapping and scattering of a multiflagellated bacterium by a hard surface
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Thiovulum majus, which is one of the fastest known bacteria, swims using hundreds of flagella. Unlike typical
pusher cells, which swim in circular paths over hard surfaces, T. majus localize near hard boundaries by turning
their flagella to exert a net force normal to the surface. To probe the torques that stabilize this hydrodynamically
bound state, the trajectories of several thousand collisions between a T. majus cell and a wall of a quasi-two-
dimensional microfluidic chamber are analyzed. Measuring the fraction of cells escaping the wall either to the
left or to the right of the point of contact—and how this probability varies with incident angle and time spent
in contact with the surface—maps the scattering dynamics onto a first passage problem. These measurements
are compared to the prediction of a Fokker-Planck equation to fit the angular velocity of a cell in contact with
a hard surface. This analysis reveals a bound state with a narrow basin of attraction in which cells orient their
flagella normal to the surface. The escape angle predicted by matching these near field dynamics with the far-field
hydrodynamics is consistent with observation. We discuss the significance of these results for the ecology of T.
majus and their self-organization into active chiral crystals.
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I. INTRODUCTION

Microbes in their natural environments often live in close
proximity to surfaces such as the air-water interface, sediment
grains in water-saturated soils, and sinking detritus [1–4].
When a cell swims near a surface, the flow it generates is
perturbed by the presence of the boundary. The perturbed
flow turns and advects the swimming cell [5–9]. Microbes
have evolved to exploit these flows to better colonize new
environments [10], improve foraging and mating strategies
[11], and navigate heterogeneous environments [12–14].

Past work on the hydrodynamic coupling between cells and
surfaces has focused on a relatively small number of domes-
ticated species [5], which poorly represent the true diversity
of microbial form and locomotion observed in nature [15].
To better understand the effect of more complex flagellation
patterns of cell-surface interactions, we study the sediment
microbe Thiovulum majus [16–19], which is one the the
fastest-known bacteria [20]. Thiovulum majus uses hundreds
of flagella to swim at a speed up to U ≈ 600 µm s−1 [21] and
turn smoothly in chemical gradients [22]. Figure 1(a), which
is taken from Ref [16], shows an electron micrograph of a
typical cell. The body length of T. majus varies considerably
between cells from 5 µm to 25 µm depending on the environ-
ment from which the cells are enriched as well as the growth
stage of the cell [16]. The cells describes here are intermediate
in size, having a body length 2a = 12 ± 2.5 µm (standard
deviation, SD). The body is a slightly prolate ellipsoid with
a typical aspect ratio of about 1.15 [19]. The flagella, which
cover the body of the cell, are similar in length to the cell
radius [16].

Thiovulum majus cells interact with surfaces in two distinct
ways. In nature, these cells attach to detritus by means of
a ∼100 µm-long mucus tether that is extruded from the cell
posterior [16]. Once attached, the cell rotates its flagella to

generate a flow that efficiently stirs its chemical environment
[23–25]. The mechanics by which a cell exudes and attaches
the mucus tether to a surface have not been investigated. The
second type of interaction is observed in the laboratory, where
cells self-organize on smooth surfaces into two-dimensional
active crystals [26,27]. The cells in these active crystals are
hydrodynamically bound to the surface by the flows they
create, which turn the cell to exert a force normal to the surface
[28,29]. This bound state is unusual among bacteria and is
thought to require flagella that are shorter than a critical length
that is similar to the body size [28]. Similar active crystals are
formed by eukaryotes [30]. The first step in the formation of
active crystals by T. majus have been experimentally investi-
gated only indirectly, from the motion of trapped cells [27].

Here we investigate the collision between a T. majus and
the wall of a microfluidic chamber. After a collision, a cell
remains near the surface for an average trapping time 〈t〉 =
0.21 ± 0.01 s (95% confidence interval). However, trapping
times are widely distributed. In approximately 20% of col-
lisions, the cell is only momentarily (t � 0.05 s) in contact
with the surface before escaping back into the bulk fluid.
Figure 1(b) and supplemental video SV1.mp4 show one
such collision [31]. A similar fraction of collisions result in
the trapping of the cell [Fig. 1(c) and supplemental video
SV2.mp4 [31]] near the surface for more than 0.5 s and as
long as 17 s. These trapped bacteria do not swim along the
circular paths that are typical of pusher cells [5]. Rather,
these cells seem to be in a hydrodynamic bound state to the
surface [26–29].

