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Framework to generate hypergraphs with community structure
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In recent years hypergraphs have emerged as a powerful tool to study systems with multibody interac-
tions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data
have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world
networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and
efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows
specifying general community structures and tune different local statistics. We illustrate how to use our model to
sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community
assignments, etc.), analyze community detection algorithms, and generate hypergraphs structurally similar
to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work
constitutes a substantial advancement in the statistical modeling of higher-order systems.
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I. INTRODUCTION

Over the past decades, networks have emerged as a fun-
damental tool to describe complex relational data in nature,
society, and technology [1]. Indeed, most real-world systems
are nowadays known to be characterized by a highly nontrivial
organization, which includes triadic closure and high cluster-
ing [2], low diameter and an efficient communication structure
[3], and unequal degree distributions [4]. Noticeably, many
systems reveal the existence of modules or communities,
where nodes are naturally clustered in different groups based
on their patterns of connections [5]. Identifying communities
is an important task that allows performing various down-
stream analysis on networks, describing the roles of nodes
and, generally, providing a low dimensional representation of
possibly large systems. Since the seminal papers by Newman
et al. [6] and Lanchichenetti et al. [7], the problem of generat-
ing synthetic data for highly structured graphs with prescribed
features has attracted enormous interest in the community. On
the one hand, these models have led to tremendous improve-
ments in evaluating which community detection algorithms
perform best at a given task [8]. On the other hand, they
have allowed the reliable generation of large synthetic data
samples, useful to analyze nontrivial statistics from single
instances of real networks and systematically investigate the
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impact of mesoscale structure on dynamical processes on
graphs [9,10]. This methodology has been applied to different
domains, including studies on polarization on social media
[11], percolation thresholds in brain networks [12], and struc-
tural and covariate information [13,14].

Despite their success, recent evidence suggests that graphs
can only provide a limited description of reality, as links are
inherently limited to describe pairwise interactions [15–18].
By contrast, nondyadic higher-order interactions have been
observed across different domains, including the human brain
[19–21], collaboration networks [22], species interactions
[23], cellular networks [24], drug recombination [25], and
face-to-face human [26] and animal [27] interactions. Inter-
estingly, such higher-order interactions naturally lead to the
emergence of new collective phenomena in synchronization
[28–32] and contagion [33–35] dynamics, diffusive process
[36,37], and evolutionary games [38,39]. Hypergraphs [40],
where hyperedges encode interactions among an arbitrary
number of system units, are a natural framework to describe
relational data beyond the pair [15]. In the past few years
many tools have been developed to characterize the higher-
order organization of real-world hypergraphs, including new
centrality measures [41,42], higher-order clustering [43] and
motif analysis [44], hypergraph backboning [45], hyperedge
prediction [46], and methods to infer higher-order interactions
from low-order data [47]. In particular, several tools to extract
higher-order communities have been proposed, either based
on flow distribution [48,49] or statistical inference frame-
works [46,50].

Nevertheless, how to generate structured hypergraphs is
still an open problem. The few currently available models
mainly focus on “unstructured” higher-order generalizations
of the configuration [51–53] and the Erdos-Renyi model [54],
or on growth models for hypergraphs [55–57]. A different
perspective is that of relational hyperevent models [58], which
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specify event rates based on hyperedge statistics for hyper-
edges to exist, similarly to what exponential random graphs do
for networks [59,60]. All these approaches, however, do not
account for community structure, hence are of limited usage
when it comes to reproducing the complex mesoscale orga-
nization of real-world higher-order systems. Recent works
introduced latent variables models to infer community struc-
ture in hypergraphs [46,50,61], however they do not explain
how to sample from the generative model. Indeed, while
sampling and inference are often studied jointly in standard
networks, these two tasks present distinct computational and
theoretical challenges in the case of hypergraphs.

In this work, we provide a principled and general frame-
work to sample hypergraphs. In particular, our method allows
flexible sampling of higher-order networks with prescribed
microscale and mesoscale features, controlling the distri-
bution of node degrees and hyperedge sizes, as well as
specifying arbitrary community structure (e.g., hard versus
overlapping membership, assortative versus disassortative,
etc.). The method is highly efficient, and scales well with
the number of nodes, hyperedges, as well as hyperedge size,
making it suitable for the analysis of real-world systems.
In the following, we first introduce our generative model
and sampling strategy. Then, we extensively characterize the
hypergraphs obtained by investigating the phase space asso-
ciated with the different structural parameters. Finally, we
show how to utilize our method to analyze the structural and
statistical properties of real-world data.

II. GENERATIVE MODEL

We consider hypergraphs H(V, E ) consisting of N nodes
V = {1, . . . , N} and a hyperedge set E , where each hyper-
edge e ∈ E describes an interaction among an arbitrary set
of unique nodes, i.e., e ⊆ V , and |e| is the hyperedge size.
The degree of a node i, i.e., the number of hyperedges it
belongs to, is denoted as di. Similarly, we define the degree
sequence d = {d1, . . . , dN } as the vector of node degrees and
the size sequence k = {k1, . . . , kD} as the count of hyperedges
per hyperedge size [53]. We consider hyperedges of arbitrary
sizes, up to a maximum of D � N , and denote the space of
all possible such hyperedges with �. We assume positive and
discrete hyperedge weights, encoded using a vector A ∈ N |�|,
so that E = {e ∈ � : Ae > 0}.

