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Early warning indicators of war and peace through the landscapes and flux quantifications
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War and peace, spanning history, deeply affect society, economy, and individuals. Grasping their dynamics is
vital to lessen harm and foster global peace. Yet, quantifying them remains hard. Our goal is to create a simple
qualitative model using landscape and flux theory, exploring war and peace mechanisms. In this symmetric
network, they appear as separate attraction basins, dynamically shifting. Analyzing landscape shape gives
insights into global stability. Near critical points, indicators like cross correlations, autocorrelation times, and
flickering frequency surge, as warnings. We also calculate the irreversible path between war and peace due to
rotational flux. Global sensitivity analysis identifies history’s role in system stability. In summary, our research
unveils a way to understand war and peace complexities, enhancing knowledge of key elements that lead to
conflict, aiding resolution.
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I. INTRODUCTION

Peace and war are universal social phenomena. Peace rep-
resents the ideal environment that people aspire to, while
war signifies a state of violent conflict that is undesirable.
The occurrence of a war is influenced by various factors, in-
cluding political, economic, military, scientific, technological,
and natural conditions. These factors, together with human
agency, contribute to the development and outcome of the war.
Human society, as the natural world, experiences both har-
monious aspects and disharmonious aspects. Peace and war,
two fundamental and conflicting phenomena, coexist within
human societies. This prompts us to inquire about the key fac-
tors that contribute to the emergence of the war and the factors
that foster peace. When people talk about peace, they think
of no war, no violent conflict—this is only a negative peace
that cannot effectively prevent the appearance of violence and
conflict. To understand the drivers of peace, it is essential to
go beyond a mere absence of war, and studies have explored
the mechanisms of war and conflict [1]. Dynamic system
theory has found applications in various social phenomena
and provides a conceptual framework for understanding and
resolving conflicts [2–5]. Peace or war is essentially a dy-
namic process. Conflicts arise from the complex interactions
of multiple factors, and understanding the intricate details
of these interactions sheds light on the origins of conflicts
[6–8]. These factors do not operate in isolation but rather
form an interconnected complex network. The real world
hosts a variety of networks, such as social networks, informa-
tion networks, technical networks, and biological networks,
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each characterized by distinct structures and functions [9]. By
looking at war and peace from a nonlinear dynamic perspec-
tive, we synthesize the factors that affect the peace in a system.
The researchers propose that the causal loop diagram of the
peace system forms a type of network. It enables qualitative
determination of complex peace factors and their relationships
[10]. Mathematical models based on differential equations
offer a quantitative approach, allowing us to understand the
system’s behavior, properties, and its dynamics towards war
or peace [11–13]. By solving these differential equations, we
can gain insight into the factors that influence the system’s
trajectory towards war or peace, including the factors with
the greatest impact. Such deterministic models offer realistic
predictions and enable policy interventions as well as possi-
ble and early warning of the potential turbulence based on
the system’s overall evolutionary trend. The topology of the
causal network determines the ultimate fate of the system,
reflecting whether the world or region we inhabit is at war
or peace through attractors.

Current models describing the evolution of sustainable
peace systems primarily operate in a deterministic manner.
However, in reality, dynamic processes are subject to in-
evitable noise [14]. Therefore, a more realistic model should
consider both intrinsic and extrinsic fluctuations. Further-
more, the system of the study is often an open one as living
systems and chemical reaction systems. It exchanges infor-
mation, energy, and matter with the external environment.
Therefore, the system is usually in nonequilibrium. Landscape
and flux theory for non-equilibrium systems has been applied
to various disciplines, including protein folding, biomolecule
recognition, evolution of biological systems, cell cycle,
differentiation and development, cancer, neural networks,
brain function, and cross-scale research on genome structure
dynamics [15,16].
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In this paper, we revise the existing peace model based
on landscape and flux theory and develop a comprehensive
nonequilibrium dynamical model for war and peace. Through
quantitative analysis using landscape and flux theory, war and
peace are described as two attractor basins. We will illustrate
the switching dynamics between war and peace through the
height of the barrier and the escape time determined by it. We
explore the nonequilibrium dynamics and thermodynamics
of the war and peace network, which were not considered
in previous sustainable peace models to the best of our
knowledge. We find that the rotational flux serves as the dy-
namical source for bifurcations while the entropy production
rate (EPR), which describes the thermodynamic cost, serves
as the thermodynamic source for the nonequilibrium phase
transition of the war and peace system, while the rotational
flux acts as the dynamical bifurcation source. In our paper,
we compare and analyze the three early warning indicators
average flux, entropy production, and time irreversibility for
predicting critical points. Compared to the traditional critical
slowing down prediction, we find that the time irreversibility
of the cross-correlation functions can serve as the signals for
critical transitions between alternative stable states caused by
the existence of rotational flux. This provides an early warning
indication for the nonequilibrium system approaching the crit-
ical bifurcation point, usually preceding the traditional critical
slowing down prediction, while the flickering frequency is the
latest signal. Furthermore, we will explore the nonequilibrium
dynamical path of war and peace and conduct a global sensi-
tivity analysis on various parameters in the model to identify
key influencing factors on war and peace.

II. MODEL

Over the past few years, an interdisciplinary team of sci-
entists, academics, policymakers, and practitioners brought
together by the Advanced Consortium on Cooperation, Con-
flict, and Complexity (AC4), has made significant strides in
advancing our understanding of sustainable peace and its in-
tricate dynamics [11,13,17]. However, when it comes to the
nonequilibrium aspect, the quantification of war and peace
still poses significant challenges. In this paper, we primar-
ily consider six variables that impact peace: positive future
expectations, positive reciprocity, positive history memory,
negative history memory, negative reciprocity, and negative
future expectations. Figure 1 shows a causal loop diagram
comprising these six factors, with positive and negative factors
interconnected to form a causal network. Previous studies
have employed differential equation models based on dynami-
cal systems theory, with each factor governed by the following
equation [12]:

dxi

dt
= −|mi|xi + bi +

n∑
j=1

ci j tanh(x j ). (1)

Here, xi (for i = 1, 2, ..., 6) represents the peace impact
factor, and we limit these six variables to xi � 0 to ensure
that a negative peace factor, acting through a negative link,
does not produce a positive effect [13]. The first term on the
left side represents the first derivative in time of each peace
factor, and mi is the constant of the exponential decay term,
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FIG. 1. Causal loop diagrams. The arrow lines represent the in-
terrelation between the factors, red lines represents mutual inhibition
of factors, blue lines represents mutual promotion.

reflecting the self degradation or system’s degree of memory.
This term is introduced to prevent unbounded growth of each
variable. In other words, factors cannot indefinitely influence
the system. The second term bi represents the self-reinforcing
term of each factor. The third term describes the interconnec-
tion between the factors, where ci j denotes the strength of the
influence from variable j to i. This parameter is crucial in
transforming the qualitative causal loop diagram into a quan-
titative model [18]. The nonlinear hyperbolic tangent function
tanh(x) ensures that each variable has a nearly linear influence
on other variables when its value is very low, and reaches a
maximum impact threshold when the value of each variable is
extremely high. The graph of the hyperbolic tangent function
is shown in Fig. 2.