As shown in Fig. 2, we observe striking simplicity in
the trajectories of escaping cells. The magnitude of the es-
cape angles varies little with incident angle [Fig. 2(a)] and
time [Fig. 2(b)]. The distribution of trapping times is shown
in Fig. 2(c). Although the distribution of incident angles is
widely distributed [Fig. 2(d)], escape angles are narrowly
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FIG. 1. When a T. majus cell collides with a hard wall it may
become trapped by the surface. (a) Electron micrograph of a repre-
sentative cell. The flagella appear as short white lines surrounding
the slightly prolate cell body. This image is slightly modified from
Ref. [16]. (b) A cell is only momentarily in contact with the surface
(yellow dot). The blue line shows the trajectory of the cell with
arrows indicating the direction of motion. The incident angle θin and
escape angle θout are measured from the surface normal n̂. The coor-
dinate system is chosen such that θin > 0 for all collisions. θout > 0
if the sign of the tangential velocity does not change. (b) A trapped
cell may remain in contact with the surface for several seconds. In
this example θout < 0.

distributed (Fig. 2(e)). Cells that are in fleeting (t < 0.1 s)
contact with the surface tend to escape at an average angle
of 69.2◦ ± 0.4◦ (95% confidence interval). Any such cell that
approaches the wall from the left escapes to the right and
vice versa. In our coordinate system, these cells escape at an
angle θout > 0. By contrast, cells that remain in contact with
the surface for at least 0.5 s are bimodally distributed, being
equally likely to escape at either positive or negative angles
with mean 〈|θout|〉 = 58.0◦ ± 0.5◦ (95% confidence interval).

The bimodality of escape directions develops gradually
as a cell remains in contact with surface. We measure the
probability P+ that a cell escapes the surface at an angle
θout > 0 and calculate the associated binomial entropy S =
−P+ log(P+) − (1 − P+) log(1 − P+) of the escape direction.
As shown in Fig. 2(f), the information of a cell’s trajectory
before the collision is gradually lost over the course of half a
second.

In this article, we show how this erasure of information can
be mapped onto a first passage problem [8,9,32,33] to infer
the torques acting on a multiflagellated bacterium that is in
contact with a wall. Matching the inferred near-field dynamics
with the far-field hydrodynamics of a pusher cell predicts the
angle at which cells escape.

II. MATERIALS AND METHODS

A. Enrichment of bacteria

Because there are no known techniques to grow Thiovu-
lum majus in pure culture, cells must be enriched
from environmental samples using well-established methods
[16,19,26,27]. We collect sediment from a shallow tide pool in
Little Sippewissett Marsh (41.5762◦ N, 70.6391◦ W), which is
near Woods Hole, Massachusettes. This sediment is stored in
the laboratory in a container covered in 15 cm of natural sea
water. After three to five days in the container, the sediment-
water interface becomes euxinic, and a T. majus veil forms
a few millimeters above the sediment [23,34], often between
strands of eel grass. Cells are collected from a fresh veil with

FIG. 2. After a collision, a cell may remain in contact with the
surface for several seconds. (a) The magnitude of escape angles
θout varies little with the incident angle θin. Cells that collide with
the surface at small angles are most likely to reverse (θout < 0) the
tangential component of their motion. (b) Fleeting contact with the
surface causes cells to escape at angles θout > 0. As cells remain in
contact the distribution of escape angles becomes bimodal. (c) The
cumulative probability distribution of escape times is compared to
the distribution of first passage times calculated from the Fokker-
Planck equation [Eq. (3)]. Error bars indicate the 95% confidence
intervals. (d) The incident angles θin are broadly distributed. (e) The
probability density function of escape angles is sharply peaked for
cells in fleeting contact with the surface. As cells remain in contact
with the surface, a symmetric peak emerges. The dashed lines show
the prediction of Eq. (6). (f) The binomial entropy S of the escape
directions increases continuously as cells remain in contact with
the boundary. Error bars indicate the 95% confidence intervals. The
black line is equivalent to the fit in Fig. 4(c).

a 1 ml pipette and lightly mixed. After collection the veil
reforms, typically within a day.