Our sampling approach introduces a flexible way to gen-
erate highly structured weighted hypergraphs with mesoscale
structure, where hyperedges are generated probabilistically
and nodes belong to K communities. Specifically, each node
i ∈ V is assigned a K-dimensional membership vector ui,
where we allow uik � 0 for the general case of soft mem-
bership, where nodes can belong to multiple communities.
The particular case of hard membership assignment, where
a node can only belong to one community, is recovered by
setting only one nonzero entry for ui. In Fig. 1 we illustrate
these two cases by showing two small hypergraphs with
hard or overlapping community structure. The nonnegative
symmetric K × K-dimensional affinity matrix w regulates the
interactions between communities. Classic patterns are
assortative affinity matrices, with dominant diagonal signaling
stronger inter-community interactions, and disassortative

(a)

(b)

FIG. 1. Sampling hypergraphs with community structure. A pic-
torial representation of two small hypergraphs with N = 10 nodes,
K = 2 communities, and (a) hard or (b) overlapping membership
assignment. Every node’s membership assignment ui = (ui1, ui2) is
represented as a pie chart. Nodes with a single color have hard
assignments, mixed pie charts represent overlapping assignments.
Due to the likelihood in Eq. (2), nodes with overlapping assignments
are more likely to belong to between-community interactions.

ones, where the out-diagonal terms have higher magnitude.
For any given hypergraph, we define the following likelihood
function:

p(H; w, u) =
∏
e∈�

p(Ae; u,w) =
∏
e∈�

Pois

(
Ae;

λe

κ|e|

)
, (1)

where

λe :=
∑

i< j∈e

uT
i w u j =

∑
i< j∈e

K∑
k,q=1

uikwkqu jq. (2)

This parametrization allows generating hypergraphs under
different scenarios, e.g., with assortative or disassortative
community structures, and is reminiscent of those used in
probabilistic models for pairwise networks [62,63] and in
variants of nonnegative tensor factorization as used in the
machine learning community [64,65] when D = 2. In addi-
tion, restricting our model to D = 2 and κ2 = 1 recovers the
canonical Poisson stochastic block model [66]. The parameter
κ|e| is a normalization factor and is a function of the size |e|
of the hyperedge e only (i.e., it only depends on the size of
the interaction, and not on the nodes involved in it). These
constants regulate the expected statistics of the model, such as
expected degree and hyperedge size distribution. In general,
any choice of κd > 0 yields a well-defined probabilistic
model. We illustrate sensible values for κd in Appendix A 2.

Alternative generative models for hypergraphs have been
recently proposed. In particular, the works of Chodrow et al.
[50] and Contisciani et al. [46] can be more closely compared
to the model in Eq. (1), since they are both based on factorized
Poisson likelihoods based on communities. The former work
assumes sufficient statistics only evaluated on hard commu-
nity assignments and we are not aware of any computationally
efficient sampling procedure from the relative generative pro-
cess. The model of Contisciani et al. [46], instead, bears closer
resemblance to the one proposed in this paper. The main

034309-2



FRAMEWORK TO GENERATE HYPERGRAPHS WITH … PHYSICAL REVIEW E 109, 034309 (2024)

difference lies in the specific form of the Poisson means,
which, for every hyperedge e, are based on a product of |e|
terms, as opposed to the bilinear form in Eq. (1). Despite
the similar generative process, the tools utilized in this work
cannot be straightforwardly applied to that model, as closed-
form statistics and approximate Central Limit Theorem results
cannot be derived in the same manner.

More generally, the primary goal of the aforementioned
models is to infer hypergraph structure, leaving the problem
of sampling unsolved. While our model is also well suited
to efficiently infer hypergraph structure, as we illustrate in
Ruggeri et al. [67], the primary objective of this work is to
demonstrate how we can effectively sample from its probabil-
ity distribution. This key model’s capability makes it possible
to generate highly structured synthetic data with higher-order
interactions. This is a key advancement for practitioners han-
dling hypergraph data and follows influential work on such a
topic for pairwise networks [6,7].

III. SAMPLING HYPERGRAPHS

We now propose an efficient way to sample hypergraphs
from the generative model defined in Eq. (1). Such a task is
far from being straightforward. To see why, let us consider a
pairwise network model, where the configuration space is of
size |�| = N2, and compare it with our higher-order problem.
In the former case, generation is feasible by simply exploring
every single edge separately and sampling from the relative
Poisson distribution. In the latter case, however, the rapid
growth of the � space renders both naive sampling tech-
niques and Markov chain Monte Carlo (MCMC) algorithms
inapplicable. Here, we propose a solution to this challenge
using approximate sampling. In the following, we focus on
the intuition behind our method and illustrate relevant us-
age examples. For a more technical description, we defer to
Appendix B.

