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Identifying hubs in directed networks
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Nodes in networks that exhibit high connectivity, also called “hubs,” play a critical role in determining
the structural and functional properties of networked systems. However, there is no clear definition of what
constitutes a hub node in a network, and the classification of network hubs in existing work has either been
purely qualitative or relies on ad hoc criteria for thresholding continuous data that do not generalize well to
networks with certain degree sequences. Here we develop a set of efficient nonparametric methods that classify
hub nodes in directed networks using the Minimum Description Length principle, effectively providing a clear
and principled definition for network hubs. We adapt our methods to both unweighted and weighted networks,
and we demonstrate them in a range of example applications using real and synthetic network data.
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I. INTRODUCTION

Highly connected “hub” nodes play an important role in
the structure and function of networks across a wide range
of applications [1]. Hub regions in brain networks are central
for communication and information integration [2,3]. Hub
stations in transportation networks are important for resilience
to failures and efficient routing [4,5]. Hub proteins in protein
interaction networks are often essential for the survival and
reproduction of an organism [6]. And hub locations in human
mobility networks can be hot spots for congestion, economic
activity, and the spread of disease [7,8].

The natural way to define a hub node in a network is to
use degree centrality as an indicator—the more connections
a node has, the more critical it is for network connectivity,
and above some degree threshold (typically at or above the
average degree in the network) we consider a node to be a
“hub” [9]. Often the label of “hub” is reserved for nodes with
an “unusually high” degree [1], as these nodes have a dispro-
portionate influence on many processes that take place on the
network, such as epidemics or information spreading [10,11].
The labeling of a node as a hub can be based on its in-degree
and/or out-degree when the network is directed, depending
on the application of interest. For example, in human mobility
networks, one is often interested in targeting locations (nodes)
with high population in-flows (weighted in-degree) for inter-
ventions to reduce congestion or the spread of disease, making
the in-degree a relevant criterion for hub classification.

The concept of a hub node can also be extended to capture
more global notions of centrality in a network. For example,
the HITS algorithm [12] assigns a hub and authority score to
each node in the network in a self-consistent manner: nodes
are given a high authority score if they are pointed to by nodes
with high hub scores, and nodes are given a high hub score if
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they point towards nodes with high authority scores. The sta-
tionary solution for the hub scores in the HITS algorithm are
the entries in the leading eigenvector of the adjacency matrix
of the network multiplied by its transpose, which indicates
that these hub scores are capturing global information about
the graph. Any number of other global centrality indices such
as closeness, betweenness, eigenvector centrality, or Katz cen-
trality can also in principle be used to define hub nodes at a
global level, but ultimately many of these measures are highly
correlated with degree in a large number of network models
and real-world systems [13–18].

Identifying hub nodes as nodes with “unusually high” de-
grees can be thought of as performing outlier detection on
the degree sequence listing the degree of each node in the
network. But existing information-theoretic outlier detection
methods either require the number of outliers to be known
ahead of time [19], are formulated for general graph databases
[20], or have parametric forms for the model likelihood which
must be inferred [21], making them poorly suited for direct
application to network degree sequences for classifying hub
nodes.

The identification of hubs in weighted, directed networks
also directly relates to the idea of identifying “hot spots”
with high flows in human mobility networks, for which the
“Loubar” method of [22] is an elegant and widely used
method. The Loubar method utilizes the Lorenz curve of the
flows in and/or out of nodes in a human mobility network to
identify nodes with high flows as hot spots of activity. The
Loubar method has been used in a range of applications to
understand epidemic spreading [8,23], commuting structure
[24], and economic growth [25] using human mobility data.
This method has the desirable property of being completely
nonparametric—it automatically selects the number of hot-
spot nodes from the data itself, without any user-controlled
input parameters. However, it does not specifically look at the
pairwise nature of network structure in its formulation, so it
cannot be compared with other network models using rigorous
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model selection criteria. The Loubar method also does not
depend on the full distribution of flows, but only the mean
and maximum of the flows, which we show in a range of
experiments can lead to undesirable behavior where a large
fraction of nodes in the network are classified as hubs.

Methods directly aimed at network compression using
Bayesian or information-theoretic criteria—including block-
modeling [26], configuration models [27], core-periphery
modeling [28], and other nonparametric information-theoretic
methods for summarizing network structure [29–31]—are
well-suited for identifying hubs in network data, since these
methods allow for the automatic selection of the number of
hubs and comparison with other network models using the
MDL principle. However, none of the aforementioned meth-
ods explicitly aims to identify hub nodes, and so they may
only identify hub nodes as a separate group by chance if
grouping these nodes happens to provide compression with
respect to the mixing structure assumed by the model. For
example, high degree nodes are often grouped together in the
(non-degree-corrected) stochastic blockmodel [32], and the
core nodes in a core-periphery blockmodel are often of high
degree [28]. To identify hub nodes, one only needs to consider
the number of edges incident on the hub nodes, and not the
connectivity among the hub nodes nor among the nonhub
nodes which are key factors in the description length of a
network under a blockmodel.

In this paper, we develop principled, efficient, nonparamet-
ric methods to classify hub nodes in directed networks based
on the Minimum Description Length (MDL) principle, which
states that the best model among a set of candidate models
for a data set is the one that results in the lowest description
length for the data [33]. In our approach, the MDL principle
allows us to select the optimal configuration of hub nodes in a
network by minimizing the description length of data encod-
ings that exploit degree discrepancies between hub nodes and
nonhub nodes. We adapt our formulation to multiple encoding
schemes applicable to unweighted and weighted networks,
and we describe a simple, fast algorithm to identify the hub
nodes in these networks. We apply our method to a variety
of synthetic network models, finding that the extent to which
we can compress networks with hub nodes depends on the
heterogeneity of the degree distribution and that our encodings
can give more intuitive summaries of the hub structure than
existing methods in these cases. We also apply our method to
growing random graph models, finding that we can identify
a hub transition at which it becomes most compressive to
describe the network using hub nodes, and that this transition
depends on the parameters of the growth model in a physically
meaningful way. Finally, we apply our method to a corpus of
directed network data sets from a wide range of disciplines,
finding that many real networks do not have hub structure
according to our more conservative encoding and that the
information in many of the networks with a discernible hub
structure can be effectively compressed by focusing on the
high degree hub nodes when transmitting the network.

II. METHODS

To identify a particular type of structural and/or dynamical
regularity in network data—for example, communities [26]

or temporal change-points [30]—one can first construct an
information encoding that is designed to exploit this regularity
given an input data classification—for example, a partition of
the nodes into communities or a segmentation of a time series
of networks. Then, given an appropriate encoding, one can
minimize its description length over all data classifications
to find a representation that succinctly describes the data by
exploiting the desired property. This process is equivalent to
Maximum A Posteriori (MAP) estimation with hierarchical
Bayesian generative models [26] but can often provide a more
intuitive problem framing when choosing among various data
encodings (models). In this section, we describe how to apply
this line of reasoning for identifying hubs in network data.