B. Microfluidic device

Microfluidic chambers—which are produced using stan-
dard soft photolithography techniques [35]—are composed
of polydimethylsiloxane (PDMS) and sealed on one side by
a glass slide. Chambers are quasi-two dimensional, with a
height of 150 µm and centimeter-scale lateral dimensions.
Two similarly designed microfluidic chambers are used in
these experiments. In the first set of experiments the shape of
the chamber, when viewed from above, is a square (1 cm ×
1 cm). In the second set of experiments [as in Figs. 1(b)
and 1(c)], the chamber is circular with a radius of 0.75 cm.
We initially suspected that the slight curvature of the wall
could lead to measurable differences in the scattering dynam-
ics; however, the statistics presented here were found to be
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indistinguishable between the two chamber designs. Because
we limit our analysis to the trajectories of cells within 80 µm
of a wall, the curvature of a walls is small, being within 1% of
flat. Consequently, these measurements are combined in the
analysis presented here.

C. Identification and tracking of cells

Thiovulum majus cells are inoculated into the microfluidic
chambers described above. The motion of cells as they swim
near the outer wall of the chamber is observed using the Zeiss
20× objective, which is focused to a plane 75 µm between
the top and bottom of the chamber to limit hydrodynamic
interactions between the swimming cell and the chamber.

In each experiment, the motion of cells near one wall of the
chamber is recorded at 24 fps using a Nikon D7000 camera.
This low temporal resolution likely leads to systematic biases
in the measurements of the instantaneous velocity and angular
velocity of cells as they approach the boundary. Consequently,
we focus our analysis on measurements that can be averaged
over several frames. In particular, we focus on the angles at
which cells strike the surface and escape from it as well as the
time the cell remains in contact with the surface.

Swimming cells appear as dark spots under transmitted
light. To identify cells, we first average all frames over the
course of a 5 minute experiment. This background image is
subtracted from each frame of the video to highlight motion.
Swimming cells are identified using an intensity threshold.
The threshold value is chosen such that the boundary of the
cell identified by the threshold matches visual inspection.
Approximating each cell as circular, we record the location
and radius a of each cell identified in the frame. The radius
of the cells used in our study is a = 6 ± 1.25 µm (SD). As
cells move slightly in and out of focus, diffraction causes the
measured radius of a cell to vary by 8% (SD).

We track the motion of cells swimming within 80 µm of
the wall of the chamber. These instantaneous measurements
of cell position are connected into trajectories by applying
Munkres’ Assignment Algorithm. Two representative trajec-
tories are shown as solid blue lines in Figs. 1(b) and 1(c). A
small fraction of the trajectories corresponded to cells that are
close to division. These cells are atypically large and swim
in slightly helical trajectories. To better distinguish torques
arising from interactions with the chamber walls from those
that are due to the particular flagellation pattern of the cell,
these helical trajectories are discarded.

From each triplet of consecutive points in a measured
trajectory, we find the distance z between the center of the
cell and the nearest point on the wall and the instantaneous
velocity v immediately before and after the cell reached this
position. We calculate the instantaneous value of θ and the
angular velocity ∂θ/∂t . Repeating this procedure for each cell
yields 13 000 instantaneous measurements of the velocity v
and angular velocity ∂θ/∂t for cells at different distances z
from the wall, orientations θ , and radii a.

D. Identification and characterization of collisions

Cells are identified as in contact with the surface if the
distance between the measured center of the cell and the

chamber wall is less than or equal to the radius of the par-
ticular cell, which is measured as the cell approaches the
surface. The reliability of this measurement is impaired by the
diffraction of light around the cell, which makes it impossible
to differentiate between cells that collide with the wall from
those that merely approach close to it. Consequently, we focus
our analysis on the qualities of the putative collisions that are
measured when the cell is separated from the boundary. We
measure θin, θout, and the time t that the cell is within a cell
radius of the wall. As the angles are averaged over several
frames, only t is sensitive to our chosen method for identifying
contacts. As it is unlikely that a cell remains very close to
a surface for extended periods without colliding with it, we
expect that it is primarily those cells that briefly approach the
boundary that are erroneously identified as making physical
contact with it. We return to this point at the end of the Results
section. Additionally, the low temporal resolution of these
experiments makes it likely that cells that are in contact with
the surface for less than the time between frames 0.04 s are
missed entirely.