Although Eq. (1) has been employed in previous research
on sustainable peace and its complexity [13], a comprehensive
quantitative characterization of peace and war at the nonequi-
librium level is still lacking. Equation (1) is mathematically a
system of deterministic dynamical ordinary differential equa-
tions. However, in practice, the system is always subject to
noise. Thus, we incorporate the fluctuations of each factor
and construct a stochastic model. Since negative variables
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FIG. 2. Two factors have a relationship expressed as xi =
ci j tanh(x j ), where ci j = 1.5.
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TABLE I. The strength of the influence.

Symbol Interpretation

C15 The strength of the influence of the positive reciprocity on the positive history memory
C26 The strength of the influence of the negative reciprocity on the negative history memory
C31 The strength of the influence of the positive history memory on the positive expectations
C35 The strength of the influence of the positive reciprocity on the positive expectations
C42 The strength of the influence of the negative history memory on the negative expectations
C46 The strength of the influence of the negative reciprocity on the negative expectations
C51 The strength of the influence of the positive history memory on the positive reciprocity
C53 The strength of the influence of the positive expectations on the positive reciprocity
C56 The strength of the influence of the negative reciprocity on the positive reciprocity
C62 The strength of the influence of the negative history memory on the negative reciprocity
C64 The strength of the influence of the negative expectations on the negative reciprocity
C65 The strength of the influence of the positive reciprocity on the negative reciprocity

have a stronger impact than positive variables [4], the original
core engine model with fewer variables tends to push the
system towards a state of war. Previous model studies have
demonstrated that social peace is the collective outcome of
numerous positive factors [18]. However, in this paper, we
reconstruct a model encompassing both peace and war by
adjusting the strength of the interplay between factors. We aim
to explore the underlying mechanism of war and peace within
the framework of nonequilibrium landscape and flux theory.

Additionally, our goal is to establish a straightforward and
quantitative comprehension of the intricate dynamics govern-
ing war and peace. Although our model may appear simplistic,
incorporating only six factors, the obtained results demon-
strate remarkable consistency with the empirical realities,
thereby substantiating the model’s robustness and reliability.
In this model, the six peace factors satisfy the following
equations:

dx1

dt
= −|m1|x1 + b1 + C15tanh(x5) +

√
2Dη(t ),

dx2

dt
= −|m2|x2 + b2 + C26tanh(x6) +

√
2Dη(t ),

dx3

dt
= −|m3|x3 + b3 + C31tanh(x1) + C35tanh(x5)

+
√

2Dη(t ),

dx4

dt
= −|m4|x4 + b4 + C42tanh(x2) + C46tanh(x6)

+
√

2Dη(t ),

dx5

dt
= −|m5|x5 + b5 + C51tanh(x1) + C53tanh(x3)

+ C56tanh(x6) +
√

2Dη(t ),

dx6

dt
= −|m6|x6 + b6 + C62tanh(x2) + C64tanh(x4)

+ C65tanh(x5) +
√

2Dη(t ). (2)

Figure 1 shows three primary types of variables, with each
category encompassing both positive and negative influences
or characteristics, representing both adverse and favorable
aspects within each variable type. Here, factor 1 represents

positive history memory, while factor 2 represents negative
history memory. Factor 3 represents positive future expec-
tations, and factor 4 represents negative future expectations.
Finally, factor 5 represents positive reciprocity, and factor 6
represents negative reciprocity.

Reciprocity refers to the positive or negative influencing
behaviors between groups. When members of one group
positively influence members of another group, the latter
reciprocate with approximately equal or more positive influ-
ence. Conversely, if members of one group engage in negative
influencing behaviors toward members of another group, it
leads to a tit-for-tat negative reciprocity between the groups.
Expectations refer to the positive or negative plans, visions,
agreements, and aspirations of the groups. History memory
specifically includes positive or negative stories, symbols,
memories, documents, etc. [17].

In Table I, we give the mutual influence strength of each
factor in Eq. (2). Below, we provide a more detailed explana-
tion of the interaction parameters (strength of influence) in the
model. C51 specifically refers to how much positive historical
memory within a group translates into positive reciprocity.
For example, if a member of a group has positive historical
memories, they are more likely to engage in positive behaviors
(reciprocity). Conversely, C15 specifically indicates that the
more positive reciprocity exists between groups, the more it
promotes the formation of positive historical memories be-
tween them. On the other hand, C62 indicates that past negative
historical memories between groups influence and promote
the formation of negative reciprocity between them, while C26

indicates that negative reciprocity reciprocates with a roughly
equal influence on negative historical memories. C31 indi-
cates that positive historical memories proportionally translate
into positive future expectations, while future expectations do
not affect past history. C42 indicates that negative historical
memories proportionally translate into negative future expec-
tations. C35 indicates that positive reciprocity proportionally
translates into positive expectations within a group, while C53

indicates that positive expectations within a group, in turn,
promote more positive reciprocity between groups. C46 indi-
cates that negative reciprocity proportionally translates into
negative expectations within a group, while C64 indicates that
negative expectations within a group, in turn, promote more
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negative reciprocity between groups. C56 indicates that for the
more negative reciprocity the corresponding effect will be a
decrease in the quantity of positive reciprocity. Conversely,
C65 indicates that an increase in the quantity of positive
reciprocity leads to a decrease in the quantity of negative
reciprocity.

In our model, we set all self-reinforcing terms
bi to 0, all exponential factors mi to −0.9, C15 =
C26 = C31 = C42 = C51 = C62 = 1.5, C35 = C46 = C53

= C64 = 0.3, and C56 = C65 = −1.5.