A. Compressing network data

Let G = (V, E ) be a directed graph with N nodes in the
node set V , and M edges in the edge set E . We will first treat
the case in which G is a simple graph—in other words, G has
no edges from a node to itself and has at most one edge going
from any node i to any other node j. We will generalize our
method to the multigraph case with self-edges in Sec. II C.
We will let k be the in-degree sequence such that ki is the
in-degree of node i and

∑N
i=1 ki = M.

Now, suppose we aim to transmit the network G—or,
equivalently, the source node i ∈ V and target node j ∈ V of
all the edges (i, j) ∈ E—in binary to a receiver through some
communication channel. We assume that the receiver knows
N and M, which would be of comparatively negligible cost
to communicate and can be ignored anyway. Since there are
N (N − 1) distinct ordered node pairs, and M of these pairs
contains an edge, then there are

(N (N−1)
M

)
possible graphs G,

and the same number of possible binary messages we could
end up transmitting to the receiver. �log2

(N (N−1)
M

)� bits will be
enough to encode all such messages uniquely when establish-
ing a code book for our transmission ahead of time with the
receiver, and so the information content or description length
of this naive encoding of the graph G is

L(ERs)
0 = log

(
N (N − 1)

M

)
(1)

bits. Here we have ignored the ceiling function as it will pro-
vide a negligible change to the description length for N � 1,
we have used the notation convention log2 ≡ log, and we
have used the subscript “0” to indicate that no hub nodes
were used to aid in the network transmission process—we
will describe how this works shortly. We use the superscript
“ERs” to refer to the Erdos-Renyi model for simple directed
graphs, G(N, M ), which selects uniformly at random from all
directed simple graphs with N nodes and M edges. We can
also derive Eq. (1) as the negative log-probability of picking
any particular graph G from this ensemble.

Alternatively, we can transmit the graph G using a multi-
part encoding, where each step involves utilizing a different
code book with the receiver that is constructed while keeping
in mind the constraints imposed by information transmitted
earlier in the transmission process. This process involves
transmitting G in increasing levels of granularity until the
entire edge set E is known.
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One very simple multipart transmission scheme would in-
volve first transmitting the in-degrees k = {k1, . . . , kN }, and
then transmitting the entire edge set E from the set of all
edge sets consistent with the in-degrees k. There are at
most (( N

M )) = (M+N−1
N−1

)
(where (( )) is the multiset coefficient)

unique ways to assign the N nodes as targets in the M directed
edges—allowing nodes to potentially have in-degree 0—in
order to fully specify the in-degrees k. This is the total number
of messages that will be in the code book for the first step of
the process. (Depending on M and N , not all of the

(M+N−1
N−1

)
in-degree sequences will correspond to valid directed simple
graphs, so we are technically accounting for some “nongraph-
ical” in-degree sequences in our encoding in addition to all
valid in-degree sequences.) Then, once k is known, there are(N−1

ki

)
possible source nodes for the ki edges containing node i

as a target, resulting in
∏N

i=1

(N−1
ki

)
possible messages for the

second step of the process. Adding the information content
of these two steps, the description length of this alternative
encoding is

L(CMs)
0 = log

(
M + N − 1

N − 1

)
+

N∑
i=1

log

(
N − 1

ki

)
(2)

bits. We use the superscript “CMs” to refer to the Config-
uration Model—with only in-degree constraints—for simple
directed graphs, and again use a subscript “0” to indicate that
no hub nodes were used to aid in the network transmission
process. This model will select uniformly at random from all
directed simple graphs with N and M edges and a specific
in-degree sequence k. We can alternatively derive Eq. (2) as
the negative log-probability of picking any particular graph
G from this ensemble, given a uniform prior over all degree
sequences k of length N that sum to M.

One can show that for N � 〈k〉 � 1 we will always
achieve superior data compression—in other words, a lower
description length for the network G—using the two-step
encoding corresponding to Eq. (2) compared with the one-
step encoding corresponding to Eq. (1) (see Appendix A).
This suggests that multistep encodings that exploit in-degree
heterogeneity can provide improved network compression.

B. Compressing simple directed graphs with hub nodes

We can consider going one step further and transmitting
the edges incident to a small set of high in-degree nodes—the
“hub” nodes in the encoding—independently from the rest of
the edges in the network. This will provide good compression
when a large portion of the edges in E are pointing towards a
small set of hub nodes, because in this case there are compar-
atively few potential configurations of edges incident to the
hubs—there are not many target nodes to choose from—and
the total number of binary messages needed for encoding the
specific edge configuration E is reduced.

Consider the case in which we have h hub nodes Vh ⊆ V
and N − h nonhub nodes V \ Vh, and we wish to transmit the
edges incident to these two node sets independently to achieve
improved data compression for the total edge set E . (We will
address the issue of identifying the optimal value of h later
on.) Let Eh denote the set of edges incident to the hub nodes Vh

as targets, and Mh = |Eh| be the number of such edges. Since

there are N possibilities for the value of h, and M possibilities
for the value of Mh, we will need log N + log M = log NM
bits of information to transmit these initial quantities.

Next we need to transmit the identities of the h hub nodes
Vh, which will require log

(N
h

)
bits of information since it

requires specifying a subset of h nodes from the total set
of N nodes. Then, we can perform two transmission steps
reminiscent of the one used to derive Eq. (1)—one for the hub-
incident edges Eh, and one for the rest of the edges E \ Eh.
Specifying Eh will require us to specify Mh edge positions out
of h(N − 1) total (ordered) node pairs, and specifying E \ Eh

will require us to specify M − Mh edge positions out of the
(N − h)(N − 1) remaining node pairs. The total information
cost of this encoding is then given by

L(ERs)(Vh) = log NM + log

(
N

h

)
+ log

(
h(N − 1)

Mh

)

+ log

(
(N − h)(N − 1)

M − Mh

)
, (3)

where we have used the “ERs” notation as before to denote
the use of an encoding that transmits the edge positions for
each node set in one step, as in Eq. (2). We have also made
explicit that this description length of our hub-based encoding
is a function of the number of hubs h that we choose and which
h nodes Vh we choose to be the hubs. For the cases h = 0 and
h = N , we let L(ERs) = L(ERs)

0 , since the initial transmission
costs are no longer needed.

We can view Eq. (3) as an objective function that, when
minimized over node subsets Vh, finds an optimal set of nodes
to classify as hubs in our network. In other words, the op-
timal subset of nodes to identify as hubs is the subset of
nodes that allows us to most parsimoniously describe (i.e.,
best compress) the network structure using an encoding aimed
at exploiting structural heterogeneity between hubs and non-
hubs. In Appendix B we show that the optimal choice for
the hub nodes at any given value of h is the set of nodes
that maximizes Mh—in other words, the nodes with the h
highest in-degrees—which confirms the intuition behind the
construction of the hub-based encoding. This implies that we
can identify the globally optimal configuration of hub nodes
in a network G using the following simple algorithm:

(i) Order the node indices in G so that k1 � k2 � · · · �
kN .

(ii) Initialize Vh ← {}, h ← 0, Mh ← 0, h∗
ERs ← 0, and set

L∗
ERs ← L(ERs)

0 using Eq. (1).

(iii) For i ∈ {1, . . . , N}:
(a) Add i to Vh and update h ← h + 1, Mh ← Mh + ki.

(b) Compute the new description length Lh =
L(ERs)(Vh).