From each trajectory, we calculate the velocity v of each
cell that collides with the wall of the chamber. To find the
incident angle θin, we measure the incident velocity vin from
the frames immediately before the cell contacts the surface
and measure the angle between vin and the local normal n̂ at
the point of first contact. Similarly, the asymptotic escape an-
gle θout is measured relative to the local surface normal at the
point where the cell escapes. The velocity of the escaping cell
vout is calculated where hydrodynamic torques are negligible
(see Fig. 3). The slight curvature of the circular chamber wall
creates an ambiguity in θout of less than 0.2◦, which we ignore.

III. RESULTS

A. Motion of a cell far from a wall

We begin by analyzing a cell’s approach to a surface. Fig-
ure 3(a) shows that the average angular velocity of cells 〈ω〉
decreases with the distance z between the cell and the wall.
These data are averaged over the all collisions to highlight the
tendency of cells to initially approach the wall at a constant
angle, 〈ω〉 ≈ 0, and turn parallel to the surface as the distance
between the cell and boundary is of the order of the body
length.

These dynamics are explained by the far-field hydrody-
namics of a pusher cell near a wall [5,36]. At distances
z � 2a, the cell can be approximated as a force dipole. A
swimming cell moves as it pushes on the fluid and is advected
and rotated by its hydrodynamic image [5,37]. Figure 3(b)
shows the dimensionless angular velocity of cells near the
boundary. These data are reasonably well fit by the predicted
[36] angular velocity of a spherical pusher cell

ωfar = U

a

9�a3

64z3
sin(2θ ), (1)

where � is ratio of the dipole length of the cell to its radius and
the small angle approximation is made in the comparison to
the data. Figure 3(b) shows fair agreement between the theory
and observation with a single fit parameter � = 0.78 ± 0.3
(95% confidence interval). This value may be slightly biased
due to the low temporal resolution of these experiments,
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FIG. 3. Cells approaching a wall turn parallel to the surface.
(a) The average angular velocity of cells decays with the distance
between the cell and the surface. Bars show the 95% confidence
interval. Cell rotation is negligible when z � a. Because these data
are average over cells that move towards the surface at different
angles, the functional form of this curve depend explicitly on the
distribution of incident angles and is shown here only to highlight
the sign of the effect. (Inset) Schematic illustrating the trajectory
(blue) of a cell as it strikes the wall. The dashed line shows a
straight trajectory. (b) The instantaneous rotation of cells near the
boundary show a single fixed point θ = 0, which is unstable. To
average cells with different sizes and swimming speeds, trajectories
are nondimensionalized by each cell’s radius a and swimming speed
U . Dimensionless time τ = Ut/a. All distances are measured in cell
radii a. Only cells that are more than one cell radius from the wall
are included in these panels. The black line shows the best linear fit,
and the bars indicate the 95% confidence interval.

which affects the measurement of the instantaneous angular
velocity. We conclude that these dynamics display a single
fixed point at θ = 0, which is unstable.

B. Motion of a cell near a wall

Experiments [26,27] and theory [28,29] show that when a
T. majus is close to a hard surface, it becomes hydrodynam-
ically bound as it turns its flagella to exert a force normal to
the surface. In our notation, θ = 0 is a stable orientation. The
stability of this orientation can be understood qualitatively
as arising from the flow in the narrow bap between the cell
and the surface. Because the velocity gradient in the gap is
greater than that between the cell and the bulk fluid, there
is a net torque on the cell that causes it to roll until the cell
exerts a force normal the surface [27]. This torque is dominant
provided the flagella are sufficiently small compared to the
body size [28]. The basin of attraction of this stable orien-
tation was previously estimated to be between 10◦ and 20◦
[27]. We speculate that when the cell is turned to an angle
greater than θb the attraction between the flagella and the
surface dominates. It is plausible that this attraction requires a
slightly prolate geometry of the cell or the deformation of the
flagella [38,39].