III. METHODS

A. The landscape and flux theory of nonequilibrium system

The stochastic dynamics of nonequilibrium dynamical sys-
tems are determined by the landscape and flux that emerge
from the interactions in the state space. In our paper, we utilize
landscape and flux theory to revise the original six-factor core
engine model [12]. In this constructed stochastic dynamics
model, the dynamics of these peace factors are governed by
the Langevin’s equation [19,20]:

dxi

dt
= Fi(x1...xi ) + η(t ). (3)

The first term on the left-hand side of the equation represents
the time derivative of each peace factor variable. The second
term on the right-hand side corresponds to the deterministic
force, which is consistent with the term on the right-hand side
of the Eq. (2). The third term on the right-hand side of the
equation represents the stochastic forces. We consider white
Gaussian noise, which exhibits a first-order correlation given
by 〈η(t )η(t ′)〉 = Dδ(t − t ′), where D generally represents a
diffusion tensor or diffusion matrix that characterizes the mag-
nitude of the fluctuations. In this case, we assume isotropic
noise and treat it as a constant. Due to the influence of noise,
the trajectory of each factor becomes uncertain. However,
the dynamic behavior or pattern of the system can still be
characterized by the probability distribution of its state. At
the stochastic level, the probability distribution satisfies the
Fokker-Planck equation [21]:

∂P(x1, x2, ...xi, t )

∂t
= −

n∑
i=1

[Fi(x1...xi )∂P(x1, x2, ...xi, t )]

∂xi

+ D
n,n∑

i=1, j=1

∂2P(x1, x2, ...xi, t )

∂xi∂x j
. (4)

The Fokker-Planck equation can be expressed in the form
of the conservation laws as ∂P

∂t + ∇ · J = 0. The first term in
the equation represents the time derivative of the probability
distribution function of the peace system. The second term
corresponds to the divergence of the flux. Thus, the change of
the probability is equal to the net flux in or out. The probability
flux, denoted as J, is defined as J = FP − D∇P, where F
represents the driving force of the system. The nonzero steady
state probability flux measures the extent of the system from
the equilibrium and become nonequilibrium. In the context of
reaching a steady state, the divergence of the probability flux
is zero (∇ · J = 0), and two scenarios can occur. The first sce-
nario is when J is zero, indicating no net flux, and the system

is in a state of detailed balance. The second scenario is when J
is nonzero, signifying the breakdown of detailed balance and
the presence of a net flux. In this case, the flux is curl or rota-
tional and forms a spiral field. The emergence of flux indicates
that open systems exchange matter, energy, or information
with the environment. The potential landscape is defined as
the negative logarithm of the steady-state probability distri-
bution analogous to Boltzmann’s law. Mathematically, it is
represented as U = − ln Pss [22], Pss denotes the probability
distribution of the system in the steady state. The potential
landscape plays a crucial role in this framework. It provides
valuable information about the dynamics and behavior of the
system and serves as a measure of the global properties and
stability of the system. The driving force of the system can be
decomposed into two components: F = −D∇U + Jss

Pss . The
first term on the right-hand side represents the gradient force,
while the second term represents the curl force. This decom-
position of the force distinguishes between equilibrium and
nonequilibrium dynamics. The nonequilibrium dynamics are
primarily governed by the gradient force and the curl force.
The gradient force drives the system towards the steady state,
while the curl force acts as the source of detailed balance
breaking, pushing the system away from the equilibrium. In
detailed balanced equilibrium systems, only gradient forces
are present, similar to the motion of electrons in an electric
field. In nonequilibrium systems, curl forces emerge, similar
to electrons moving in an electric and magnetic fields. The war
and peace network functions as a dynamic nonequilibrium
system, continuously exchanging material, information, and
energy with the external environment. The system’s dynam-
ics are influenced by both the gradient force and the curl
force.

In the nonequilibrium steady state, dissipation is a promi-
nent feature that is closely connected to the rate of entropy
generation. By quantifying the rate of entropy generation,
we can effectively measure the dissipation within the system
[23,24]. Furthermore, the rate of entropy generation serves
as an indicator of the system’s departure from the equilib-
rium state, offering thermodynamic insights into its overall
behavior. In statistical physics, the entropy of a system is
defined as a measure of the microscopic disorder or uncer-
tainty of the system, and its mathematical expression is S =
− ∫

P(x, t )lnP(x, t )dx. The rate of change in entropy is Ṡ =∫
(J · D−1 · J)/Pdx − ∫

(J · D−1 · (F − ∇ · D))dx. The total
entropy of the system is the system entropy plus the envi-
ronmental entropy, where the first term

∫
(J · D−1 · J)/Pdx

indicates the rate of entropy generation, which represents
the rate of change of the total entropy. The second term∫

(J · D−1 · (F − ∇ · D))dx represents the average heat dis-
sipation rate, the entropy change rate or heat dissipation
rate exchanged with the environment. The above equation
is commonly abbreviated as Ṡtot = Ṡ + Ṡenv, the first law of
nonequilibrium thermodynamics is thus given, and the total
entropy generation is always greater or equal to 0, which
gives the second law of nonequilibrium thermodynamics [23].
When the system reaches a steady state, the rate of entropy
change within the system becomes 0. At this stage, the to-
tal entropy change of the system, including both the system
and its environment, is equivalent to the dissipated heat from
the environment [22,25–27]. As evident from the equation
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mentioned above, the dissipation is directly associated with
the rotational flux.

B. Barrier height, transient time

The mean first pass time (MFPT) can describe the stability
of the attractor states, which reflects the dynamic timescale
of the system from one stable attractor to another. For a crit-
ical transition such as saddle node bifurcation, as the system
approaches a critical point, the height of the potential barrier
between the bistable states becomes smaller. When one state is
close to disappearing, the time it takes for the system to escape
from one state and transition to another becomes very short,
resulting in a higher frequency of transitions. In other words,
as the system approaches a critical threshold, the dynamics
become more sensitive to small perturbations, and the system
can rapidly switch between different states. This phenomenon
is often observed in the systems exhibiting dynamical critical
transitions such as saddle node bifurcation. The height of
the barrier and the corresponding escape time are important
factors in understanding the stability and dynamics of the
system. By studying the MFPT and the characteristics of the
barrier, we can gain insight into the transition dynamics and
the likelihood of the system moving from one state to another.