(c) If Lh < L∗
ERs, set L∗

ERs ← Lh and h∗
ERs ← h. Other-

wise, do nothing.
(iv) After the loop terminates, the optimal set of hubs will

be the set of node indices {1, . . . , h∗
ERs}, and these hubs will

result in a description length of L∗
ERs in Eq. (3).

In the case of ties—i.e., if at a certain degree cutoff k∗ it is
information theoretically optimal to only consider some frac-
tion 0 < f < 1 of the nodes i with ki = k∗ as hubs—we will
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check the cases f = 0 (include all nodes with ki � k∗ + 1)
and f = 1 (include all nodes with ki � k∗) and choose the
case with the lower description length. One can alternatively
add all nodes with each unique degree k at once during the
greedy optimization process, to ensure that all nodes at or
above the optimal threshold degree k∗ are included as hubs.
These modifications remove the need to randomly break the
tie to assign only some nodes of degree k∗ as hubs, since all
such nodes are treated equivalently in our scheme. In princi-
ple, one can ignore this step, and a random subset of nodes
of degree k∗ will be chosen as hubs based on the initial node
ordering. This will often result in a slight compression gain at
the cost of arbitrarily choosing the lowest-degree hubs.

The above method has an O(N log N ) time complexity if
the in-degrees k of the network G are known, the bottleneck
being sorting the degree sequence. Therefore, it is equally as
simple in practice to compute as hot-spot identification meth-
ods such as the Loubar method and average degree method
discussed in [22]. This method will also select for the number
of hubs h∗ automatically based on the number that results in
the best compression: too few hubs means we have not fully
exploited the heterogeneity of the hub in-degrees for compres-
sion, and too many hubs means we have too little separation
in the in-degrees of hubs and nonhubs to provide any mean-
ingful compression. One key advantage of this approach over
existing methods is that it allows for the result h∗ = 0 if there
is no information-theoretic justification to include any nodes
as hubs according to Eq. (3). We will see in Sec. III that this
situation is quite common for networks with homogeneous
in-degree distributions.

There are a number of alternative ways we can construct an
encoding that exploits a hub/nonhub dichotomy and allows
for identifying an optimal set of network hubs. For example,
one can transmit the hub nodes’ incident edges individually
using a two-step encoding inspired by the one used to com-
pute Eq. (2), but transmit the remaining edges E \ Eh using
the same one-step encoding as in Eq. (1). This results in a
description length of

L(CMs)(Vh) = log NM + log

(
N

h

)
+ log

(
Mh + h − 1

h − 1

)

+
∑
i∈Vh

log

(
N − 1

ki

)
+ log

(
(N − h)(N − 1)

M − Mh

)
.

(4)

Here we also use the convention L(CMs) = L(CMs)
0 for h = 0, N

for convenience.
In Appendix C, we show that this description length can be

optimized over hub node sets Vh using an analogous greedy
algorithm, but in this case we only have a guarantee of local
optimality. (One can in principle simply enforce the constraint
that any hub node in-degree must be greater than or equal
to any nonhub node in-degree, in which case this distinction
is irrelevant since we will always add nodes in decreasing
order of in-degree regardless of their effect on the description
length.)

After running the hub identification algorithm using either
the ERs or CMs encoding, we can determine the extent to
which a hub/nonhub dichotomy allows us to compress the

network data G in the first place—this gives us an alternative
aggregate measure of heterogeneity in a network’s in-degree
distribution. To do this, we compare the optimal level of com-
pression L∗ achieved with the hub-based encoding (either ERs
or CMs) to the baseline compression levels in Eqs. (1) and (2)
when no hubs are utilized. The resulting quantity, which we
call the inverse compression ratio, is given by

η(s) = L∗

max
(
L(ERs)

0 ,L(CMs)
0

) . (5)

We can see that η(s) ∈ [0, 1], since each encoding will give
a minimum description length L∗ that is at least as low as
the description length for the encoding with no hub nodes.
An inverse compression ratio near 0 indicates that the hub
nodes account for a large portion of the in-degrees and provide
efficient compression of the network data, while an inverse
compression ratio near 1 indicates that the hubs do not con-
tribute a significant portion of the in-degrees of the network.
The case η(s) = 1 occurs when we achieve no compression
using hubs, which happens when the optimal number of hubs
according to the encoding is h∗ = 0.

As was done with Eqs. (1) and (2), we show in Appendix D
that the compression of the encoding corresponding to Eq. (4)
is generally better than the encoding corresponding to Eq. (3)
in the high in-degree regime. In applications with networks
G that do not satisfy the conditions of Appendix D, one can
perform model selection among the two hub-based encodings
[corresponding to Eqs. (3) and (4)] by identifying which de-
scription length is smaller. The more compressive encoding
can then be used as the method for identifying the hub nodes
in G.

In addition to the in-degrees, one can consider using the
out-degrees to aid in network compression. This amounts
to the same process except it identifies nodes with high
out-degrees rather than in-degrees. This characterization is
sensible, for example, in applications aiming to identify
potential “superspreaders” in epidemic and misinformation
modeling [34,35]. We explore both the in- and out-degree
versions of these methods in Sec. III.

C. Compressing directed multigraphs and weighted networks
with hub nodes

One can also extend the method discussed in Sec. II B to
directed multigraphs or directed, weighted networks with non-
negative integer-valued weights. Such networks often arise in
applications involving population “flows” from node to node,
for example in transportation and human mobility modeling
[4,5,7,8], which were the original motivating examples for the
Loubar method of [22]. In this case, both the baseline encod-
ings corresponding to Eqs. (1) and (2) as well as the hub-based
encodings corresponding to Eqs. (3) and (4) must be modified
to account for the potential of having more than one edge
(or, equivalently, an edge weight greater than 1) between each
pair of nodes. We will now let M be the total weight of all
the edges, and ki be the total weight of edges incident on
node i—the latter is sometimes called the “in-strength” of
node i, but we will continue to use the term “in-degree” for
consistency with the simple graph case. We then have the
same relation M = ∑N

i=1 ki as in the simple graph case.
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FIG. 1. Diagram of hub-based encodings. (a) Schematic of the simple directed graph encoding described in Sec. II B, along with the
description length of each step. (b) Schematic of the weighted directed graph/multigraph encoding described in Sec. II C, along with the
description length of each step. The equations above use the convention log ≡ log2 as in the remainder of the text. We define the hub nodes of
a network G = (V, E ) according to a given encoding (ERs, CMs, ERm, or CMm) as the node subset Vh ⊆ V that minimizes the information
required to transmit the network (e.g., the positions of the edges E ) when transmitting the positions of edges incident to the hubs first. This
provides a principled, nonparametric criterion for identifying hubs in directed networks based on the Minimum Description Length (MDL)
principle.