A. Sampling algorithm

Our sampling procedure follows three consecutive steps:

1. Sampling node degrees and hyperedge sizes

The first sampling step consists of approximately sampling
the d and k vectors for a given choice of community mem-
berships u and affinity matrix w. Then, we use these two
quantities to draw a first proposal of a binary hypergraph
defined by the array Ab ∈ {0, 1}|�|. More in detail, we first ap-
proximate p(d, k; u,w) ≈ p(d; u,w) p(k; u,w) and then use
the central limit theorem (CLT) to sample from p(d; w, u) and
p(k; w, u) separately. We note that these are the only approx-
imations needed in the whole sampling routine. We elaborate
more on their validity in Appendix E. After sampling the d, k
sequences, we combine them into a first binary hypergraph
configuration (i.e., a list of hyperedges) to be passed in input
to the next sampling step. Intuitively, we incrementally build
a hyperedge list until exhaustion of both sequences, starting
by first taking the nodes with the highest degrees. If the two
sequences are not compatible, i.e., there is no hypergraph
that satisfies both, then one can choose which of the two
sequences to preserve during the hyperedge list construction.

Such sequence will be exactly replicated, while the other will
be modified to construct the first list proposal. Notice that
the recombination problem has connections with the Havel-
Hakimi algorithm [68] and the Erdös-Gallai theorem [69].
Hence, the algorithm we propose for this task is a technical
novelty of independent interest. We explain the algorithm in
detail and present a pseudocode for it in Appendix E.

2. Sampling hyperedges

In this second step, we sample the binary hyperedges Ab
e,

conditioned on d and k, using a MCMC routine. This works by
continuously mixing the hyperedges starting from the initial
proposal Ab obtained at step a. The main tool utilized here
is the reshuffling operator introduced in Chodrow et al. [53]:
given two hyperedges e1, e2, reshuffle the nodes not belong-
ing to the intersection e1 ∩ e2 to obtain two new hyperedges
e′

1, e′
2. Then, accept or reject the new proposal according to

the Metropolis-Hastings algorithm [70], whose acceptance
rates depend on the Poisson means λe1/κe1 , λe2/κe2 and con-
sequently on the u,w parameters. Due to the properties of
the reshuffling operator the new hyperedges e′

1, e′
2 have same

sizes as e1, e2, hence the sequences d and k are preserved.
Intuitively, the Markov chain achieves good mixing owing
to conditioning on (d, k), which restricts the space of the
possible configurations.

3. Sampling hyperedge weights

In the third and final step, we sample the weights Ae from
p(Ae|Ab

e = 1). This conditional distribution is a zero-truncated
Poisson with mean λe/κ|e|. A related efficient sampling pro-
cedure based on inverse transform sampling is proposed in
Appendix B 3.

Altogether, the three sampling steps described above cor-
respond to the following probabilistic decomposition:

p(A; u,w) = p(A|Ab; u,w) p(Ab|d, k; u,w) p(d, k; u,w).

(3)

We provide the pseudocode of the sampling procedure in
Algorithm 1 and provide an open-source implementation at
Ref. [71].

B. Additional user input

The sampling procedure described above only requires the
community assignments u and affinity matrix w as generative
parameters. However, a practitioner may desire to generate
hypergraphs with specific features, such as a given degree or
hyperedge size sequence. Our model allows doing so natu-
rally, either by providing such statistics as additional input or
by tuning the generative parameters prior to sampling. More
precisely, one can skip the initial step and simply fix d or k
(or both) as input instead of sampling them. As explained in
Sec. III A, these quantities are guaranteed to be preserved in
the sampled hypergraphs. Algorithmically, this corresponds to
starting directly from line Line 3 in Algorithm 1.

In some cases, one might be interested in replicating the
ddata, kdata sequences observed in a real hypergraph dataset.
In such a simplified scenario, one can condition on the (bina-
rized) hyperedges of the data, and proceed by directly mixing
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Algorithm 1. Sampling algorithm. a: Lines 1–3; b: Lines 4–10;
c: Line 11.

Input: Number of communities K , memberships u, affinity w,
MCMC burn-in steps nb and intermediate steps ni, number of
samples S.

Result: {A(s)}s=1,...,S

1 Sample binary degree sequence d ∼ p(d; u, w)
2 Sample size sequence k ∼ p(k; u, w)
3 Create first proposal Ab from d, k
4 for i = 1, . . . , nb do
5 Ab ← reshuffle(Ab), accept according to Metropolis-Hastings,

depending on (u, w)
6 end
7 for s = 1, . . . , S do
8 for i = 1, . . . , ni do
9 Ab ← reshuffle(Ab), accept according to Metropolis-Hastings,

depending on (u,w)
10 end
11 sample A(s) ∼ p(A|Ab; u, w)
12 yield A(s)

13 end

them via the MCMC procedure in the second sampling step.
Since the hyperedges define the degree and size sequences,
these will be preserved and identical to those of the real data,
while the samples will come from the model’s probability
distribution. As per Eq. (3), the MCMC procedure will yield
samples from p(Ab|ddata, kdata; u,w). Notice that, in general,
conditioning on any given sequence d or k might yield sam-
ples A outside the high-density areas of the distribution. This
is a desirable feature, as it allows the user to further specify

constraints and sample hypergraphs that would otherwise be
far from the typical samples obtained without conditioning
[72].