C. Optimal path of nonequilibrium dynamics

The path integral formulation is a powerful tool com-
monly used in quantum mechanics, statistical mechanics, and
quantum field theory to describe the processes of dynamical
systems. Here, due to the nonequilibrium nature of the system,
the dynamical path between states do not necessarily pass
through the saddle point of the potential landscape. To de-
scribe the dynamics of the system’s probability from an initial
state xinitial at t = 0 to a final state xfinal at time t , we can for-
mulate it using the path-integral approach. The path integral
allows us to consider all possible paths taken by the system
between the initial and final states. Mathematically, the path
integral is defined as P(xfinal, t |xinitial, 0) = ∫

Dx(t ) e−S[x(t )],
where P(xfinal, t |xinitial, 0) represents the probability of the sys-
tem switching from the initial state to the final state at time
t , Dx(t ) represents the sum over all possible paths x(t ), and
S[x(t )] is the action. The action S[x(t )] is typically defined as
the integral of the Lagrangian along the time [28–31]:∫

dt

(
1

2
∇ · F(x) + 1

4

(
dx
dt

− F(x)

)
· 1

D(x)
·
(

dx
dt

− F(x)

))
.

D. Time-reversal symmetry breaking

The average value of the difference between the forward
and backward cross correlation in time of two random time
series enables us to evaluate the degree of breaking the de-
tailed balance or nonequilibrium and time irreversibility. The
average of the difference between the forward correlation
function and backward correlation function in time is defined
as

�CC =
√

1

tf

∫ t f

0
(CXY (τ ) − CY X (τ ))2dτ .

CXY (τ ) is the forward cross-correlation function in time,
and its mathematical expression is as follows: CXY (τ ) =
〈X (0)Y (τ )〉 = ∑

X iY jPss
i Pi j (τ ). CY X (τ ) is the backward

cross-correlation function in time, X and Y represent the time
series of two random variables, and τ represents the lag time
between the two time series. Pi j is the probability from state i
to state j at time τ . �CC quantifies the behavior of the system
and the asymmetry in its dynamics [32,33], and it may also
serve as an signal indicator for predicting critical transitions.

E. Critical slowing down

The phenomenon known as critical slowing down often
manifests when complex dynamic systems approach a tipping
point [34]. Increasing research indicates that critical slowing
serves as a precursor signal preceding abrupt changes in com-
plex systems [35–37]. When the external control parameters
are altered, the fluctuations in the random sequence become
noticeably amplified as the system approaches the critical
transition. This amplification occurs due to the decreased elas-
ticity of the stable attractor basin. Additionally, the correlation
time of the autocorrelation function for the random variable
can show a sharp increase. This inspires us to directly predict
the critical points by measuring the stochastic time series. By
monitoring and analyzing the fluctuations in the time series
data, including their amplitude and correlation properties, one
can potentially identify the approaching critical points in com-
plex systems [38]. This approach allows us to gain valuable
insights into the dynamics and behavior of the system, en-
abling us to predict the critical transitions before they appear.

IV. RESULTS AND DISCUSSION

A. Landscape and flux of war and peace network system

In the landscape and flux theory of nonequilibrium sys-
tems, the variables U or P capture the system’s dynamic
behavior within the state space. As mentioned earlier, the
steady-state probability distribution holds a crucial role in
describing the system’s behavior. On the one hand, solving
the diffusion Eq. (4) directly is a feasible approach for a
small number of variables. However, when confronted with
systems that possess more than three dimensions, solving
multidimensional partial differential equations becomes in-
creasingly challenging [39]. Alternatively, we can obtain the
steady probability distribution function by collecting statistics
from the trajectories of all variables in stochastic dynamics
simulations. Here, we employ the Heun algorithm for the
stochastic dynamics simulation purposes [40].

The global characteristics and dynamic stability of war
and peace systems are determined by the underlying land-
scape. It plays a crucial role in shaping the behavior of the
system, influencing its propensity towards war or peace. By
analyzing and understanding the landscape, we can gain in-
sights into the overall dynamics and stability of the system.
In our stochastic model, we have quantified the landscape
and flux, revealing the presence of two attractors in certain
parameter regions. These attractors represent stable states
in the system and have a significant impact on its behav-
ior and stability. By studying the dynamics and properties
of these attractors, we can gain valuable insights into the
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FIG. 3. The two-dimensional projection of the landscape where
D = 0.05 and C62 = C51 = 1.5, the white arrows represent the flux,
and the black arrows represent the force from negative gradient of
the landscape.

underlying mechanisms that govern the transition between
war and peace, as well as the global stability of the system.
These two attractors correspond to distinct states of the sys-
tem, with one representing the state of peace and the other
representing the state of war. The potential landscapes, visu-
alized through the two-dimensional projections, are depicted
in Fig. 3. The positions of the war and peace states in the
state space are as follows: (0.08, 1.59, 0.3, 1.83, 0.04, 1.75)

for the peace state and (1.55, 0.1, 1.83, 0.38, 1.77, 0.04)
for the war state. In the state of war, positive factors
tend to approach zero, while negative factors exhibit larger
positive values. Conversely, in the state of peace, positive
factors have higher values and negative factors have lower
values. From the figure, it is evident that the gradient force
serves to stabilize the peace system within the war attractor
basin or the peace attractor basin. In contrast, the curl force
acts as a driving force, inducing the movement of the peace
system from the war attractor basin to the peace attractor basin
or vice versa.

For the purpose of our analysis and discussion, we will
focus on the projections in dimensions x3 and x4. In our
investigation, we discovered that modifying the strength of
positive history memory’s influence on the positive reci-
procity and negative history memory’s influence on the
negative reciprocity triggers a transition in the system from a
monostable state to a bistable state and eventually back to
a monostable state. By manipulating these parameters, we
can explore the impact of history memory and the resultant
reciprocity on the peace system.

In the following discussion, we will record the strength of
influence of positive history memory on positive reciprocity as
C51 and the strength of influence of negative history memory
on negative reciprocity as C62.

B. Results under the C51 parameter

In Fig. 4(a), the stochastic phase diagram of the system is
presented, revealing three distinct regions. It can be observed
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FIG. 4. (a) The stochastic phase diagram for changing the parameter C51 with D = 0.05. (b) Landscapes versus parameter C51. (c) Rate of
entropy production versus parameter C51. (d) Flux versus parameter C51.
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that when parameter C51 falls within the range of greater than
0.7 and less than 2.2, the system exhibits two states. The
green line represents the state of peace, indicating a relatively
stable and harmonious condition. The pink line represents the
state of war, signifying a state of conflict and hostility. The
dashed line in the middle represents the unstable state, where
the system is prone to fluctuations and transitions between
war and peace. The red and blue dashed lines are used to
indicate the war and peace network system approaching the
two critical points of war and peace, respectively.