The resulting description lengths, for which we use the
superscripts “m” to denote “multigraph,” are given by

L(ERm)
0 = log

((
N2

M

))
, (6)

L(CMm)
0 = log

(
M + N − 1

N − 1

)
+

N∑
i=1

log

((
N

ki

))
, (7)

L(ERm)(Vh) = log NM + log

(
N

h

)
+ log

((
hN

Mh

))

+ log

((
(N − h)N

M − Mh

))
, (8)

L(CMm)(Vh) = log NM + log

(
N

h

)
+ log

(
Mh + h − 1

h − 1

)

+
∑
i∈Vh

log

((
N

ki

))
+ log

((
(N − h)N

M − Mh

))
. (9)

These can be derived by transforming the binomial coeffi-
cients in Eqs. (1), (2), (3), and (4) to multiset coefficients
(( n

k )), which count the number of ways to place k edges into n
edge positions while allowing for repetitions. We also allow
for self-edges, which requires the substitution N − 1 → N

for the number of valid edge positions incident on a single
node and N (N − 1) → N2 for the total number of potential
edge positions. We also use the conventions L(ERm) = L(ERm)

0

and L(CMm) = L(CMm)
0 for h ∈ {0, N}, as for the simple graph

description lengths.
Equations (8) and (9) can be optimized using the same

greedy procedure as in Sec. II B for identifying the hubs from
Eq. (3) (with appropriate transformation of the variables). The
resulting hub identification schemes can be used to construct
an inverse compression ratio analogous to Eq. (5), thus

η(m) = L∗

max
(
L(ERm)

0 ,L(CMm)
0

) , (10)

where L∗ is the minimum description length achieved with
the method of interest (ERm or CMm). Similar to the simple
graph case, these ratios are bounded within [0,1] and equal 1
in the extreme case when h∗ = 0. L∗ can be compared across
the ERm and CMm encodings to select the more compressive
encoding for a given multigraph G.

In Fig. 1 we show a schematic summarizing the hub-based
encodings described in the last two sections. Code implement-
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TABLE I. Four methods for identifying hub nodes in Sec. III. All methods can be applied to in-degrees/out-degrees as well as un-
weighted/weighted networks by defining the degrees k accordingly.

Name Description

ER Identifies hub nodes by iterating over k and greedily adding hubs to minimize the description length in Eq. (3) (for
simple graphs) or Eq. (8) (for multigraphs and integer-weighted graphs).

CM Identifies hub nodes by iterating over k and greedily adding hubs to minimize the description length in Eq. (4) (for
simple graphs) or Eq. (9) (for multigraphs and integer-weighted graphs).

Average Identifies hub nodes as all nodes i ∈ V such that ki � 〈k〉 = M/N .
Loubar [22] Identifies hub nodes as the nodes at or above the [1 − 〈k〉

max(k) ]th quantile in terms of degree.

ing the hub identification methods of this paper can be found
in Ref. [36].

III. RESULTS

A. Hubs in networks with specified degree sequences

We first perform a range of experiments with synthetic
network data in order to understand the conditions under
which hub nodes will be found using the methods described in
Sec. II. We begin by analyzing the hub properties of random
networks with degree sequences k that vary in magnitude and
variability. Since the hubs and compression achieved using
our proposed methods only depend on the degree sequence,
we may interpret k in these experiments as the in-degree
sequence of a network that is otherwise completely random-
ized, and we need not actually generate any network for each
simulation.

We choose three discrete probability distributions from
which we generate the in-degrees k: (i) A Poisson distribution,
whose relative variance Variance/Mean2 = 1/μ will vanish
for large mean degree μ = 〈k〉; (ii) a geometric distribution,
whose relative variance 1 − μ−1 will tend to a constant for a
large mean degree; and a power-law (e.g., Zipf) distribution,
whose relative variance can potentially diverge. To ensure
that all generated degree sequences k are graphically realiz-
able, we consider the generated graphs to be multigraphs (or,
equivalently, integer-weighted graphs) and use the encodings
corresponding to Eqs. (8) and (9).

We compare our methods with two widely used methods
for identifying hub nodes (“hot spots”) using the weighted
in-degrees of human mobility networks [8,22,24,25]. The first
is the “average” method, which simply classifies all nodes
with in-degree values higher than the network average M/N as
hubs. However, the average method may not be conservative
enough to give a useful guide for locating hot spots in human
mobility applications, so the “Loubar” method is proposed
in [22]. It uses the Lorenz curve to construct a threshold
for hub nodes that depends on the mean in-degree and the
maximum in-degree. Our measures and these alternative mea-
sures are summarized in Table I for convenience. There is
no absolute way in which one can decide which of these
measures is “best”—this may depend on the application of
interest, and will require the consideration of multiple aspects
of each measure—but our experiments highlight some poten-
tial intuitive advantages of the approaches based on the MDL
principle.

In Fig. 2 we show the results of applying all four meth-
ods to degree sequences k randomly generated from the
three distributions described above, for average in-degrees
〈k〉 ∈ {101, 102, 103, 104, 105, 106} and network sizes N ∈
{103, 105}. Each distribution only has a single parameter and
can be specified uniquely given the desired mean in-degree. In
each simulation, we generate k from the specified distribution,
apply the four methods in Table I, and take the average result
for the optimal number of hubs h∗ and inverse compression
ratio (for the ERm and CMm encodings) over 50 repeated tri-
als. For easier visualization, we plot h∗/N to see what fraction
of nodes are classified as hubs using each method.

In Fig. 2(a), we observe that for the Poisson-distributed
in-degrees, the ER and CM encodings both find very few
hubs—the ER encoding always finds zero hubs, while the
CM encoding only finds a handful. This is consistent with
the small relative variance of the Poisson distribution, which
will rarely result in any nodes having substantially larger in-
degrees than the rest of the nodes. On the other hand, we can
see that the average and Loubar methods both indicate many
hubs for networks with Poisson-distributed in-degrees. The
average method produces many hubs because the distribution
is relatively symmetric, so a little less than half of the nodes
will have in-degrees above the average. The Loubar method
also produces many hubs because by construction it will indi-
cate that the fraction of nodes that are hubs is 〈k〉/max(k), and
this quantity will be nearly equal to 1 for Poisson samples with
large mean in-degrees. We can see that in general the mean
degree and network size do not play a particularly important
role, as the fraction of hubs h∗/N from each method is fairly
constant across all simulation settings. The exception is the
CM encoding, which produces only a handful (less than 10)
of hubs for most simulations, which results in smaller values
of h∗/N for larger N .

In Fig. 2(b), we can see that for Poisson-distributed
in-degrees, neither method (ERm or CMm) provides any
substantial compression of the network, as the inverse com-
pression ratios are approximately equal to 1. This is because
there is very little heterogeneity in the in-degrees that a
hub-based information encoding can exploit to reduce the
transmission cost of the data to a receiver. We also observe that
the ER encoding has a slight edge over the CM encoding in
terms of compression (indicated by the outlined markers), be-
cause transmitting the edges incident to hub nodes separately
incurs an extra initial transmission cost but provides negligible
additional compression.