This result suggests a simple interpretation of the scattering
dynamics. Cells approaching the surface along the surface
normal (i.e., θin ≈ 0) collide with orientations that are within
the basin of attraction of the hydrodynamically bound state.
These cells localize near the surface until they are freed by

rotational diffusion. By symmetry, a hydrodynamically bound
cell is equally likely P+ = 1/2 to escape either to the left or
right of its point of contact. Cells that approach the surface
along the tangent collide at an angle well outside of the basin
of attraction and rapidly escape while maintaining the direc-
tion of their tangential motion (i.e., P+ = 1). Cells that strike
at intermediate angles may diffuse into the basin of attraction
before escaping.

Combining this hypothesis with the results of the previous
section implies that the orientation θ = 0 changes from an un-
stable orientation to a stable orientation as the cell approaches
the wall. Notably, this bifurcation must be either a transcritical
bifurcation or a pitchfork bifurcation [40]. The former of these
options is excluded by the symmetry of the system, which
requires that the angular velocity ωnear be an odd function
of θ . A supercritical pitchfork bifurcation is similarly ex-
cluded as it predicts the existence of stable orientations of
approaching cells far from the boundary, which is inconsistent
with the wide distribution of incident angles [see Fig. 2(d)]
and the measured angular velocity of cells [see Fig. 3(b)].
Thus, we expect that as the cell approaches the wall, the
fixed point θ = 0 undergoes a subcritical pitchfork bifurcation
that stabilizes this orientation while generating unstable fixed
points at ±θb.

This reasoning gives little insight into torques acting on a
cell that is turned to large angle, where both hydrodynamic
interactions and contact forces between hundreds of rotating
flagella and the surface are likely important. In response to this
uncertainty, we make the simple assumption that the angular
velocity saturates to some maximum value of ωmax. It should
be noted that the value ωmax likely reflects an average over
hydrodynamic and contact forces [41].

To analyze the motion of cells in contact with a surface,
we consider a minimal model that includes the normal form
of a subcritical pitchfork bifurcation and predicts a bounded
angular velocity. We propose

ωnear (θ ) =

⎧⎪⎪⎨⎪⎪⎩
K

[(
θ
θb

)2
− 1

]
θ |θ | � θc

sgn(θ )ωmax |θ | > θc

(2)

where K is a rate coefficient and θc is the angle at which the
angular velocity saturates to ωmax = K[(θc/θb)2 − 1]θc.

To test this hypothesis, we map the escape of a cell from the
wall onto a first passage problem. Our measurements provide
the probability P+ that a cell that strikes the surface at a
particular angle θin escapes at an angle θout > 0 within a time
t . For a given choice of θb, K , ωmax, and rotational diffusion
coefficient Drot, we calculate the probability that a cell is
rotated to an orientation θ = π/2 (at which it escapes in the
positive sense) before it is turned to an orientation −π/2. We
calculate how this probability varies with the incident angle
and find the distribution of first passage times. For sake of
simplicity, we assume that Drot does not vary during the time
that the cell is in contact with the surface.

We solve this first passage problem by way of a Fokker-
Planck equation. Let p(θ, t ) be the probability density that the
flagella of a cell exert a net force oriented at an angle θ off
of the surface normal at time t . The probability distribution
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evolves in time as

∂ p

∂t
= − ∂

∂θ
(ωnear p) + Drot

∂2 p

∂θ2
. (3)

As cells rapidly escape into the bulk fluid when they are turned
away from the boundary, we assume absorbing boundaries at
θ = ±π/2. To solve this first passage problem for a given
choice of model parameters, we first calculate the probability
flux j(θ, t ) = ωnear p − Drot∂ p/∂θ and find the fluxes j− and
j+ to boundary left and right boundaries, respectively. The
probability that a cell escapes in the positive sense at a time t
is P+(t ) = j+/( j− + j+).