Finally, with our model we can obtain closed-form expres-
sions for relevant hypergraph properties in terms of u and w,
e.g., the expected degree of nodes, as shown in Appendix A 1.
This means that, by tuning the u,w parameters, such prop-
erties can be specified prior to sampling. We illustrate some
examples of this procedure in Sec. IV.

IV. SYNTHETIC DATA

In this section, we illustrate how the generative parameters
u and w can be tuned to sample hypergraphs with desired
structures at a micro (node and hyperedge) and mesoscale
(community structure and hypergraph-level statistics) level.
We release ready-to-use examples of these synthetic datasets
along with the open-source implementation.

A. Community assignment

We begin by showing how varying the overlap in the
membership assignments u leads to different intra and inter-
commmunity structure. In Fig. 2 we tune the assignments
from hard (ui has only one nonzero entry) to soft (ui > 0
for multiple entries), and we highlight the strength of the
interactions between and within communities by varying the
thickness of edges and circles. We include additional details
on data and plot generation in Appendix F 1. As memberships
vary from hard to soft (left to right), edges become thicker
and circles smaller, as intercommunity (intracommunity) in-
teractions increase (decrease). Quantitatively, we compute the

(a) (b)

(c)

FIG. 2. Sampling hypergraphs with hard and soft community assignment. (a) We sample hypergraphs from a model with K = 5 equally
sized communities, an assortative affinity matrix w, and different node community memberships u (from hard to soft). The five vertices
represent different communities, the thicknesses of the edges and circles are proportional to the interaction strength between and within
communities, see Appendix F 1 for details. (b) The entropy of community memberships grows as increasingly overlapping configurations are
considered. (c) We show the maximum assignment ratio (the relative number of nodes belonging to the majority class for each hyperedge)
across hyperedge sizes. The set sizes are proportional to the amount of hyperedges with a given maximum assignment ratio.
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(a) (b)

FIG. 3. Sampling hypergraphs with assortative and disassortative affinity and heterogeneous community size. (a) We sample hypergraphs
with five communities of different sizes and hard membership assignments. We vary the affinity matrix w from assortative (left, diagonal) to
disassortative (right, uniform matrix filled with ones). The five vertices represent the communities, the thicknesses of the edges and circles
are proportional to the interaction strength between and within communities, respectively. (b) We vary the affinity w from diagonal (left) and
increase its entries w12, w21 (right) for K = 3 equally sized communities. The three vertices represent the communities and the thickness of the
edges and circles is proportional to the strength of the interactions between and within communities respectively, see Appendix F 1 for details.

entropy −∑K
k=1 rk log rk , where rk is the ratio of nodes be-

longing to community k. In mixed-membership settings, one
can extract a proxy for a hard assignment for node i by select-
ing the k = arg maxkuik ; we use this to compute rk . Lower
entropy denotes hyperedges whose nodes mostly belong to
the same communities, higher values denote hyperedges with
nodes distributed across different communities. In Fig. 2(b)
we show how the entropy of the community distribution grows
as we sample from increasingly overlapping models. We also
study the partition in communities of nodes belonging to
hyperedges of different sizes. For each hyperedge we com-
pute the ratio of nodes that belong to the majority class. For
example, in a hyperedge of size 5 with two nodes in class 1
and three in class 2, the majority class is 2, yielding a majority
class ratio of 3/5. Figure 2(c) shows how this ratio decreases
going from hard to soft memberships, illustrating the het-
erogeneity of the nodes’ communities across hyperedges of
different sizes.

B. Affinity matrix and heterogenous community size

While varying u acts on the propensity of individual nodes
to participate in groups, the affinity matrix w controls the
density of interactions within and between communities. The
generative model in Eq. (1) is well-defined for any non-
negative symmetric affinity matrix w, allowing simulating
various structures by properly tuning its entries. To illustrate
the generation of hypergraphs with different affinity matrices,
here we consider a range of matrices that start from diag-
onal (assortative) to gradually move to the uniform matrix
of ones (disassortative), and rescale them to obtain an ex-
pected degree of five. For simplicity we set the assignments
u to hard membership. The method is well suited to sam-
ple not only homogenous hypergraphs, but also higher-order
networks with heterogenous distribution of the community
size. Here we consider five communities with different sizes.
As shown in Fig. 3(a), moving from an assortative to a
disassortative configuration, the inter-community interactions
strengthen substantially. Further, notice that the strengths of
the interactions are influenced by the heterogeneity of the
community size, as larger communities are expected to par-
ticipate in more interactions.

It is also possible to tune individual entries of the affinity
matrix w. In particular, in Fig. 3(b) we perform an experiment
where we start from a diagonal matrix, and gradually increase
only the w12 (and w21) entries, using three equally sized

communities. In this way, only the expected interactions
between communities 1 and 2 are affected, while interactions
among other communities are left unchanged.

