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Main role of fractal-like nature of conformational space in subdiffusion in proteins

Luca Maggi1,* and Modesto Orozco1,2

1Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science
and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain

2Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona,
Avgda Diagonal 647, Barcelona 08028, Spain

(Received 13 September 2023; revised 26 January 2024; accepted 5 February 2024; published 1 March 2024)

Protein dynamics involves a myriad of mechanical movements happening at different time and space scales,
which make it highly complex. One of the less understood features of protein dynamics is subdiffusivity, defined
as sublinear dependence between displacement and time. Here, we use all-atoms molecular dynamics (MD)
simulations to directly interrogate an already well-established theory and demonstrate that subdiffusivity arises
from the fractal nature of the network of metastable conformations over which the dynamics, thought of as a
diffusion process, takes place.
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I. INTRODUCTION

Protein dynamics is widely being recognized as a pivotal
element to understand protein function [1,2]. In fact, enzy-
matic reactions [3], signal transduction [4], molecular motors
[5], or transport across membrane [6] could not be understood
ignoring dynamics, which is defined as the set of time-
dependent protein conformational changes occurring during
the exploration of the protein multidimensional energy land-
scape. Experimental and computational studies highlighted
the “roughness” of the protein energy landscape, with many
metastable states separated by energy barriers [1,2,7], which
implies that protein dynamics can be thought of as a diffusion
process among metastable states [8–10]. Previous investi-
gations showed [9,11–15] that protein dynamics exhibits a
poorly understood subdiffusive behavior [16], which implies a
sublinear relationship between the mean square displacement
(MSD) and time (t). More formally speaking,

MSD = 〈|X (0) − X (t )|2〉 ∼ tα, (1)

where 〈· · · 〉 represents an ensemble average and X (t ) =
{x1(t ), . . . , xN (t )} is a single protein conformation at time t .
This is a set of N time-dependent variables, xi(t ), that are the
protein degrees of freedom. In this work, these correspond to
the Cα carbon atoms coordinates. The exponent α is equal
to 1 for a normal diffusive problem and less than 1 in the
subdiffusivity regime. The microscopic origin of subdiffusion
is still poorly understood even though several explanations
have been put forward: as the intrinsic “viscoelastic” behavior
of protein [12,17]; the trapping due to the energy barrier [11];
multiple relaxation processes featured dynamics [16] or the
fractal nature of the conformational space [15,18,19]. Here,
we will show that the latter should be considered as the main
origin of subdiffusion in protein by directly questioning the
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theory of diffusion on fractals. According to this theory, the
probability (P) to observe a displacement l at time t , which
in an N-dimensional homogeneous Euclidean space is P ∼
t−N/2exp(− Nl2

4Dt ) [20], where D is the mass diffusivity, is given
by [21,22]

P(l, t ) ∼ t−ds/2 exp

⎡
⎣−A

(
l2d f /ds

t

)1/(2d f /ds )−1
⎤
⎦, (2)

in which d f is associated to geometrical properties of the
fractal-like space, ds is related to dynamical features of
its exploration process [22,23], and A is constant. Since
MSD = ∫ l2P(l, t )dl , exploiting Eq. (2), one gets [21–23]

MSD ∼ t ds/d f . (3)

Therefore, a simple comparison with Eq. (1) provides the
definition of the general α exponent within the theory of the
diffusion on fractals, being

α = ds

d f
. (4)

Since α, ds, and d f can be computed independently from
atomistic molecular dynamics (MD) simulations, we can use
Eq. (4) to validate whether the fractal hypothesis stands for
a representative set of small proteins whose dynamics can be
well treated by atomistic MD simulations (see Appendix A for
details). Particularly, we explore the equilibrium dynamics of
the Villin headpiece [Villin; PDB ID: 1VII [24]; Fig. 1(a)],
the N-terminal of the human histone H4 tail (H4); and a
PDZ domain (PDZ; PDB ID: 1D5G [25]). They differ in the
number of residues, 25, 32, and 96 for H4, Villin, and PDZ
respectively, and its secondary and tertiary structure [12,17].
For the sake of clarity, we will show in the main text all the
details of our analysis for Villin only, but will include H4 and
PDZ in the presentation of the main results (see Appendies B
and E for the detailed results of the analysis for H4 and PDZ).
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FIG. 1. Snapshot extracted from MD simulations of (a) Villin
and (b) the associated MSD profile linearly fitted. Plot shows the
R2 and the NRMSE relative to the linear regression computed on
coarse-grained MSD.