We first consider the fate of a cell that strikes the boundary
at an angle θin. The probability P+(θin ) that the cell eventually
escapes in the positive sense can be found from the Greens
functions pg(θ, θin ) of Eq. (3) at steady state. It is convenient
to normalize pg such that P+ = −(∂ pg/∂θ )θ=π/2. These nor-
malized Green’s functions are solutions of

0 = − ∂

∂θ
(ω̃near pg) + ∂2 pg

∂θ2
+ δ(θ − θin ), (4)

where pg(±π/2, θin ) = 0, δ(θ ) is the Dirac delta function,
and ω̃near = ωnear/Drot is the dimensionless angular velocity.
It follows from Eq. (2) that P+(θin ) depends on three dimen-
sionless combinations of the four unknown model parameters
Drot, θb, K , and ωmax (or equivalently θc). These dimension-
less model parameters can be expressed as the size θb of the
basin of attraction of the stable orientation θ = 0, the typical
Brownian fluctuations σ = √

Drot/2K about this fixed point,
and the ratio Pe = πωmax/2Drot of maximum hydrodynamic
and Brownian torques acting on escaping cells.

To compare this model to observation [see Fig. 4(a)] for
a given choice of θb, σ , and Pe, we discretize the interval
−π/2 < θ < π/2 into 300 elements and numerically inte-
grate Eq. (4) using standard finite element methods for linear
equations [42] and calculate P+(θin ) for 150 regularly spaced
choices of 0 � θin < π/2. We fit θb, σ , and Pe by adjusting
these parameters to match the results of the numeric integra-
tion of Eq. (4) and observation. The black line in Fig. 4(a)
shows the least-squares fit to the observed dependence of
escape direction on incident angle. We find θb = 15◦ ± 2◦,
σ = 22◦ ± 5◦, and Pe = 5.7 ± 2.5. The reported uncertain-
ties represent the 95% confidence interval in the parameter
values found by a boot strap in which this fitting procedure
is repeated 1000 times on randomly selected subsets of the
observed collisions.

These fit values provide two points of physical insight
into the motion of cells neat a surface. Because σ > θb, the
Brownian fluctuations in orientation are slightly greater than
the basin of attraction of the hydrodynamically bound state.
Thus, cells are only briefly localized near the surface. That
Pe = 5.7 ± 2.5 is somewhat greater than unity indicates that
cells that collide with the surface outside the basin of attrac-
tion of θ = 0 rarely become trapped.

Next, we consider how the probability that a cell escapes
in the positive sense decays as it remains in contact with the
surface, as shown in Fig. 4(c). Nondimensionalizing time in
Eq. (3) by the diffusive timescale τD = π2/Drot and solving
relates the distribution incident angles to the fraction of cells
P+(t/τD) that escape in the positive sense for a given choice

FIG. 4. Probability P+ that a cell escapes the surface at an angle
θout > 0 is greatest for cells that collide at small angles or quickly
escape. (a) P+ is measured for several thousand collisions at a variety
of incident angles θin. The black line shows the best fit to Eq. (4).
The red dashed line shows the comparison to the null model in
which cells are rotated according to Eq. (1) and the prefactor is fit.
Error bars indicate the 95% confidence intervals. (b) The steady-state
distribution of cells is shown with sources at several choices of θin.
These distributions are normalized such that j+ + j− = 1. (c) Cells
that escape the surface quickly escape at positive angles (P+ = 1).
Those that become trapped eventually escape with equal probability
in either direction (P+ = 1/2). The black line shows the best fit to the
Fokker-Planck equation using the same parameters as in panel (a).
These data are the same as in Fig. 1(f) but scaled linearly to better
compare to the model. The null model (red dashed line), which uses
the same parameters as in panel (a), poorly predicts the temporal
evolution of P+. (d) Solutions of the Fokker-Planck equation are
shown at five time points. The initial distribution is interpolated from
the measured distribution of incident angles P(θin ).