C. Analzying community detection

One of the most useful applications of generating synthetic
data with a desired underlying structure is the possibility to
evaluate how competing algorithms perform on a given task
that depends on the structure under control. In fact, when
synthetic data with a known structure is available, it is possible
to quantitatively compare the outcome of various algorithms
and measure their ability to recover ground truth information.
In network science, a classical and much investigated problem
is assessing the ability of community detection algorithms to
extract meaningful partitions of the network [7]. For higher-
order networks, the current lack of sampling methods for
synthetic data with flexible community structure has led to a
variety of custom-built examples, which renders comparison
difficult and subject to individual choices [46,50,73].

In this section, we show how our synthetic data can be
utilized to analyze the behavior of some of the current al-
gorithms for higher-order community detection. To this end,
we generate hypergraphs with assortative structure and hard
community assignments, and perform inference with a variety
of methods, namely Hy-MMSBM [67], Hypergraph-MT [46],
spectral clustering [74], and hypergraph modularity [50]. In
Fig. 4, we show the cosine similarity of the inferred commu-
nities with the ground truth as a function of the maximum
hyperedge size. As can be observed, Hy-MMSBM attains
the best performance when group interactions beyond a crit-
ical size are introduced, successfully recovering the ground
truth assignments. Hy-MMSBM is a flexible inference tool
whose inference procedure is based on the same generative
model described in Eq. (1), and generally able to extract
mixed-membership assignments for arbitrary (e.g., assorta-
tive or disassortative) community structure. Other algorithms
attain varying scores, which might be explained by the dif-
ferent assumptions of the underlying models. For example,
Hypergraph-MT is designed to extract overlapping commu-
nities, while spectral clustering can only be utilized for the
detection of hard assignments. As such, the latter can be
expected to perform well only in scenarios where interactions
are dictated by hard communities, while the former can be
employed when nodes may belong to more than one module.
Considerations of this type can be useful to compare the
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FIG. 4. Evaluating higher-order community detection algo-
rithms. We sample hypergraphs to test the ability of different
higher-order community detection algorithms to recover well-
defined planted partitions. We consider hypergraphs with N = 500
nodes, K = 3 equally sized assortative communities and hard assign-
ments. We plot the cosine similarity between the inferred partitions
and the ground truth as a function of the maximum hyperedge size.
Additional details on the data generation are given in Appendix F 2.

alignment of different algorithms with the data generation
procedure, which is expect to correlate with their performance
on such data. However, due to the additional optimization and
implicit bias of most algorithms, it is sometimes unclear to
know beforehand on what types of data each algorithm will
perform well empirically. We believe that synthetic data with
known ground-truth structure can provide useful diagnostic
and comparison tools in this direction.

Procedures like the one presented in this section can be
used to understand the limitations and strengths of differ-
ent algorithms, allowing researchers to effectively test new
proposals in different scenarios by varying the properties of
the samples generated with our method, e.g., the degree of
assortativity.

D. Computational cost

Our sampling method is highly efficient and computation-
ally scalable. We analyze the cost of our sampling strategy by
discussing the cost of the individual sampling steps. The first
step, consisting of sampling the degree and size sequences,
can be cheaply performed in O(N ) time. In fact, to sample the
d, k sequences we need to compute the mean and standard
deviations defined in the Central Limit Theorem, and thus
draw the sequences from the relative Gaussian distributions.
These operations have linear cost, see Appendix B 1. In the
second step we first combine the sampled d, k sequences into
a first hyperedge configuration, and successively mix the hy-
peredges via MCMC. Generally, while the number of Markov
chain steps needed for mixing is a function of N and |E | [75],
it is difficult to specify a pre-defined number. In Fig. 5, we
fix nb = 100 000 burn-in steps and ni = 20 000 intermediate
steps between samples, which is a default value we utilized
in most experiments. Nonetheless, the main cost we observe
in this case is that prior to MCMC, i.e., the producing the
first hyperedge configuration from the sequences. Empirically,

FIG. 5. Computational complexity and scalability. We plot the
computational cost of our sampling model for sparse hypergraphs as
a function of the system size N . Our model is highly efficient, as it
allows sampling of sparse hypergraphs of dimensions up to N = 105

nodes in less than one hour. We show results for hypergraphs with
fixed expected degree equal to 5, both for an exact (solid line with cir-
cles) and an approximate approach (dashed line with squares) based
on central limit theorem sampling of dyadic interactions. Here, we
utilize K = 5 communities and unconstrained maximum hyperedge
size D = N .

such step dominates the computational cost. Finally, the third
step consists of sampling the nonzero weights according to
p(A|Ab; u,w). The cost of this operation is proportional to the
number of hyperedges |E |; for sparse hypergraphs—and as
often observed in real data—this is comparable to N .

Empirically, we find the CLT approximations to be work-
ing well. Nevertheless, one could further improve on the
quality of sampling by drawing the pairwise edges from
their exact Poisson distribution [Eqs. (1) and (2)], with cost
O(N2), and resorting to approximations only for interactions
of order three or greater. This is of particular help when
sampling denser hypergraphs: since the MCMC does not nec-
essarily guarantee nonrepeated hyperedges, sampling directly
the order-two interactions reduces the probability of repeated
edges. For higher-order interactions, the probability of repeti-
tions is negligible, in particular in sparse regimes [53]. Indeed,
in all the experiments presented in this paper we sample the
order-two interactions directly, and resort to the CLT approx-
imations for hyperedges of order at least three.