In Figs. 2(c) and 2(d), we see a different story for ge-
ometrically distributed in-degrees. In this case, the ER and
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FIG. 2. Identifying hubs in networks with different in-degree distributions. (a) Fraction of nodes h∗/N identified as hubs using the four
methods detailed in Table I, for Poisson-distributed weighted in-degrees. Experiments were performed over a broad range of average in-degree
for N = 103 (solid lines) and N = 105 (dotted lines). (b) Inverse compression ratio η [Eq. (10)] for the ERm and CMm methods over the
same set of experiments. The experiments were repeated for geometrically distributed in-degrees [panels (c) and (d)] and power–law (Zipf)
distributed in-degrees [panels (e) and (f)], which exhibit progressively higher levels of relative variance. Error bars indicate two standard errors
in the mean over 50 generated in-degree distributions, and large circles/squares around the data points in panel (b) indicate configurations for
which the ERm model provided superior compression to the CMm model.

average methods indicate a substantial fraction of hub nodes,
while the Loubar method is more conservative and only in-
dicates that roughly 10% of nodes are hubs. Meanwhile, the
CM encoding is still very conservative, this time classifying
zero nodes as hubs in all cases. Here the CM encoding now
compresses better than the ER encoding, and both methods
provide substantially better compression than in the Poisson
case. This is consistent with the greater relative variance of
the geometric distribution, which will result in more effective
compression using hub-based methods, and will benefit in
particular from transmitting edges incident to the high degree
hubs individually. There is also a greater dependence on the
size N of the network, and optimal compression for both
encodings appears to be achieved at roughly 〈k〉 ≈ N .

In Figs. 2(e) and 2(f), we plot the same results for the
power-law in-degrees, which exhibit different behavior from

the first two cases. Here we can see that the CM encoding is
identifying a more substantial number of hubs (roughly 10%
of all nodes), while the ER encoding is a bit more conser-
vative and the Loubar method is the most conservative. In
this case one may expect a greater fraction of nodes to be
identified as hubs than for Poisson or geometric in-degrees,
due to the highly skewed nature of the power-law distribu-
tion, which would suggest that the CM results overall are the
most consistent with our expectations. Both the ER and CM
encodings are most compressive for power-law in-degrees,
reducing the information needed to transmit the network by
roughly 30–40 %, and the CM encoding becomes even more
heavily favored in terms of the inverse compression ratio. We
also see a greater dependence on network size N and higher
sample variability in the power-law results, as expected from
the diverging relative variance in many cases.
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Overall, these experiments suggest that the CM encoding
of Sec. II is performing the most consistent with intuition for
these randomized degree sequences, as it finds zero or only
a handful of hub nodes for Poisson and geometric degree se-
quences, while finding that roughly 10% of nodes are hubs for
the power-law degree sequences. Meanwhile, the ER method
appears to be quite lenient for classifying hubs with geomet-
rically distributed in-degrees, but identifies a sensible number
of hubs for the Poisson and power-law cases—in particular,
it identifies zero hubs for Poisson-distributed in-degrees. On
the other hand—in contrast with our intuition—, the aver-
age and Loubar methods identify fewer hubs as the relative
variance increases (from Poisson to geometric to power-law
in-degrees).

B. Emergence of hubs in growing networks

Here we examine the four methods of Table I in a more dy-
namic context, applying these methods to track the evolution
of hub nodes in growing networks. To simulate growing net-
works with varying levels of degree heterogeneity, we use the
Price model for citation dynamics [37] with a variable attach-
ment exponent. In this model, at each time step t = 1, . . . , T
a new node i arrives with an out-degree m and attaches each
out-edge to an existing node j with probability

q(t )
i→ j =

(
k(t )

j + 1
)α

∑
j∈V (t )

(
k(t )

j + 1
)α , (11)

where k(t )
j is the in-degree of node j at time t , and V (t ) are

the nodes in the network at time t (excluding i). The model
begins with m seed nodes of degree zero, which are the targets
for the first incoming node’s out-edges. In [38] they find that
a similar model with m = 1 results in stretched exponential
in-degree distributions for sublinear attachment (α < 0) as
T → ∞, while for α > 1 the single initial node becomes a
hub that has connections from nearly every other node that is
added. Meanwhile, for α = 1 the in-degrees follow a power
law asymptotically. These results suggest that as α → 0 we
should see fewer and fewer hub nodes, while for α > 1 we
should see h ≈ m as T → ∞ since nearly every connection is
made to a seed node. On the other hand, for α = 1 we expect
to see a power-law distribution of in-degrees and will observe
a point in time at which a large number of hubs emerge.

In Fig. 3(a), we show the average number of hubs h∗ de-
tected by the four methods as a function of the number of time
steps t , for 50 simulations of the growth model in Eq. (11)
with T = 100 and {m, α} = {1, 0}. Under this parameter con-
figuration, the network is a Random Recursive Tree, which
will exhibit a highly homogeneous degree distribution and
produce high degree hub nodes with very low probability [39].
We can see that in this case, the ER and CM methods identify
very few hubs—the CM method identifies exactly zero hubs
in all simulations—while the average and Loubar methods
classify a sizable number of nodes as hubs (which increases
steadily as the network grows). We do not see any sharp
transition at which hubs emerge in the network according to
any of the four methods.

In Fig. 3(b), we show the growth model simulation results
for the sublinear case of {m, α} = {18, 0.5}. We find again

that the average and Loubar methods find a steadily increasing
number of hubs starting with h∗ ≈ m, with some small oscilla-
tions in h∗ for the average method due to slight changes in the
number of nodes with in-degree above the average of m. The
ER and CM methods in this case exhibit quite different trends
from those for the Random Recursive Tree in panel (a). The
ER curve exhibits a sharp phase transition-like jump at t ≈ 5,
then steadily increases as the network grows further. This in-
dicates that, as expected, after roughly five attachment events
it is information theoretically more efficient to describe the
network using hub nodes, according to Eq. (3). The CM en-
coding, typically being more conservative in its classification
of hubs, does not begin to find hubs in the network until much
farther into the simulations at around t ≈ 60. By T = 100, the
CM method typically detects around h∗ ≈ 18–20 hubs, often
finding that the seed nodes have high enough in-degrees to
justify their existence as hubs under the CM encoding.

In Fig. 3(c), we increase the attachment exponent so
that linear preferential attachment will occur with {m, α} =
{10, 1}, producing a power-law in-degree distribution asymp-
totically. Here we see largely the same trend as in Fig. 3(b)
for the ER, average, and Loubar methods, with slower growth
rates in h∗ as the simulations progress. This is consistent with
a greater fraction of the in-connections being concentrated at
the seed nodes, whose early existence in the network has given
them a strong cumulative advantage. The CM encoding now
classifies a substantial fraction of nodes as hubs, and displays
sharp phase transition-like behavior at t ≈ 20. This is consis-
tent with the behavior seen in Fig. 2(e) for the Zipf-distributed
in-degrees, where the CM encoding identified many hubs.

In Fig. 3(d), we increase the attachment exponent to lie in
the superlinear regime with {m, α} = {4, 2.7}. In this case, all
curves converge to h∗ ≈ m = 4, which reflects the fact that
most incoming edges will attach to the four seed nodes due
to the superlinear attachment process. We again see the ER
and CM encodings producing a sharp hub transition, but at
even earlier time steps, while the average and Loubar methods
produce smooth curves as before.