In Fig. 4(b), it can be observed that the topography of the
potential landscape undergoes changes as the strength of the
influence of positive history memory on positive reciprocity
varies. As the parameter strength of the influence of the posi-
tive history memory on positive reciprocity decreases, positive
history memory reduces, leading to a decrease in positive reci-
procity and making the peace state more unstable, facilitating
a transition to the state of war. Conversely, as the parameter
strength of the influence of the positive history memory on
positive reciprocity increases, positive history memory rises,
resulting in an increase in positive reciprocity and making
the state of war more unstable, facilitating a transition to the
state of peace. Please note that we emphasize the impact of
history memory on the reciprocity rather than the impact of
reciprocity on the history memory. These two aspects are
entirely distinct, as shown in Fig. 1, where parameters C51

and C15 are entirely different. When C51 is set to 1.5, the
weights of war and peace become equal, indicating a bal-
anced state between the two. However, when the parameter
C51 deviates significantly from 1.5, either towards smaller
or larger values, the system shows a clear dominance of
either war or peace. This finding suggests that the strength
of influence of the positive history memory on the positive
reciprocity plays a crucial role in determining the relative
importance of war and peace within the system. By varying
the value of C51, we can observe a shift in the system’s behav-
ior, indicating the significance of this parameter in shaping
the prevalence of war or peace. This emphasizes the sys-
tem’s sensitivity to variations in the strength of the positive
reciprocal effects caused by the positive history memory. It
underscores the significance of comprehending and examin-
ing the impact of this parameter on the dynamics of war
and peace.

1. Thermodynamic and dynamical origins of nonequilibrium
phase transitions

The EPR is a measure of the thermodynamic cost, while the
rotational flux represents the driving force for nonequilibrium
processes. As a nonequilibrium system, the war and peace
network system interacts with the environment by exchanging
various elements such as matter, energy, information, and
more. Figure 4(c) illustrates the relationship between the EPR
and the strength of influence of the positive history memory
on positive reciprocity. It is observed that the EPR reaches a
peak around C51 = 1.5, indicating that when war and peace
coexist with similar weights, the system requires more cost to
maintain stability.

Figure 4(d) presents the relationship between the aver-
age flux and the strength of influence of the positive history

memory on positive reciprocity. Remarkably, the trend of the
flux aligns with that of the EPR, indicating a close connec-
tion between the flux and the cost of the system. Although
the landscape gradient tends to stabilize the point attractors,
the flux, due to its rotational nature, tends to destabilize the
stability of the point attractors.

From Fig. 5, it can be observed that the flux is distributed
in a rotating manner around each stable state attractor and
also propagates between different stable state attractors. As
the strength of positive reciprocity influence from the positive
history memory decreases, the flux initially increases and
then decreases. This leads to a reduction in the stability of
the original state of peace and the emergence of a new war
state. Throughout this process, the associated thermodynamic
cost also increases, as the creation of the new state requires
dissipative cost. As the parameter further decreases, the flux
decreases, and a single war attractor becomes preferred, as
the decrease in flux and the associated cost destabilize the
coexistence of the bistable basins. Therefore, increasing the
flux disrupts the stability of the states, while the EPR pro-
vides the thermodynamic cost of the instability. As the degree
of nonequilibrium in the system increases, more dissipa-
tion is required to maintain the stability, resulting in higher
EPRs. Thus, in nonequilibrium systems, the flux and EPR
work together, revealing the dynamic and thermodynamic
mechanisms of stability disruption, thereby promoting the
occurrence of phase transitions, bifurcations, and new state
formation.

2. Barrier height and early warning indicators

The barrier between the two state basins plays a crucial
role in determining the transition time of the system from one
state to another. We can quantify the barrier height as �U =
Usaddle − Ustate, which represents the difference between the
height of the saddle point and the height of the basin floor on
the landscape. The results presented in Fig. 6 are discussed
with the peace state as the reference point, which corresponds
to the initial position of the stochastic differential Eq. (2).
As C51 decreases to around 0.7, the positive history memory
becomes weaker, resulting in a weaker positive reciprocity.
This leads to a decrease in the barrier height. The lower
barrier makes it easier for the system to switch from the
peace attractor to the war attractor, increasing the likelihood
of transitioning towards the war state.

The MFPT is a measure that captures the timescale of
the dynamics between stable states, representing the duration
needed to switch from one attractor to another. Specifically, it
quantifies the time required to move from a region near one
attractor to a small vicinity of another attractor. This metric
bears significant relevance to the stability of attractor for war
and peace. To compute the MFPT, we start by setting the
initial conditions of Eq. (2) (Langevin equation) to match the
position of the peace state. We then utilize the Heun algo-
rithm to numerically integrate the equation. Simultaneously,
we track the trajectory and measure the time it requires for
the trajectory to reach a predefined region close to the tar-
get attractor (state of war). This entire procedure is repeated
100 times and, finally, the average of the obtained times is
calculated to determine the MFPT. As shown in Fig. 6(b),
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FIG. 5. Nonequilibrium potential landscapes and the curl flux distributions with increasing strength of the influence of the positive history
memory on positive reciprocity. The white arrows represent the curl flux on the landscapes (D = 0.05). (a) C51 = 2.5. (b) C51 = 2.1. (c) C51 =
1.8. (d) C51 = 1.5. (e) C51 = 1.0. (f) C51 = 0.2.

the MFPT from the peace state to the war state decreases
as the strength of influence of the positive history memory
on positive reciprocity decreases. The frequency, which is the
reciprocal of the MFPT, exhibits a gradual increase as shown
in Fig. 6(d). In the vicinity of the war tipping point highlighted
by the red dashed line in the figure, the frequency experi-
ences a remarkable surge, which we refer to as the flickering
frequency.