II. METHODS AND RESULTS

Even though we focused only on Cα′s atoms
coordinates, the analysis presented in the following requires
a further space dimensionality reduction to avoid their
otherwise prohibitive computational costs. This choice is
purely technical and the subdiffusive behavior is maintained.
For this purpose, we used principal component analysis
[26,27]. Briefly, this consists in the diagonalization of the
N by N correlation of Cα carbon atoms coordinates, where
rigid translations and rotations are removed by superimposing
each conformation on an average one. The kth principal
component (PCk) is defined as the projection of X (t ) onto
the kth eigenvector (ϕk ), PCk (t ) = ϕk · X (t ). The first few
eigenvectors are associated with the largest movements
sampled by the protein, so, in the absence of specific prior
knowledge, the associated PCs are extremely useful for
studying the internal dynamics of protein. Therefore, we
chose the first two PCs as descriptors of the conformational
space and projected the whole protein dynamics onto this
two sub-dimensional space where the diffusion process
will take place and a single conformation is defined as
X̂ (t ) = {PC1(t ), PC2(t )}.

It should be noted that the results presented below are
independent of the descriptors chosen and that different de-
scriptors can be used to obtain the same results. This is shown
in Appendix C for the case of Villin, where we repeated the
analysis carried out in the main text using different variables
and still arrived at the same conclusions.

The identification of metastable states has been done over
the two-dimensional conformational space by means of ag-
glomerative hierarchical clustering [28–30]. This method uses
a bottom-up approach. In the first iteration, each conformation
is considered as an individual cluster. They are then merged
together according to a similarity criterion based on a linkage
method that is a function of the Euclidean distance between
the conformations. Here we used the so-called Ward linkage
method [29,30]. The similarity criterion consists in defining a
cut-off value (ε) for the linkage method to determine whether
two clusters should be merged. This parameter thus controls
the average size of the clusters.

FIG. 2. (a) Villin trajectory in the two-sub-dimensional confor-
mational space. (b) Probability surface obtained from the trajectory.

The reasons leading to employing this clustering method
are twofold. Firstly, the intrinsic hierarchy of all metastable
states seems reasonable as structural differences among con-
formations can be naturally classified as subsets of decreasing
size that subdivide the entire space. This idea is supported by
previous works highlighting this feature [2,8]. On the other
hand, this clustering method presents technical advantages as
it does not require one to set a fixed number of clusters (as
K-means methods [31]) employing the adjustable parameter
ε and it does not produce any outlier conformations, diffi-
cult to be included in the theoretical picture. The dynamics
including each single conformation is, thus, replaced by a
coarse-grained one involving only the cluster centroids, which
correspond to the representative conformations of each single
metastable state. The average cluster size is selected to best
replicate the MSD obtained from fine-grained conformational
subspace, while still ensuring a reliable sampling of each
cluster. The MSD calculations are performed using a moving
average to cancel out the dependence from the initial condi-
tions and it reads

MSD = 1

T − t

∫ T −t

0
dτ |X̂ (t + τ ) − X̂ (τ )|2, (5)

where t < 0.01T , where T is maximum simulation time
(1 μs). α is extracted from a linear regression of the log-log
plot of MSD against time [Fig. 1(b)]. We found that set-
ting ε within a range from 1.0 to 0.2, produces converged
α values as defined by the relative difference � = |α−αfine|

αfine
where α and αfine are the exponents calculated for coarse- and
fine-grained conformational space, respectively. The small �

value [Fig. 1(b)] indicates that ignoring the conformational
oscillations around the individual centroids, as a consequence
of the coarse-graining, leads to a negligible error in the MSD.
To quantify the reliability of the linear fits in this study, two
statistical measures were calculated: (1) the coefficient of
determination (R2) and (2) the mean square error normalized
over the difference between the maximum and minimum val-
ues of the interested quantity (NRMSE). Regarding the MSD,
it turned out that R2 is very small, very close to unity, as well
as the NRMSE, below 2% [Fig. 1(b)], indicating the accuracy
of the linear fits. Furthermore, as a visual example, we showed
the trajectory of the Villin and its related probability surface in
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FIG. 3. M(r) and P0(t ) profiles and the associated linear fit for
Villin. The yellow-shaded bands in the M(r) plot indicate the stan-
dard deviation from the mean values.

a reduced two-dimensional conformational space [Figs. 2(a)
and 2(b)].