Finally, in Figs. 3(e) and 3(f) we plot the hub transition—
the time step t at which h∗ = 1 in expectation over the
simulations—for the ER and CM encodings, at various val-
ues of the simulation parameters {m, α}. The four parameter
configurations corresponding to panels (a)–(d) are indicated
by small white squares. We can see that for no attachment
preference (α = 0) or a single outgoing edge (m = 1), the ER
model indicates a late hub transition, which we find is due to a
smooth ascent reminiscent of that in Fig. 3(a) [corresponding
to the configuration in the bottom left corner of panel (e)].
We find a weak trend in the ER hub transition as a function
of the simulation parameters outside of these cases, with the
hub transition occurring very early in the growth simulations.
Meanwhile, the CM model has a hub transition that exhibits
a much stronger dependence on the attachment exponent α,
with meaningful hub transitions occurring at roughly α = 0.5
for most values of m, against which the CM results display
little variation in panel (f).

Altogether the results of these simulations further sug-
gest that the ER and CM encodings—and particularly the
CM encoding—are identifying meaningful hub structure in
controlled synthetic network data that is consistent with
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FIG. 3. Identifying hub transitions in Price’s model with different attachment exponents and seed sets. (a)–(d) The number of hubs h∗

identified by the four methods in Table I is shown as a function of the number of time steps in a generalization of Price’s network growth
model [Eq. (11)] [37,38] for various attachment exponents α and numbers of seed nodes m (dashed black lines). Error bars indicate two
standard errors in the mean over 50 growth simulations with T = 100 time steps. (e),(f) Expected number of time steps until a single hub
is detected (the “hub transition”) over a range of attachment exponents and seed set sizes, for the ERs [Eq. (3)] and CMs [Eq. (4)] hub
identification objectives. Small white squares indicate the parameter values corresponding to panels (a)–(d).

expectations based on the evolution of the networks’ in-degree
sequences. In the next section, we explore the application
of these methods to a corpus of real networks from various
disciplines.

C. Hubs in real-world networks

We collected 82 real-world network data sets from the
Netzschleuder repository [40] by querying all networks for
which “is_directed==True,” “is_bipartite==False,” and for
which the number of edges M is less than 107. Networks
with nonintegral weights were transformed to unweighted
networks for the analyses, and after preprocessing there were
51 simple graphs—to which the ERs and CMs encodings were

applied—and 31 weighted graphs/multigraphs—to which the
ERm and CMm encodings were applied—for the analyses.
The collected networks exhibit high variation in their size N
and average degree M/N , and represent systems from a broad
range of disciplines (see Table II in Appendix E for more
details).

In Fig. 4(a), we plot the fractional number of hubs h∗/N as
a function of the number of nodes N for all networks studied
(both weighted and unweighted), using both the in- and
out-degree distributions (giving 164 data points for each of the
four methods in Table I). We find a story consistent with the
findings for synthetic networks in Sec. III A. In particular, the
ER and CM encodings both assign zero hubs in a substantial
fraction of cases, with the CM method assigning zero hubs in
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FIG. 4. Hub properties of real-world directed networks. (a) The fraction h∗/N of nodes identified as hubs using the four methods in
Table I, for 82 real-world directed networks of various sizes collected from the Netzschleuder repository [40]. The median fraction of hubs
found across all networks is shown with a dashed line for each method. See Appendix E for details on the networks studied. (b) Spearman rank
correlation in the fraction of nodes identified as hubs across all networks in the corpus, for each pair of methods examined. (c) Fraction of nodes
identified as hubs vs the normalized degree entropy [Eq. (12)] for the four methods. Spearman correlations between h∗/N and the normalized
degree entropy values are reported in the legend, and the marker colors/styles correspond to the methods indicated in panel (a). (d) Inverse
compression ratios [Eq. (5) for simple graphs and Eq. (10) for weighted graphs] across all networks when using the ER and CM encodings (x-
and y-axes, respectively). The points are scaled monotonically with the size N of the network analyzed, and red (blue) markers indicate that
the ER (CM) encoding was more compressive for the given network. The inset shows a zoomed-in view of the plot for 0.95 � η � 1, and the
line of equality is shown as a dashed line for reference.

over a third (38%) of the networks. In the cases where both
methods detect hub nodes, the ER and CM methods detect
a similar number of hubs, with the ER typically detecting
slightly fewer. As seen in Fig. 2(c), the average method
classifies a consistent fraction of nodes h∗/N ≈ 0.3 as hubs
across the range of network sizes N . Meanwhile the Loubar
method is much more conservative and classifies a consistent
number of nodes h∗ ≈ 10 as hubs as N varies in Fig. 4(a).
The median values of h∗/N for the four methods vary by
roughly an order of magnitude, with MedianAverage ≈ 0.26 >

MedianER ≈ 0.12 > MedianCM ≈ 0.057 > MedianLoubar

≈ 0.023.
In Fig. 4(b), we compute the Spearman correlation coef-

ficient between the h∗/N values produced by each pair of
methods over all networks studied [in other words, the cor-
relations in the y-values of panel (a)]. We find that while the
average and Loubar methods are highly correlated with each
other in terms of the fraction of hubs they identify across
networks (ρ ≈ 0.83), they are each more weakly correlated
with the ER encoding’s results (ρ ≈ 0.63 and ρ ≈ 0.56, re-
spectively, for the average and Loubar methods). The CM
method, meanwhile, is negatively correlated with the other

three methods in terms of h∗/N—for a given network, when
the CM encoding classifies a greater fraction of hubs than
usual, other methods will tend to classify a smaller fraction
of hubs than usual.

To investigate these correlations among the measures fur-
ther, we plot the fraction of hubs versus the normalized
entropy Hnorm(k) of the degree sequence k, given by

Hnorm(k) = − 1

log N

N∑
i=1

ki

M
log

(
ki

M

)
, (12)

for both in- and out-degrees k of each network in the corpus.
The normalized degree entropy of Eq. (12) is a natural mea-
sure of the variability in the degrees k which is bounded in
[0,1], with Hnorm = 0 being the extreme where all edges point
to a single node and Hnorm = 1 being the other extreme where
all nodes have identical degrees. We can see from Fig. 4(c)
that the fraction of hubs h∗/N for the average and Loubar
methods exhibits a fairly strong positive correlation with the
normalized degree entropy of Eq. (12), while the ER encoding
results are more weakly correlated with the degree entropy. In
contrast, the CM encoding tends to assign a lower fraction of
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hub nodes as the degree entropy increases, as indicated by its
strong negative correlation with Hnorm. The behavior of the
CM encoding is perhaps most aligned with expectations in
that more heterogeneous degree sequences (those with lower
entropy) should have more hubs, whereas degree sequences
that are highly homogeneous (those with high entropy) should
not have any hubs or only have relatively few hubs. This is
also consistent with the observations in Fig. 2.

In Fig. 4(d), we plot the inverse compression ratio [Eq. (5)
for simple graphs and Eq. (10) for weighted graphs] for the ER
and CM encodings (x- and y-axis, respectively). We observe
fairly substantial compression of the real networks using these
hub-based encodings—more than 10% of the information
required for transmission is reduced relative to the baseline
encoding in many cases—and that the compression achieved
with each method is relatively independent of network size
N . We can also see that the CM encoding outperforms the
ER encoding in most cases, but that the ER encoding is more
compressive for small networks and networks where little
compression is achievable (i.e., networks with homogeneous
degree sequences). This is consistent with the results of Ap-
pendix D.