In Fig. 6(e), the correlation time of the autocorrelation
functions for the stochastic series is shown as a function of

the parameters. The phenomenon known as critical slowing
down is observed when a system approaches a tipping point.
As the system approaches the tipping point of war, the basin
depth in the landscape decreases, indicating a reduction in
resilience within the state of peace. This implies that the state
of peace becomes more unstable, thereby elevating the risk
of transitioning to a state of war. Consequently, when the
system approaches the critical point, critical slowing-down
autocorrelation time(correlation time) experiences a substan-
tial increase.
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FIG. 6. (a) Barrier height versus parameter C51. (b) Mean first pass time versus parameter C51. (c) Logarithm of mean first pass time
parameter C51. (d) Flickering frequency versus parameter C51. (e) Autocorrelation time versus parameter C51. (f) The average of the difference
between forward and backward cross-correlation functions versus parameter C51.
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Figure 6(f) shows the average of the difference between
forward and backward cross correlations in time of the two
peace factors (�CC) as a function of the parameters. Similar
to the flickering frequency and correlation time, it also ex-
hibits a noticeable increase when approaching the war critical
point. This observation suggests that it could potentially serve
as a predictive indicator for identifying the proximity of the
system to a tipping point (more detailed computational infor-
mation can be found in the Supplemental Material [41]).

In Fig. 7, we show the results with the war state as the
reference point, which correspond to the initial position of
the stochastic differential Eq. (2). It has been observed that
the strength of the influence of the positive history memory
on the positive reciprocity increases with the increase of the
parameter C51. The state of war became more unstable and
the height of the barrier gradually decreased. The MFPT de-
creases and the corresponding flickering frequency exhibits
a sharp increase near the critical point of the peace state,
indicated by the blue dashed line in the graph. In addition,
it is worth noting that the correlation time and the average
difference between forward and backward cross correlations
in time of the two peace factors also exhibit a significant
increase.

Furthermore, we have discovered a positive correlation
between the logarithm of MFPT and the barrier height. This
relationship is approximately linear, suggesting that the for-
mula TMFPE ∼ e�U holds true. This observation is shown
in Figs. 6(c) and 7(c), and quantitative analysis reveals
that the height of the barrier plays a crucial role in determining
the timescale of the transitions between war and peace in the
system. Specifically, a higher barrier height indicates a greater
difficulty in switching to the other state. Thus, the barrier
height and escape time serve as the key indicators of the
landscape topography and provide quantitative measures of
the global stability of the peace network system. The logarith-
mic relationship between MFPT and barrier height provides

insights into the temporal aspects of the state transitions. As
the barrier height increases, the system requires more time to
overcome the barrier and switch from one state to another.
This relationship highlights the role of barriers in shaping
the dynamics of the system and underlines their significance
in determining the timescales associated with the state tran-
sitions. By quantifying the relationship between the MFPT
and the barrier height, we gain a deeper understanding of the
system’s behavior and the influence of the potential barriers
on the temporal dynamics of the state transitions.

3. Results under the C62 parameter

In contrast to C51, the parameter C62 represents the strength
of the influence of the negative history memory on the neg-
ative reciprocity. The increase of parameter C62 signifies a
stronger negative history memory, which, in turn, leads to
an increase in negative reciprocity. In other words, as the
influence of negative history memory becomes stronger, the
tendency for negative reciprocal actions or responses also
intensifies. Conversely, a decrease in parameter C62 indicates
a weaker negative history memory, which consequently leads
to a weaker negative reciprocity. In simpler terms, as the
influence of negative history memory becomes weaker, the
likelihood of negative reciprocal actions or responses also
diminishes.

4. Thermodynamic and dynamical origins of non-equilibrium
phase transitions

Figure 8(a) shows the presence of three distinct states as
C62 varies; the two critical points in the figure are around
0.7 and 0.2, respectively. The blue dashed line indicates a
complete transition to a peace state, while the red dashed
line indicates a complete transition to war state. As shown
in Fig. 8(b), the landscape topography first switches from a
single basin representing peace to two basins and then back to
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FIG. 8. (a) The stochastic phase diagram for changing the parameter C62 with D = 0.05. (b) Landscapes versus parameter C62. (c) Rate of
entropy production versus parameter C62. (d) Flux versus parameter C62.

a single basin as C62 increases. With the gradual attenuation
of the impact strength of the negative history memory on the
negative reciprocity, represented by the decrease in the param-
eter C62, the stability of the system’s war state is diminished,
facilitating a transition towards a state of peace. Conversely,
as the impact strength of the negative history memory on the
negative reciprocity gradually intensifies, characterized by an
increase in the parameter C62, the stability of the system’s
peace state diminishes, thereby favoring a transition towards
a state of war. In Fig. 8(c), we demonstrate the changes in
the entropy generation rate as different parameters C62 vary.
We observe an initial increase followed by a decrease in
entropy generation. Furthermore, we find that the weights of
the bistable states of peace and war are almost equal when the
parameter C62 = 1.5 and the entropy generation rate reaches
its maximum. This indicates that when the negative history
memory has a moderate impact on the negative reciprocity, the
peace network has the highest degree of imbalance. Notably,
maintaining bistability between war and peace incurs higher
maintenance costs. Additionally, in Fig. 8(d), we calculate
the flux under the influence of the different negative history
memories on the negative reciprocity and observe a similar
trend to the EPR. Hence, a larger flux corresponds to increased
cost.

As shown in Figs. 9, 8(c), and 8(d), due to the distribution
of rotational flux, as the influence strength of negative history
on the negative reciprocity increases, only one stable peace
state appears, and the corresponding dissipation cost is also

low. As the influence strength of negative history on the neg-
ative reciprocity increases, a bistable coexistence of war and
peace gradually emerges, leading to a wider distribution of
rotational flux in the state space. The flux propagates between
these two stable states, reducing the stability of the original
peace state and giving rise to a new state of war with higher
thermodynamic dissipation cost. With the continued increase
of the influence strength of negative history on the negative
reciprocity, the rotational flux between the two states becomes
less significant, and the reduction of flux and associated ther-
modynamic costs disrupt the stability of the bistable basins
of war and peace, leading to the war-only state attractor.
Therefore, this indicates that the rotational flux provides the
dynamic source for driving the bifurcation or nonequilibrium
phase transition in the war and peace system, while the EPR
provides the thermodynamic cost supply, thus serving as the
thermodynamic source for the bifurcation or nonequilibrium
phase transition.