In Fig. 5 we investigate the efficiency of both exact and
solely CLT-based sampling and observe the difference to be
negligible. As discussed above, this is a consequence of the
higher computational effort required in other sampling steps.
Altogether, our model is highly efficient, as it allows sampling
sparse hypergraphs of dimensions up to 105 nodes in less than
one hour.

V. REAL DATA

A. Modeling real-world systems

In this section we aim at sampling hypergraphs that mimic
the community structure of a given dataset. To this end, we
proceed as follows. First, we infer the affinity matrix w and
community assignments u using the Hypergraph-MT algo-
rithm [46] on the real data. Since this algorithm returns a
(diagonal) matrix wd for every possible hyperedge size d ,
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(a) (b)

(d)(c)

FIG. 6. Matching statistics of real-world data and samples: the case of the House Bills dataset We plot (a) the adjacency matrices, (b) the
hyperedge inclusions occurrences, (c) the hyperedge eigenvector centrality distribution and (d) the subhypergraph centrality distribution for the
House Bills dataset, where nodes represent congresspersons, and hyperedges describe subsets of them that cosponsor a bill. For all such cases,
we observe a good correspondence between the statistics measured on the real data and those obtained from a single sample of our generative
model.

we take their element-wise geometrical mean to construct the
matrix w utilized in Eq. (2). Notice that a similar approach
could have been taken utilizing the Hy-MMSBM algorithm,
which employs the same probabilistic model of our sam-
pling method, as explained in Sec. IV C. To highlight the
flexibility of our methodology, which can be applied along
with any community detection methodology, here we utilize
Hypergraph-MT. In fact, our method accepts input parameter
w and u regardless how these are obtained; in particular,
these can be obtained by using different inference methods
applied to the input data. Our method is capable of generating
synthetic data conditioning on the desired input communities
and affinity matrix. As such, it can be used in a complemen-
tary way together with community-based method focusing
solely on inference. Second, we condition the degree and
size sequences by providing in input the observed hyperedge
configuration, i.e., the hyperedges present in the real data. As
explained in Sec. III B, this means skipping the first step of our
sampling procedure and moving directly to perform MCMC
starting from such configuration. The returned hypergraphs
will have a structure similar to that of the data, but will be
sampled according to the generative model in Sec. II.

B. Comparing data and sample statistics

We now apply the proposed methodology on a variety
of real datasets. As a representative example, we consider a
dataset of cosponsoring of bills for the U.S. House of Repre-
sentatives [76,77]. Nodes correspond to congresspersons, and
hyperedges connect subsets of them that cosponsor a bill. The

dataset contains N = 1494 nodes, |E | = 54 933 hyperedges
with maximum size D = 399, and has been previously anal-
ysed via higher-order stochastic block models [46,50].

As a first sanity check, in Fig. 8 of the Appendix we verify
that the degree and size sequences measured on the samples
are identical to those of the data. This is guaranteed by the
properties of the reshuffling operator described in Sec. III.
We then proceed by comparing additional relevant statistics as
measured on the real data and on the samples. Such statistics
serve as a test for the goodness of fit, as they should match if
the dataset is well-represented by the model.

We start by performing a visual comparison of the adja-
cency matrices [15,78], where the adjacency value Xi j of any
two nodes i, j is defined as Xi j := ∑

e∈E :i, j∈e Ae . As shown in
Fig. 6(a), our samples are well aligned with the real data.

Another relevant structural property of a hypergraph is
the inclusion relationships between hyperedges, i.e., which
hyperedges are subsets of others [44]. This is of particular
interest when comparing a hypergraph with its clique expan-
sion, i.e., the graph obtained by projecting hyperedges onto
pairwise interactions, or when comparing with other higher-
order representations such as simplicial complexes [79,80]. In
Fig. 6(b), we count the number of hyperedges of size n that
are included in hyperedges of size n + 1. Also in this case,
results on our sample match well those measured on the input
dataset.

Finally, we explore two centrality measures on hyper-
graphs. As a first example, in Fig. 6(c) we consider a gener-
alization of eigenvector centrality [81] for hyperedges. In par-
ticular, we consider the dual representation of the hypergraph,
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(a) (b)

(d)(c)

FIG. 7. Hypergraph sample statistics, null hypothesis and generative assumptions. To illustrate the wide applicability of our model, we
compare several statistics on real and sampled data. We plot (a) the adjacency matrix of face-to-face higher-order interactions among students
in a High School dataset, (b) the eigenvector centrality distribution of copurchasing behavior at Walmart, (c) the subhypergraph centrality
distribution from committees data in the U.S. House. Similarly to the results presented in Fig. 6, our model correctly reproduces the desired
statistics. In panel (d) we show the adjacency matrix associated with covoting Justices of the U.S Supreme Court. Such data have a strong
temporal structure which is not included in the generative assumption of the model, hence explaining the limited correspondence between real
and synthetic statistics.

where nodes represent interactions in the original hypergraph
and are connected if they have a nonempty intersection [82].
Moreover, in Fig. 6(d) we also compute subhypergraph cen-
trality [78], which returns a measure of node importance in
hypergraphs. Also in such cases, the quantities measured on
our samples behave similarly to those based on the input data.