The distribution of metastable states over the conforma-
tional space is connected to d f , since this exponent relates
the number of cluster centroids (M) within a sphere to its
radius r as M ∼ rd f [22,23]. Therefore, we counted the num-
ber of clusters comprised by a sphere centered on a cluster
centroid with a radius r. We repeated this procedure for all
the centroids and for different values of r. Averaging over all
the centroids, we obtained the profile shown in Fig. 3(a) as
log-log plots whose linear fit provides the d f values. It should
be noted that the above power-law relationship does not hold
to the entire range of r values. In fact, since the distribution of
metastable states is a discrete and finite set of points, for both
small and large values of r the M(r) profiles show a “plateau,”
which invalidates the power-law relationship. To avoid these
artifacts, we performed the linear fit neglecting these extreme
value ranges. The interval of interest is chosen to include as
many clusters as possible while minimizing the largest abso-
lute error between the M(r) profile and the linear fit. Setting
the range of r values to exclude the first 5% and include 70%
of the total number of clusters proves to be the best choice, as
it produces a small error, which, normalized over the number
of included clusters, is around 5% for all the systems, while
including a significant number of clusters (see Appendix D for
details). A homogeneous object in a two-dimensional space
should have d f equal to the dimension of the space, namely,
2. Unlikely, it turns out that the distributions of metastable
states always have values less than 2, indicating their fractal
nature [22,23].

During its dynamics, the protein jumps among these states
whose accessibility is dictated by the potential energy barri-
ers separating them. According to the theory of diffusion on
fractals, after a time t the probability that the protein jumps
back to the starting state (P0) is related to ds as P0 ∼ t−ds/2

[22,23,32]. We exploited this relation to evaluate this ex-
ponent. In our case the “starting point” coincides with the
starting metastable states (i.e., starting cluster). Hence, we
introduced C(t + τ, τ ), which is a function equal to 1 if the
clusters visited at t + τ and at τ are the same and 0 otherwise.
P0 is calculated using a moving average as follows:

P0(t ) = 1

T − t

∫ T −t

0
dτC(t + τ, τ ). (6)

FIG. 4. (a) 〈N (t )〉 and (b) residence time distribution for Villin
with three different average cluster sizes. Any regions of the resi-
dence time distribution show an independence from the cluster size,
which would be a clear sign of the existence of a power-law profile.
H4 and PDZ plots exhibit the same characteristics (Figs. 13 and 14).

The log-log plots of P0 show a very good agreement with a
power-law relation [Fig. 3(b)], and a linear regression of those
profiles provides the values of ds. It should be noted that the
calculation of P0 is independent from the metastable states
distribution as it is only affected by their relative accessibility,
which is regulated by the potential energy barriers. How-
ever, the nature of these barriers is still unclear. Indeed, they
can originate from potential wells, related to each individual
state, that hinder the dynamics regardless of the directions the
protein explores in the space. This scenario is associated
with the well-known continuous-time random walk (CTRW)
model, which prescribes that the distribution of residence time
(i.e., the probability the protein spends a particular time span
in the same state) follows a power law. This produces an
average number of jumps between states (〈N (t )〉) that exhibits
a sublinear relation with time, 〈N (t )〉 ∼ tα , which determines
the subdiffusion [33]. Conversely, the barrier heights might
depend on the couple of metastable states involved in each
protein jump. In this case, barriers resemble walls that force
protein to follow windy paths and slow down the exploration
process. Therefore, it is important to evaluate the contribution
of these two cases for providing a more detailed description
of subdiffusion.