of θb, σ , and Pe. Figure 4(d) shows how distribution of ori-
entations evolve as cells escape from the surface and become
trapped at θ = 0. These solutions begin from the measured
distribution of incident angles and use the parameter values fit
to Fig. 4(a). These dynamics uniquely define the functional
form of P+(t/τD), where the diffusive timescale τD is the
only unknown parameter. We fit τD by rescaling the measured
decay of P+ to the predicted functional form. We find Drot =
1.15 ± 0.1 rad2/s, which implies K = 4.22 ± 2.11 s−1 and
ωmax = 6.92 ± 0.18 rad/s. These values correspond to a criti-
cal angle θc = 31◦ ± 2◦ beyond which ωnear saturates to ωmax.
Figure 2(c) compares the measured cumulative distribution
function of escape times to the probability

∫ T
0 j+(t ) + j−(t )dt
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that a cell escapes before time T . Similarly, the escape entropy
corresponding to the best fit of P+(t ) is shown in Fig. 2(f).

The measured variations of P+ with incident angle and time
are inconsistent with the physical null model that the far-field
hydrodynamic effect of a boundary can be extended to model
the motion of a cell in contact with a surface. We repeat
the procedure described above to fit P+ to the Fokker-Planck
equation where the drift velocity is described by Eq. (1)
and the prefactor on the sinusoidal term is fit. As shown in
Figs. 4(a) and 4(c), while the variation with incident angle is
equally well described by either model, the first passage times
differ markedly.

C. Matching near- and far-field dynamics

The agreement between theory and observation shown in
Fig. 4 leads us to conclude that Eq. (2) captures the essential
qualities of the near field dynamic coupling between a T. ma-
jus cell and a wall. Two questions remain. First, these results
do not constrain the distance between a cell and the wall at
which a cell may become trapped. Additionally, it is not clear
why all cells escape the surface at narrowly distributed angles
(see Fig. 2).

To answer these questions we match the short-range angu-
lar velocity [Eq. (2)] with the far-field [Eq. (1)]. To match the
cubic decay of torques on the cell predicted by the far-field
dynamics, we propose that at short distances z ∼ a from the
wall and small angles (θ < θc)

ω(z, θ ) = Kθ

[(z − a)/η + 1]4

[(
θ

θb

)2

+ z − a

η
− 1

]
, (5)

where η is the thickness of the gap between the cell and
wall at which the orientation θ = 0 becomes stable. In the
limit z � η and θ 	 θb, this expansion matches Eq. (1)
where η/a = (9�U/32Ka)1/3 = 1.27 ± 0.16. We conclude
that cells may become bound when the gap between the
cell and the wall becomes similar to the cell radius. This
result is intuitively consistent with the physical model in
Ref. [27], in which the bound state is stabilized because
velocity gradients in the gap between cell and surface are
sharper than those between the cell and the bulk fluid caus-
ing the cell to roll to align its flagella with the surface
normal.

Finally, we consider the escape of a cell from the surface.
All cells escape by first swimming tangent to the wall. We
consider the simplest function that interpolates between the
constant angular velocity ωmax found when the cell is in con-
tact with the surface the cubic decay predicted by the far field.
We expect the angular velocity of an escaping cell to decay as

ω(θ, z) = ωmax

[(z − a)/η + 1]3
. (6)

Cells escape with speed dz/dt = −U cos(θ ) + uim(z, θ ),
where uim(z, θ ) is a correction to the swimming speed due
to advection by the cell’s hydrodynamic image. Its functional
form is provided in Ref. [36].

We numerically integrate Eq. (6) to find the asymptotic
orientation of a cell’s motion that is initially swimming tan-
gent to the surface. Taking the initial distance between the
cell and the wall to be one cell radius, we find—with no

FIG. 5. The escape angle is determined by the minimum distance
between the cell and the wall. (a) The average escape angles (blue
dots) of cells that remain in contact for at least 0.125 s are similar
with the prediction (black line with shaded 95% confidence intervals)
of Eq. (6). Cells that remain in contact with the wall for shorter
durations escape at slightly greater angles (red dots). The colors of
these dots correspond to the conjectured trajectories shown in panels
(b) and (c). Error bars indicate the 95% confidence intervals. (b) The
red line shows the trajectory of a cell that approaches the surface at
a shallow angle and is turned away from the surface before contact.
It escapes from a height zmin. (c) A cell that collides with the surface
at a sharper angle eventually escapes from a height of a cell radius a.
The blue line illustrates the approach and eventual escape of a of a
cell that is briefly trapped.

fit parameters—a predicted escape angle of 61.5◦ ± 2.3◦. As
shown in Fig. 5, this value is consistent with the measured es-
cape angle 〈|θout|〉 = 59.5◦ ± 0.7◦ found for cells that remain
in contact with the surface for at least 0.125 s.