We highlight that the resemblance between samples and
real data is not simply due to the Markov Chain being stuck
in a local optimum given by the initial configuration, i.e.,
the real dataset. To prove this, we further investigate the
Markov Chain mixing while producing the samples based on
the House-Bills dataset. We observe that 73% of the shuffling
steps are accepted by the Metropolis-Hastings algorithm, sig-
naling good mixing. As an additional structural confirmation,
we measure the Jaccard similarity between the real data and
10 samples, defined as the number of hyperedges in the in-
tersection divided by the number of hyperedges in the union.
Also in this case, the resulting score of 0.69 ± 0.11 signals
that the microscopic structure of the samples detaches from
that of the real data, while the macroscopic statistics in Fig. 6
are preserved. Finally, we also observe that less structured
methods fail to replicate such statistics. In Appendix H we ob-
tain samples utilizing the configuration model from Chodrow
[53], which only takes into account the degree and size se-
quences. In this case, we observe a significant difference
between the samples and the data, which could be explained
by the lack of additional probabilistic structure in the sampling
procedure. In Appendix I we provide additional studies based

on synthetic samples, showing how these can be employed for
formalizing and carrying out hypothesis testing on complex
structural patterns.

To illustrate the wide applicability of our method, we ex-
tend this analysis to additional systems. In Fig. 7(a) we report
the observed adjacency matrix of face-to-face interactions
among High School students [83], and the one obtained from a
sample of our generative model. In Fig. 7(b) we show the dis-
tribution of the hyperedge eigenvector centrality computed on
copurchasing customer Walmart data [84]. Finally, in Fig. 7(c)
we compare the subhypergraph centrality on the House
Committees dataset [50,85], where hyperedges connect the
members of the U.S. House participating in the same commit-
tees. In all such cases, we observe that our sampling method
successfully models the desired statistics of the real data.

Synthetic data generated to incorporate a particular struc-
ture are often utilized as tests for null hypotheses. Indeed,
discrepancies between sampled and real data may arise if
some data features are not explicitly taken into account by
the generative assumptions of the model [86]. Observing such
differences can help unveil some relevant additional structure
present in the data and originally neglected. As an example,
we consider a dataset of covoting patterns of the U.S. Supreme
Court Justices, where the nodes are Justices and hyperedges
describe covoting behaviors observed from 1946 to 2019 [87].
Since the number of Justices is fixed to 9 at any point in time,
only interactions between Justices working in overlapping
years can exist. Such an intrinsic time dependency, however, is
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not enforced by our model. Hence, we do not expect samples
of our model to match the input adjacency matrix well. We il-
lustrate this in Fig. 7(d), where the comparison of the sampled
and observed adjacency matrices are distinctively different,
with the real data showing a clear time-dependence. Our ex-
ample illustrates the importance of correctly identifying the
existence of particular structures in real-world dataset, show-
casing how our sampling method could be used for testing null
hypotheses and reproducing real-world statistics.

VI. DISCUSSION

In this paper, we presented a framework for the gener-
ation of synthetic hypergraphs with flexible structure. Our
model allows specifying different assortative and disassorta-
tive mesoscale configurations, tuning the size of the different
communities and controlling the strengths of the interac-
tions among them. Moreover, it allows regulating different
node-level statistics, including hard or mixed community
assignments and expected degrees. Through a variety of ex-
periments, we showed how desired characteristics specified
via input parameters are reflected in the generated data.
Furthermore, we illustrated how practitioners can use our
framework on real systems, both as a computationally efficient
sampling tool for the replication of statistical measures, and as
a structured null model for hypothesis testing. As an example,
our model generates synthetic samples that successfully repli-
cate centrality measures and inclusions relationship between
hyperedges in higher-order data from different domains. Sim-
ilarly, our model can help reveal important missing features
in the generative assumptions made by different algorithms,
showing clear discrepancies between samples and real data
when, for instance, time dependence is ignored. Finally, our
framework allows testing the performance of different higher-
order community detection methods.

There are various interesting and relevant avenues for fu-
ture work. A first one is moving from the likelihood in Eq. (1),
which is based on a bilinear form, to one based on a multi-
linear form. Examples from the literature include symmetric
tensors [46] and affinity functions [50]. While in principle
this would allow for more flexible specifications, such as
preventing the formation of certain hyperedge configurations,
it is currently unclear how to obtain efficient expressions for
the expected statistics and compute the moments required in
the Central Limit Theorem. On a similar note, it is impor-
tant to highlight that ours is only one of different possible
definitions of community in hypergraphs. Studying the impli-
cations of different probabilistic and optimization procedures
on the communities observed in higher-order systems, both
theoretically and empirically, is a promising avenue for future
work. Moreover, additional information, such as time depen-
dency and attributes on the nodes and hyperedges, could be
explicitly incorporated in the probabilistic model. Such an
extension could be based on insights from models for dyadic
interactions, and result in substantial improvements when this
information correlates with the hypergraph structure [88–92].