The role played by the potential wells related to each single
state is evaluated by verifying whether CTRW can adequately
model protein dynamics. This is done by directly calculating
〈N (t )〉 as follows:

〈N (t )〉 = 1

T − t

∫ T −t

0
dt ′

∫ t+t ′

t ′
dt ′′|C(τs + t ′′, t ′′) − 1|, (7)

where τs is the minimum time step we can observe a jump
between two states, which corresponds to the sampling time
of MD simulations, which is 20 ps (see Appendix A). This
quantity exhibits a time linear dependence as shown by the
log-log plots in Fig. 4(a), independently from the size of
clusters. Moreover, the residence time distribution does not
exhibit a power-law relation as shown by its dependency from
the average cluster size, which more resembles an exponential
decay [Fig. 4(b)]. Both of those findings are in contrast with
the CTRW model prescription and rule out the possibility
that single states stability can fully explain the subdiffusive
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FIG. 5. Comparison between Markov state model MSD and the
one calculated from MD simulations for Villin.

behavior indicating, thus, the exploration is mainly driven by
path-dependent energy barriers.

Yet, this description raises another question on whether the
paths proteins follow depend on their “past.” More technically,
how much the past visited states at t0 < t1 < t2 · · · < t
determine the protein state at t . This question is thus focused
on the memory effect protein dynamic might exhibit [17] and
it becomes even more relevant noticing that the theory of
diffusion on fractals is entirely focused on Markov processes,
which are memory-free processes [22]. To answer this ques-
tion, we built a Markov state model (MSM), directly from
MD simulations [34]. A MSM is uniquely defined by the
transition matrix T whose entries, Ti j representing transition
probabilities between states i and j, can be computed as

Ti j = si j∑Nc
i=1 si j

(8)

where si j is the number of jumps between the ith and jth
metastable states and Nc is the total number of clusters.
Through MSM we described a discrete time Markov pro-
cess. The time resolution of this MSM corresponds to our
MD trajectories sampling time, namely, 20 ps. After n steps
the probability to find the protein in a particular state is in-
cluded in the Nc entries vector P(n), which is propagated as
usual, P(n) = T n · P(0). In this case the MSD is calculated as

TABLE I. Comparison between αMarkov and αfit calculated for the
different systems under investigations.

System αMarkov αfit

H4 0.4664 0.4877
Villin 0.4600 0.4140
PDZ 0.5169 0.4681

TABLE II. Summarizing table showing all the evaluated expo-
nents for all the systems under investigation and comparing the α

coming from the theory and extracted directly from the fit with MSD
(αfit).

System df ds α = ds/df αfit

H4 1.4404 0.7050 0.4894 0.4877
Villin 1.5099 0.6178 0.4092 0.4140
PDZ 1.2220 0.5856 0.4792 0.4681

follows:

MSDMarkov(n) =
Nc∑

i=1

Nc∑
j=1

d2
i j (T

n)i jPi(∞), (9)

where di j is the distance in the conformational space between
the ith and jth cluster centroid and Pi(∞) is the ith entry of the
stationary distribution P(∞). A linear fit of the log-log plot of
MSDMarkov against time provides the α exponent associated to
MSM (αMarkov) (Fig. 5 and Table I). It turned out that for all
the investigated systems these values are very close to those
calculated for the MD simulation (Table I) showing that even
a simple memory-free model such as MSM can exhibit the
“correct” subdiffusive behavior. The fact that MSDMarkov and
MSD profiles do not overlap is mainly associated to already
known discretization errors [35–37] (see Appendix F for de-
tails).

The values of ds and d f are summarized in Table II where
we compared the subdiffusion exponent αfit with the ratio
ds/d f . Clearly, protein dynamics follows the subdiffusion
paradigm as indicated by a values in the range 0.4–0.5, and
the comparison between α = ds/d f and αfit values shows ex-
cellent agreement.