5. Barrier height and early warning indicators

In Figs. 10 and 11, we present the computational re-
sults with the peace state and the war state as the reference
points, respectively. We start by defining the peace state as
our reference point. In this context, the initial conditions
of Eq. (2) are chosen to correspond to the coordinates of
the peace state. As the influence of the negative history
memory on the negative reciprocity strengthens, indicated
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FIG. 9. Nonequilibrium potential landscapes and the curl flux distributions with increasing strength of the influence of the positive history
memory on positive reciprocity. The white arrows represent the curl flux on the landscapes (D = 0.05). (a) C62 = 0.2. (b) C62 = 0.7. (c) C62 =
1.0. (d) C62 = 1.5. (e) C62 = 1.9. (f) C62 = 2.5.

by an increase in the parameter C62, the risk of switching
to a state of war increases. The barrier height, which repre-
sents the difficulty in switching between the war and peace
states, decreases as C62 increases, as shown in Fig. 10(a).
This indicates that the system is more prone to switch-
ing into a state of war. Figures 10(b) and 10(d) show that
when C62 approaches 2.2, the MFPT becomes shorter and
the flickering frequency increases significantly. Furthermore,
Figs. 10(e) and 10(f) demonstrate an increasing trend in the

correlation time and the difference in the cross-correlation
functions forward in time and backward in time as we
approach the critical point on the right (more detailed com-
putational information can be found in the Supplemental
Material [41]).

However, if we consider the war state as the reference
point, meaning that the initial conditions of Eq. (2) are set to
the coordinates of the war state, the situation is reversed. As
the influence of the negative history memory on the negative
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parameter C26. (d) Flickering frequency versus parameter C62. (e) Autocorrelation time versus parameter C62. (f) The average of the difference
between forward and backward cross-correlation functions versus parameter C62.
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between forward and backward cross-correlation functions versus parameter C62.

reciprocity weakens, indicated by the decrease in parameter
C62, the stability of the war state diminishes. Consequently,
the likelihood of the system being in a state of war gradually
decreases.

When approaching the left critical point, represented by
the blue dashed line in Fig. 11, several notable changes occur.
The barrier height is lowered, resulting in reduced resistance
to transition from a state of war to a state of peace. The
MFPT also decreases, indicating a faster transition process.
Moreover, there is a sharp increase in the flickering frequency,
correlation time, and the average of the difference between
forward and backward cross correlations (more detailed com-
putational information can be found in the Supplemental
Material [41]). Furthermore, a clear positive correlation be-
tween the logarithm of the MFPT and the barrier height can be
observed from Figs. 10(c) and 11(c); as previously mentioned,
the correlation between the barrier height and the escape time
serves as a reliable indicator of stability for war and peace
network.

The above analysis highlights the significant impact of his-
tory memory on reciprocity within the war and peace network.
Stronger positive history memories and a tendency towards
positive reciprocity are associated with a higher probability
of the system being in a peace state, whereas weaker pos-
itive history memories and positive reciprocity tendencies
correspond to a higher likelihood of the system being in a
state of conflict or war. Conversely, stronger negative history
memories and negative reciprocity tendencies increase the
likelihood of the system being in a state of war, while weaker
negative history memories and negative reciprocity tendencies
increase the likelihood of the system being in a state of peace.
The influence of history memory on reciprocity has a direct
effect on various physical quantities, such as barrier height
and MFPT between two states, consequently impacting the
system’s robustness and stability. Drawing inspiration from
the above, using the Ukrainian crisis as an example, if people
want to prevent war, they should cultivate positive history

memory and consequently reinforce more positive reciprocity.
Conversely, when in a state of war, individuals can promote
peace by diminishing negative history memory and, in turn,
reducing negative reciprocal actions.

C. Comparison of early warning signals

Based on the analysis and discussions above, it is evident
that as the system approaches the critical point, there is a
significant increase in the flickering frequency, correlation
time, and the average difference in cross-correlation functions
forward in time and backward in time. This suggests that these
three indicators can serve as early warning signals. Therefore,
in this paper, we will conduct a comparative analysis to deter-
mine which signal predicts the system’s state transition earlier.

To analyze the early warning indicators more accurately,
we take more data points for parameters C62 and C51 and
calculate three early warning indicators. Figure 12 shows the
comparison results when using the peace state and war state
as reference points, respectively, under parameter C51. The
scatter points in the figure are calculated data, while the solid
lines are the results of polynomial fitting. The quantities of the
average difference in cross-correlation functions forward in
time and backward in time (�CC) and critical slowing-down
correlation time (CSD) are plotted through the left y axis,
while the flickering frequency ν is plotted via the right y axis,
indicated by the green color. Taking the peace state as the
reference point, as shown in Figs. 12(a) and 12(c), it can be
seen that when the system approaches the war critical point,
the red dashed line on the left, the significant rise in CSD
appears earlier than that of �CC, and the significant rise in
�CC appears earlier than that of the flickering frequency ν.
When the war state is taken as the reference point, as shown
in Figs. 12(b) and 12(d), as the system approaches the peace
critical point, the blue dashed line on the right, the significant
rise in �CC appears earlier than that of CSD, and the signif-
icant rise in CSD appears earlier than that of the flickering
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frequency ν. In Fig. 13, we show the analysis results under
parameter C62. Taking the peace state as the reference point,
as shown in Figs. 13(a) and 13(c), it can be seen that when the
system approaches the war critical point, the red dashed line
on the right, the significant rise in �CC appears earlier than
that of CSD, and the significant rise in CSD appears earlier
than that of the flickering frequency ν. When the war state is
taken as the reference point, as shown in Figs. 13(b) and 13(d),
as the system approaches the blue dashed line on the left side
of the peace critical point, the significant rise in �CC emerges
earlier than that of the CSD, and the significant rise in CSD
appears earlier than that of the flickering frequency ν.
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Based on the above discussion, it can be concluded that, in
general, signal index of average difference in cross-correlation
functions between forward in time and backward in time often
tends to occur earlier than the critical slowing-down index,
while the critical slowing-down index often tends to occur
earlier than the flickering frequency warning indicator. It is not
difficult to understand why these three quantities all exhibit a
significant increase approaching the critical point. Taking the
parameter C62 as an example, we plotted the effective one-
dimensional landscape as C62 varies as shown in the Fig. 14. It
can be seen from Figs. 8(c), 8(d), and 14, when the parameter
is small, peace state is preferred. As C62 increases, the flux
increases. This leads to less stability of the original peace state
and the emergence of the new state war. During this process,
the associated thermodynamic cost also increases as creating
new state wars requires dissipation cost. As the parameter in-
creases further, flux decreases, and a single attractor of war is
preferred since the drops of flux and associated cost make the
coexistence bistable basins less stable. On the one hand, the
sharp increase trend observed near the war critical transition
point in �CC echoes the essence of flux and EPR, as it reflects
the irreversibility or nonequilibrium nature of time. On the
other hand, as shown in Fig. 14, with the gradual increase of
C62, the basin of the peace state becomes almost flat. There-
fore, when perturbed away from the center of the basin, the
relaxation back tends to be slow, leading to critical slowing
down phenomenon. The flickering frequency of switching
from the peace state to the war state increases. The flux and
EPR are not easy for the probe to directly detect from the ob-
served time series. However, critical slowing down, flickering
frequency, and the �CC (time irreversibility) can be obtained
directly from the observed time series by calculating autocor-
relation and cross-correlation functions. Therefore, they can
serve as early warning indicators for predicting the emergence
of war.