IV. CONCLUSION

Here we described a set of methods for identifying hub
nodes in directed networks with weighted or unweighted
edges whose goal is to extract the subset of high degree
nodes that allows for the best compression of the network
data. Our methods are nonparametric, selecting the number of
hub nodes in the network automatically using the Minimum
Description Length principle, and they can be run with a time
complexity that is O(N log N ) in the number of nodes N in the
network. We apply these methods in a range of experiments
involving real and synthetic network data, finding an intu-
itive dependence on the degree heterogeneity of networks and
improved performance relative to existing methods that are
not explicitly designed for compressing network data. These
methods provide a simple, principled, and flexible toolkit for
exploring the hub structure of network data in a range of
applications.

There are a number of ways this work can be extended in
future studies. First, methods for compressing network data
are not limited to focusing on purely local structure [27,41], so
one can in principle develop information-theoretic encodings
that exploit hub structure at larger scales in order to classify
nodes that are more globally central in the network as hub
nodes. However, the description length of such global encod-
ings may become very challenging to compute due to the
combinatorial structure of the problem. One can also adapt
the ideas in this work to undirected graphs, which are more
challenging to deal with than the directed graphs considered in
this paper because edges only need to be specified in a single
direction. In this case, one may aim to find a set of nodes
that constitutes a complete or nearly complete vertex cover
of the graph as the hub nodes that provide the most efficient
network compression. One can also compare the compression
of the methods proposed here with other methods such as
stochastic blockmodels [42] or various configuration models
[27], as well as integrate hub-based priors in these models for

improved compression. Finally, one can apply the proposed
methods to human mobility networks in order to uncover
hot-spot structure and compare empirical performance with
the average and Loubar methods in the mobility context [22].
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APPENDIX A: RELATIVE COMPRESSION OF
L(ERs)

0 AND L(CMs)
0

Before proceeding, we can establish the useful inequality

log

(∑
n xn∑
n yn

)
−

∑
n

log

(
xn

yn

)
� 0 (A1)

for non-negative integers {xn}, {yn}. Letting Y = ∑
n yn, the

Vandermonde identity gives(∑
n xn

Y

)
=

∑
∑

n zn=Y

∏
n

(
xn

zn

)
�

∏
n

(
xn

yn

)
, (A2)

and taking the logarithm of both sides of the inequality gives
the desired result.

Applying Stirling’s approximation to the first term in
Eq. (2) gives, for N � 1, the following expression:

log

(
M + N − 1

N − 1

)
≈ (M + N − 1)Hb

(
N − 1

M + N − 1

)
(A3)

= [N (〈k〉 + 1) − 1]Hb

(
N〈k〉

N (〈k〉 + 1) − 1

)

(A4)

≈ N (〈k〉 + 1)Hb

( 〈k〉
〈k〉 + 1

)
(A5)

≈ N log(〈k〉 + 1), (A6)

where Hb(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function. We can then see that for N � 〈k〉 � 1, this
term will vanish relative to the second term in Eq. (2), and so
we have

L(CMs)
0 ≈

N∑
i=1

log

(
N − 1

ki

)
. (A7)

Now, applying the identity in Eq. (A1) we can see that

L(ERs)
0 − L(CMs)

0 ≈ log

(
N (N − 1)

M

)
−

N∑
i=1

log

(
N − 1

ki

)
� 0.

(A8)

Therefore, in the regime N � 〈k〉 � 1, we will always
achieve better compression using the two-step encoding with
description length in Eq. (2) than the one-step encoding used
for Eq. (1). However, for small and/or very sparse networks
we do not have any guarantee that L(CMs)

0 � L(ERs)
0 since the

above approximation is no longer valid. In this regime, the
one-step encoding may compress better than the two-step
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encoding since the initial transmission cost for the degrees is
non-negligible.

APPENDIX B: OPTIMIZATION OF L(ERs)(Vh) AND
L(ERm)(Vh)

We can show that the global optimum of L(ERs)(Vh) is
obtained using the greedy hub identification process outlined
in Sec. II B. This demonstrates that the optimal set of h hub
nodes is the set of h nodes with the highest in-degrees. For
any fixed h � 1, we have that substituting Mh → Mh + 1—in
other words, an increase in the cumulative in-degree Mh of the
hubs [see Eq. (3)]—induces a change �

(ERs)
h in the description

length L(ERs) of

�
(ERs)
h = log

[h(N − 1) − Mh][M − Mh]

[Mh + 1][(N − 1)(N − h) − (M − Mh) + 1]

(B1)

< log
[h(N − 1) − Mh][M − Mh]

Mh[(N − 1)(N − h) − (M − Mh)]
(B2)

= log
h(N − 1)M − h(N − 1)Mh − MMh + M2

h

MhN (N − 1) − h(N − 1)Mh − MMh + M2
h

.

(B3)

Now, as long as h(N − 1)M � MhN (N − 1)—equivalent to
the condition Mh/h � (M/N ), or that the average degree of
the hubs is greater than or equal to the average in-degree of
the network as a whole—then we have that �

(ERs)
h < 0, which

in turn implies that the optimal set of h nodes to choose as
hubs are those with the h highest in-degrees, since this set of
nodes will maximize Mh. Therefore, if we force the first hub
node (i.e., for h = 1) to be the node of maximum in-degree,
then the greedy scheme from Sec. II must produce a globally
optimal set of hubs with respect to the description length in
Eq. (3).

Similarly, we can show that the global optimum of
L(ERm)(Vh) is also obtained using the greedy hub identification
process outlined in Sec. II B (with quantities appropriately
mapped from the ERs encoding to the ERm encoding). The
analogous expression to Eq. (B1) for the multigraph descrip-
tion length in Eq. (8) is

�
(ERm)
h = log

[Mh + hN][M − Mh]

[Mh + 1][M − Mh + N (N − h) − 1]
(B4)

= log
[MMh−M2

h ]+hN[M−Mh]

[MMh−M2
h ]+[M−Mh]+N (N−h)[Mh+1]−[Mh+1]

(B5)

< log
[MMh − M2

h ] + hN[M − Mh]

[MMh − M2
h ] + [N (N − h) − 1][Mh + 1]

. (B6)

In this case, we need hN[M − Mh] � [N (N − h) − 1][Mh +
1] to hold in order for �

(ERm)
h < 0 (and, hence, global op-

timality of the greedy method). Rearranging the inequality,
we can see that for Mh, N (N − h) � 1, the same condition
Mh/h > M/N will guarantee �

(ERm)
h < 0. Therefore, forcing

the highest in-degree node as the hub for h = 1 allows for
global optimality of the greedy hub identification algorithm in
this case as well, so long as the maximum in-degree is much
greater than 1.