III. CONCLUSION

Therefore, in conclusion, we provided compelling evi-
dence that subdiffusive protein dynamics, as described by
MD simulations, originates from the fractal nature of the con-
formational space. The high-dimensional and rough potential
energy landscape gives rise to separated basins of attractions,
namely, metastable states whose distribution in the conforma-
tional space, regulated by d f , resembles a fractal structure.
The paths among these states, followed by the protein dur-
ing its dynamics, are shaped by the energy barriers, which
determine the relative states connectivity and, thus, the ds

values. Therefore, as prescribed by the theory of diffusion on
fractal structure, the subdiffusion in protein can be described
by the exponents d f and ds, which are directly connected to
the landscape of the potential energy surface.
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FIG. 6. Snapshot extracted from MD simulations of (a) H4 and
(b) the associated MSD profile linearly fitted. Plot shows the R2 and
the NRMSE relative to the linear regression computed on coarse-
grained MSD.
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APPENDIX A: MOLECULAR DYNAMICS DETAILS

All the simulations presented here have been carried out
employing the GROMACS 2020.2 code [38]. The initial pro-
tein structures of PDZ and Villin are taken from the Protein
Data bank whereas the H4 has been manually reconstructed
using Avogadro [39]. They are placed in simulation boxes
of 41 × 41 × 41, 47 × 47 × 47, and 70 × 70 × 70 A3 for H4,
Villin, and PDZ, respectively. All the systems are filled with
TIP3P water molecules. Na+ and Cl− ions were added to
neutralize the system and bring the salt concentration to a
physiological level. All the simulations are performed using
Amber ff19SB force field [40] and LINCS [41] to constrain
all the bonds involving hydrogens allowing us to employ a
2-fs step to integrate the Newton equations. The mesh Ewald
method has been used to account for long-range interactions
with a real-space cutoff of 12 A. All the systems are equili-
brated running a 50-ns-long simulation of an NVT ensemble

FIG. 7. Snapshot extracted from MD simulations of (a) PDZ and
(b) the associated MSD profile linearly fitted. Plot shows the R2 and
the NRMSE relative to the linear regression computed on coarse-
grained MSD.

FIG. 8. M(r) and P0(t ) profiles and the associated linear fit for
H4. The yellow-shaded bands in the M(r) plot indicate the standard
deviation from the mean values.

(T = 310 K) using the velocity-rescaling algorithm to control
the temperature with a coupling constant of 0.4 ps, followed
by a 50-ns NPT ensemble (T = 310 K, P = 1 atm) employing
a Nose-Hoover thermostat [42] and a Berndsen barostat [43],
with a coupling constant of 0.4 and 0.6 ps, respectively. Even-
tually, the results presented were sampled every 20 ps from the
1-μs production simulation, which has been carried out in an
isothermal isobaric ensemble (T = 310 K, P = 1 atm) using
a Nose-Hoover thermostat and the Parinello-Raman algorithm
to control pressure [44] with a coupling constant of 0.6 ps.

APPENDIX B: MSD, M(r), AND P0 PROFILES
FOR H4 AND PDZ

Figures 6–9.

APPENDIX C: SUBDIFFUSION ANLAYSIS OF VILLIN
WITH DIFFERENT DESCRIPTORS

To corroborate the results presented in the main text, we re-
peated the same analysis on Villin using different descriptors
for the conformational space. Here we focused on the rmCα

carbon root-mean-square-deviation (RMSD) of two segments
of the protein calculated from the reference structure shown
in Fig. 1(b) in the main text, as done by others to describe its
dynamics [45]. The first one, Segment A, comprises the first
17 residues and the rest belong to Segment B. Figure 10 shows
the probability distribution extracted from the simulations and

FIG. 9. M(r) and P0(t ) profiles and the associated linear fit for
PDZ. The yellow-shaded bands in the M(r) plot indicate the standard
deviation from the mean values.
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FIG. 10. (a) The probability distribution of Villin conformations
studied in RMSD Segments A (red) and B (blue). (b) The Villin
dynamics over multiple conformations.

its dynamics within it. Based on this descriptor, we performed
the hierarchical agglomerative clustering, setting ε = 0.2, and
extracted all the exponents (α, αfit, d f , and ds) from the
profile of MSD, M(r), and P0(t ) (Fig. 11). We obtained
α = ds

d f
= 0.3904 very close to αfit = 0.3752. As stated in the

main text, other quantities can be chosen producing the same
results, and the advantage of using PCs is purely technical.