D. Optimal path of nonequilibrium dynamics

We quantified the dominant paths between the war and
peace basins of attraction and utilized Monte Carlo methods to
minimize the action and identify the major paths [16,28,42].
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FIG. 15. (a) Two-dimensional optimal path, where D = 0.05 and
C62 = C51 = 1.5. The pink line represents the path from peace to war,
the yellow line represents the path from war to peace. (b) Three-
dimensional optimal path which is the path in three-dimensional
space.

Figure 15(a) shows the two-dimensional dominant paths. The
white line segment represents the reversible path solely driven
by gradient force, while the yellow and pink lines depict
the optimal paths from war to peace and from peace to war,
respectively. The presence of rotational flux causes the domi-
nant transition paths of the system to deviate from the steepest
path on the landscape, bypassing the saddle point. Therefore,
the difference in forward and backward dominant paths re-
flects the role of the rotational flux force and the degree of the
time irrerersibility. Figure 15(b) shows the three-dimensional
dominant path.

E. Global sensitivity analysis

To determine the key parameters governing the interaction
strengths between two variables influencing the peace in the
peace and war network, we conducted a global sensitivity
analysis of the interaction strengths for all peace factors. We
defined the difference in potential between a saddle point
on the landscape and a steady-state attractor as the barrier
height, which quantifies the ability to transition between dif-
ferent attractor basins. As depicted in Fig. 16, we increased
the intensity of all interactions in the model by 10%, result-
ing in corresponding changes in the barriers. Subsequently,
we calculated the changes in barrier height specifically for
the war state. The findings revealed that the alterations
in the influence strength of the positive history memory
on the positive reciprocity and the negative history memory
on the negative reciprocity had the most significant impact on
the barrier height. A greater disparity in the change values of
the barriers indicates that the influence of history memory on
reciprocity plays a major role in the transition between the
bistable states of war and peace; the results align with our
everyday experiences.

V. CONCLUSION

In this paper, we utilized the framework of landscape and
flux theory to quantitatively and comprehensively elucidate
the underlying physical processes governing the nonequilib-
rium dynamics of war and peace. War and peace have been
described as two attraction basins, and the dynamics of war
and peace network systems determined by both gradient force
and curl flux force. The gradient force stabilizes the system
in either a state of peace or a state of war, while the curl flux
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FIG. 16. Global sensitivity analysis for the strength of interaction
of various peace factors with D = 0.05. The x-axis represents the
12 impact strength of interaction among peace factors. The y-axis
represents the barrier changes. When each parameter is individually
increased by 10%, the barrier of the state of war changes.

force propels the system away from the steady-state attractor
providing the dynamical origin of the bifurcation and early
warning signal for the associated critical transition.

EPR and curl flux are intimately related, serving as metrics
to quantify the extent to which the peace network system devi-
ates from equilibrium. A higher EPR and stronger flux imply
a greater cost. In addition, EPR serves as the thermodynamic
origin or nonequilibrium phase transition of the bifurcation,
providing a prediction of the tipping point between war and
peace.

We calculated the barrier between the basins of war and
peace, which determines the duration required to switch from
war to peace or from peace to war. The height of the barrier
and the MFPT can be utilized to quantify the global sta-
bility of the nonequilibrium war and peace network. When
the interaction parameters change, it will directly affect the
barrier height between the war and peace attraction basin,
thus influencing the transition time of the two states. Fur-
thermore, our findings indicate that a stronger influence of
the positive history memory on the positive reciprocity leads
to a higher tendency towards a state of peace. Conversely,
when the influence of the negative history memory on the
negative reciprocity is stronger, the system is more prone to
a state of war. Thus, fostering a more positive history memory
and promoting increased positive reciprocity would be more
effective for avoiding prolonged states of war and favoring a
state of peace.

Although rotational flux and EPR can be used as dynami-
cal sources of bifurcation or nonequilibrium phase transition
points and provide predictable means, they are not easily
obtained experimentally, whereas flickering frequency, crit-
ical slowdown, and the average of the difference in cross
correlations between forward and backward in time (time
irreversibility) are easily measured from the time series di-
rectly and give predictions. We find the flickering frequency,
critical slowing-down correlation time, and the average of the
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difference between forward and backward cross correlations
increase sharply approaching the critical point (bifurcation
point or nonequilibrium phase transition point). These three
indicators can be used as early warning indices for the critical
transitions. In most cases, we observed that the significant
rise in average of the difference between forward and back-
ward cross correlations or the time irreversibility often occurs
before that of the critical slowing-down autocorrelation time,
with the significant rise in the flickering frequency being the
latest to occur.

The presence of the rotational flux as a nonequilibrium
driving force results in an irreversible dominant pathway be-
tween war and peace, bypassing the landscape saddle points.

Through a global sensitivity analysis of the barrier height,
we find that the strength of the influence of history memory on
reciprocity emerges as a key factor influencing the dynamics
of war and peace. This echoes the dynamic phase transition
behavior similar to saddle node bifurcation when we change
parameters C51 and C62.

In summary, our paper has delved into the dynamics of
the war and peace network from a nonequilibrium perspec-
tive, providing valuable insights into the complex nature
of war and peace. Our paper also provides a quantita-
tive and physical description of the dynamics of war and
peace and offers a practical approach for accurately pre-
dicting critical points (bifurcation points or nonequilibrium)
of war and peace transitions. The framework of landscape
and flux theory that we propose is universal and can be ap-
plied to other complex networks or systems in the field of
sociology.
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