Curiously, cells that are identified by the tracking algorithm
to be in contact with the surface for shorter durations escape
at slightly greater angles, which increase with the incident
angle (see Fig. 5). We believe that these events reflect the
limit of the method that we adopted to identify collisions
between a cell and the boundary. In the preceding analysis,
we assume that a cell is in contact with the surface when its
center comes within the measured cell radius of the boundary.
The low spatial resolution of these measurements make this
interpretation sensitive to diffraction. We believe that cells that
fleetingly approach the surface (i.e., those that are identified
by the algorithm to be in contact for less than 0.125 s) are
turned away from the surface by hydrodynamic torques before
they come in physical contact with the wall, similar to the scat-
tering of Chlamydomonas [43]. Taking the minimum distance
between the cell and the wall to be zmin and integrating Eq.
(6), we find that the observed increase in 〈|θout|〉 is consistent
with a value of zmin that increases monotonically with θin.

IV. CONCLUSION

In conclusion, we have used the scattering statistics of
collisions between T. majus and a hard wall to probe the
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near-field dynamics between a fast-swimming multiflagel-
lated cell and a surface. A simple physical picture emerges.
As a cell approaches a wall, dipole-dipole interactions with
its hydrodynamic image turn the cell to swim parallel to the
surface. When the distance between the cell and the surface
decreases to a value of ≈1.27 cell radii the torques acting
on the cell change qualitatively. Shear forces in the gap be-
tween the cell and the surface orient the cell to exert a force
normal to the surface. The cell becomes trapped. We find that
the basin of attraction of the fixed point is narrow. Conse-
quently, most cells collide with the surface outside of this
basin and rapidly escape while maintaining their direction of
motion tangent to the surface. When a cell is captured by
the stable fixed point, its eventual escape is symmetric and
all information of its approach to the wall is erased. Because
all cells that come in contact with the surface escape by first
swimming tangent to the wall at a distance of one cell radius,
all cells escape at similar angles. A minority of cell are turned
from the wall before coming in physical contact with the wall
and escape at slightly greater angles.

The trapping of T. majus by a hard surface is the first
step in the nucleation of active chiral crystals [26]. In our
previous study, we found that isolated cells remain trapped by
the surface for tens of seconds [27], much longer than average
trapping time 0.21 s found here. We ascribe this difference to
the roughness of the walls made of PDMS to those made of
polished glass. As the gap between the cell and the surface is
presumably much smaller if the surface is smooth, the velocity
gradient between the cell and the wall—which stabilize the
trapped cell—is much sharper. Consequently, we expect cells

are more strongly trapped by cover slips than microfluidic
walls. The escape of cells could be further enhanced by the
sporadic binding of quickly rotating flagella to the PDMS,
which may increase the effective rotational diffusion of cells,
causing cells to escape more quickly from PDMS than from
glass. This result highlights the importance of an unnaturally
smooth surface for the formation of active chiral crystals. We
are consequently doubtful of the biological significance of this
form of collective motion.

Nonetheless, the dynamics by which cells scatter from
rough surfaces are likely quite important for the ecology of T.
majus. These bacteria, which live in the pore space of water-
saturated sand, exude mucus tethers from their posteriors to
attach to detritus [20]. It is not understood how cells attach this
mucus thread to a surface. Our results show that when a cell
collides with a surface outside of a narrow basin of attraction,
it rapidly escapes rather than swimming parallel to the surface.
As free-swimming T. majus frequently drag short tethers as
they swim [23] and collisions quickly turn the cell posterior
toward the wall, it is plausible that these collisions facilitate at-
tachment of the tether to the surface. Given a swimming speed
of 600 µm/s and a pore size of several tens of micron, these
collision dynamics provide several opportunities a second for
a dragged tether to stick to a surface.
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