APPENDIX D: M(r) PROFILE

In order to avoid artifacts at the extreme range r values,
we restricted the linear fit in a value range, which excludes
the first 5% and includes 70% of the total number of clusters.
Figure 12 shows the M(r) profile over all the range of r.
We assessed the discrepancy between the linear fit (Mfit) and
M(r) computing the maximum absolute errors between these
two functions normalized over the total number of clusters
comprised by the linear fit (Mtot−fit), namely,

max
r

{|M(r) − Mfit (r)|}
Mtot−fit

. (D1)

We set a conservative cut-off value for this quantity at
around 5% and the range mentioned above provides an error

FIG. 12. M(r) Villin profile. The dashed light-blue line repre-
sents the 5% and 70% of the total number of clusters.

of this entity for all the systems considered, being 4.5%, 5.1%,
and 4.6% for H4, Villin, and PDZ, respectively. Furthermore,
it should be noted that the maximum r values we selected
(∼2 nm for each system) are always larger than the maxi-
mum displacement (∼1 nm), which ensure the validity of the
power-law relationship at least in the range defined by the
maximum displacement considered.

APPENDIX E: H4 AND PDZ RESIDENCE TIME
DISTRIBUTION AND 〈N(t )〉

Figures 13 and 14.

APPENDIX F: MARKOV STATE MODEL MSD

As stated in the main text, the MSM is totally de-
fined by the transition matrix T from which we calculated

FIG. 11. (a) Coarse- and fine-grained MSD. (b) M(r) and (c) P0(t ) profiles with the associated linear fits for the Villin. Yellow shading on
M(r) represents the standard deviation from the mean values.
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FIG. 13. (a) 〈N (t )〉 and (b) residence time distributions for H4.

the stationary distribution P(∞), and using the matrix of
the distances between all the metastable states d , we can
compute the MSDMarkov. The matrix T can be decomposed
by its eigenvalues (σk ) and left (right) eigenvectors (vl (r)

k ):

T =
∑

k

σkv
l
k ⊗ vr

k, (F1)

where k runs over the total number of eigenvalues. Therefore,
exploiting the orthonormality between right and left eigenvec-
tors, the MSD can be rewritten as

MSDMarkov(n) =
∑
i, j

Pi (∞)d2
i j

{∑
k

σ n
k

[
vl

k ⊗ vr
k

]
i j

}
. (F2)

Changing the order of summation, one has

MSDMarkov(n) =
∑

k

σ n
k

⎧⎨
⎩

∑
i, j

Pi (∞)d2
i j

[
vl

k ⊗ vr
k

]
i j

⎫⎬
⎭. (F3)

The term in curly brackets does not depend on the number
of steps n. On the log-log plots shown in the main text, it
produces a translation of the MSD profile. Even though the
MSM can reproduce some properties of the modeled system,
the discretization of the conformational space generates er-
rors on the eigenvectors v

l (r)
k with respect to the continuous

eigenfunctions associated to the operator generating the “real
dynamics” that originates the MSD profile shown in the main

FIG. 14. (a) 〈N (t )〉 and (b) residence time distributions for PDZ.

FIG. 15. The MSD profile obtained by a MSM translated down-
wards of 0.42 on a log10 scale. The overlaps between the two profiles
are very good over the whole range of simulation time.

text. These errors are well known and documented elsewhere
[35,36]. This explains the two profiles shown in the main
text do not overlap. A simple translation of the logarithmic
scale MSDMarkov plots produces, indeed, a very good over-
lap as shown in Fig. 15. The discrepancy on αMarkov

′s are
mainly due to the finite dimension of T and the discretization
errors. Furthermore, Fig. 16 shows the MSD profile for H4
and PDZ.

APPENDIX G: ANALYSIS TOOLS

The SCIKIT package [46] is employed to implement the
hierarchical clustering algorithm. All the linear regressions
are made using GNUPLOT and the rest of the analyses are the
results of in-house scripts.

FIG. 16. Comparison between Markov state model MSD and the
one calculated form MD simulations for (a) H4 and (b) PDZ.
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