APPENDIX C: OPTIMIZATION OF L(CMs)(Vh) AND
L(CMm)(Vh)

We can guarantee local optimality of the greedy algorithm
for L(CMs)(Vh) by showing that the description length resulting
from adding a node of degree k + 1 at step h is always less
than the description length resulting from adding a node of
degree k at step h. In other words, at any step h, we should
add the remaining nonhub node with the highest in-degree as
the new hub. The difference �

(CMs)
k|h in Eq. (4) due to adding a

node of degree k + 1 at step h instead of a node of degree k at
step h is given by

�
(CMs)
k|h =log

[Mh−1+h+k][N−k−1][M−Mh−1−k]

[Mh−1+k+1][k+1][(N−h)(N−1)−(M−Mh−1)+k+1]
,

(C1)

where here we have let Mh−1 be the cumulative in-degree of
whatever set of hubs we have chosen after step h − 1. Set-
ting h/N → γ , M/N → 〈k〉, and Mh−1/(h − 1) → 〈k〉h−1, we
have that in the limit N � 1 the expression can be simplified
to

�
(CMs)
k|h ≈ log

[〈k〉h−1 + 1][〈k〉 − γ 〈k〉h−1]

[k + 1][〈k〉h−1 − γ 〈k〉h−1]
. (C2)

From here, we can see that �
(CMs)
k|h � 0 as long as

〈k〉h−1[k − 〈k〉] + γ 〈k〉h−1[〈k〉h−1 − k] + [〈k〉h−1 − 〈k〉] � 0,

(C3)

which is satisfied for 〈k〉h−1 � k � 〈k〉. The first inequality
is satisfied for the greedy scheme, since nodes are added in
order of decreasing in-degree. Therefore, we have a guarantee
of local optimality under the greedy scheme when k � 〈k〉.
Repeating the above argument for L(CMm)(Vh) gives the same
final condition 〈k〉h−1 � k � 〈k〉 for local optimality using the
CMm encoding. Outside of this regime—i.e., when the node
being considered has a degree k that is less than the network
average 〈k〉—we no longer have a proof of local optimality for
the greedy scheme. However, as discussed in Sec. II, we can
simply enforce the constraint that every hub node must have
a degree that is at least as large as the highest nonhub node
degree, in which case the greedy scheme is the only scheme
that will produce hub sets Vh consistent with this constraint at
all values of h.

APPENDIX D: RELATIVE COMPRESSION OF “ER”
VERSUS “CM” HUB-BASED ENCODINGS

In the regime 〈k〉h ≡ Mh/h � 1, we have that

log

(
Mh + h − 1

h − 1

)
≈ [h(〈k〉h + 1) − 1]Hb

(
h〈k〉h

h(〈k〉h + 1) − 1

)

≈ h(〈k〉h + 1)Hb

( 〈k〉h

〈k〉h + 1

)

≈ h log(〈k〉h + 1). (D1)

Now, using a similar argument to the one in Appendix A, we
have that this term will vanish relative to

∑
i∈Vh

log
(N−1

ki

)
, and
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subtracting Eq. (4) from Eq. (3) gives

L(ERs)(Vh) − L(CMs)(Vh)

= log

(
h(N − 1)

Mh

)
− log

(
Mh + h − 1

h − 1

)

−
∑
i∈Vh

log

(
N − 1

ki

)
(D2)

≈ log

(
h(N − 1)

Mh

)
−

∑
i∈Vh

log

(
N − 1

ki

)
(D3)

� 0, (D4)

where we used the identity in Eq. (A1). Therefore, in the
regime 〈k〉h � 1, we will always achieve superior compres-
sion using the “CMs” encoding over the “ERs” encoding.
However, for very sparse networks or networks with no hub
nodes, we do not have any guarantee that L(CMs) � L(ERs)

since the above approximation is no longer valid. In this
regime, the ERs encoding may compress better than the CMs
encoding since the transmission cost for the degrees is non-
negligible. The same argument can be used to establish that in
the same regime we will achieve superior compression using
the CMm encoding over the ERm encoding.

APPENDIX E: REAL-WORLD NETWORK DETAILS

TABLE II. Details on network datasets studied in Sec. III C.

No. Name [40] N M Weighted

0 packet_delays 10 45 True
1 rhesus_monkey 16 120 True
2 high_tech_company 21 210 True
3 moreno_taro 22 231 False
4 bison 26 325 True
5 moreno_sheep 28 378 True
6 cattle 28 378 True
7 7th_graders 29 406 True
8 hens 32 496 False
9 college_freshmen 32 496 True
10 macaques 62 1891 True
11 highschool 70 2415 True
12 law_firm 71 2485 True
13 foodweb_baywet 128 8128 False
14 email_company 167 13861 True
15 foodweb_little_rock 183 16653 False
16 psi 192 18336 True
17 cintestinalis 205 20910 False
18 fao_trade 214 22791 True
19 residence_hall 217 23436 True
20 un_migrations 232 26796 False
21 physician_trust 241 28920 False
22 celegansneural 297 43956 False
23 yeast_transcription 690 295283 True
24 messal_shale 700 244650 False
25 uni_email 1133 641278 False
26 polblogs 1224 934396 True

No. Name [40] N M Weighted

27 faa_routes 1226 750925 False
28 interactome_stelzl 1706 1454365 False
29 at_migrations 2115 2235555 True
30 interactome_figeys 2239 2505441 False
31 us_air_traffic 2278 2593503 True
32 fly_larva 2952 4355676 False
33 openflights 3214 5163291 False
34 bitcoin_alpha 3783 7153653 False
35 fediverse 4860 11807370 False
36 bitcoin_trust 5881 17290140 False
37 jung 6120 18724140 False
38 jdk 6434 20694961 False
39 advogato 6539 21379008 True
40 elec 7118 25329403 False
41 chess 7301 26648650 False
42 wiki_rfa 11381 64757890 False
43 dblp_cite 12590 79247755 False
44 anybeat 12645 79941690 False
45 chicago_road 12979 84224356 True
46 foldoc 13356 89184690 True
47 inploid 14629 106996506 False
48 google 15763 124228203 False
49 fly_hemibrain 21739 236281191 True
50 word_assoc 23132 267533146 True
51 cora 23166 268320195 False
52 lkml_reply 27927 840498910 True
53 digg_reply 30398 462004003 False
54 linux 30837 475444866 False
55 email_enron 36692 673133086 False
56 pgp_strong 39796 791840910 False
57 facebook_wall 46952 1102221676 False
58 slashdot_threads 51083 1304710903 False
59 python_dependency 58743 1725340653 False
60 epinions_trust 75879 2879167673 True
61 slashdot_zoo 79116 3129687706 True
62 twitter_15m 85712 3741488617 True
63 prosper 89269 3984432546 False
64 wiki_link_dyn 100312 5031198516 False
65 lastfm_aminer 136409 9303639436 False
66 wiki_users 138592 9603801936 False
67 academia_edu 200169 20033714196 False
68 google_plus 211187 22299868891 False
69 flickr_aminer 214626 23032052625 False
70 email_eu 265214 35169100291 False
71 stanford_web 281903 39734791656 True
72 notre_dame_web 325729 53049527856 False
73 citeseer 384413 73886485078 False
74 twitter 465017 108120172636 False
75 yahoo_ads 653260 213373987170 False
76 berkstan_web 685230 234770419065 True
77 myspace_aminer 854498 365082988753 False
78 google_web 875713 402754552837 True
79 wikitree 1382751 955999472625 False
80 trec_web 1601787 1282859995791 False
81 wikipedia-en-talk 2394385 2866538566920 False
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