Taken together, our methodology provides a principled,
scalable and flexible framework to sample structured hyper-
graphs. To facilitate its usage we provide an open-source

implementation at Ref. [71]. The method is also implemented
as part of the HGX library [93].
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APPENDIX A: THE PROBABILISTIC MODEL

We introduce some additional notation to that utilized in
Sec. II. Recall that the hyperedges are independent realiza-
tions with distribution

p(Ae; w, u) = Pois

(
Ae;

λe

κ|e|

)
∀e ∈ �,

where we define

λe :=
∑

i< j∈e

uT
i wu j . (A1)

To avoid clutter, we overload the notation and define, for any
hyperedge e, κe := κ|e|.

Furthermore, recall that � is the space of all possible
hyperedges of sizes from 2 to D. We also define, for any
hyperedge size d , the space of hyperedges of fixed size �d .
The function δ is the indicator function, taking value 1 if its
argument is true, 0 otherwise.

1. Expected statistics

Our model allows obtaining closed-form expressions for
the expectations of various relevant statistics. In the following,
we assume that u,w are fixed, show how to derive some of
these statistics and compute them in cheap linear time O(N ).
As explained in Sec. III B, having these statistics available is
useful to aid the tuning of u,w prior to sampling. We discuss
the choice of the functional form of κ in Appendix A 2.

a. Expected weighted degree of a node. We define the
weighted degree dw

i of a node i as the weighted number of
hyperedges it belongs to [15], that is

dw
i :=

∑
e∈E :i∈e

Ae =
∑

e∈�:i∈e

Ae,

due to the fact that Ae = 0 for nonexisting hyperedges Ae ∈
� \ E . Since Ae is a random variable, the degree of node i is
also random and has expectation

E
[
dw

i

] =
∑

e∈�:i∈e

E[Ae] =
∑

e∈�:i∈e

λe

κe

=
∑

e∈�:i∈e

1

κe

⎛
⎝ ∑

j∈e: j 
=i

uT
i wu j +

∑
j<m∈e: j,m,
=i

uT
j wum

⎞
⎠

=
∑

e∈�:i∈e

1

κe

∑
j∈e: j 
=i

uT
i wu j

+
∑

e∈�:i∈e

1

κe

∑
j<m∈e: j,m,
=i

uT
j wum
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=
∑

j∈V : j 
=i

[
D∑

n=2

(N−2
n−2

)
κn

]
uT

i wu j

+
∑

j<m∈V : j,m 
=i

[
D∑

n=3

(N−3
n−3

)
κn

]
uT

j wum

=
[

D∑
n=2

(N−2
n−2

)
κn

]⎡
⎣uT

i w

⎛
⎝ ∑

j∈V : j 
=i

u j

⎞
⎠

⎤
⎦

+
[

D∑
n=3

(N−3
n−3

)
κn

]⎡
⎣ ∑

j<m∈V : j,m 
=i

uT
j wum

⎤
⎦. (A2)

The step from the fourth to fifth row is justified by counting
the number of hyperedges of every size n (normalized by the
relative κn) where both nodes i and j are contained. Notice that
the second summand

∑
j<m∈V : j,m 
=i uT

j wum has computational
cost of O(N2). We can reduce this to O(N ) by making the
following general observation, which will also be used in
other derivations.

For any fixed set of nodes S and defining s := ∑
j∈S u j :

∑
j<m∈S

uT
j wum = 1

2

∑
j,m∈S, j 
=m

uT
j wum

= 1

2

⎛
⎝ ∑

j,m∈S

uT
j wum −

∑
j∈S

uT
j wu j

⎞
⎠

= 1

2

⎛
⎝∑

j∈S

∑
m∈S

uT
j wum −

∑
j∈S

uT
j wu j

⎞
⎠

= 1

2

⎛
⎝sT ws −

∑
j∈S

uT
j wu j

⎞
⎠. (A3)

Both these terms can be calculated in O(|S|).
In the case of the expected degree of node i, the second

summand of Eq. (A2) can be computed with S = V \ {i},
while the first summand can be directly computed in linear
time.

b. Expected weighted degree. This is the average weighted
degree of all the nodes in the network, and is given by

〈dw〉 = 1

N

∑
i∈V

E
[
dw

i

] = 1

N

∑
i∈V

∑
e∈�:i∈e

λe

κe

= 1

N

∑
e∈�

∑
i∈e

λe

κe
= 1

N

∑
e∈�

|e| λe

κe

= 1

N

∑
e∈�

|e|
κe

∑
i< j∈e

uT
i wu j

= 1

N

(
D∑

n=2

(
N − 2

n − 2

)
n

κn

) ∑
i< j∈V

uT
i wu j . (A4)

This quantity can be reduced to O(N ) cost by utilizing the
trick in Eq. (A3).

c. Accounting only for specified interactions. The statistics
described above can also be computed by taking into account
only interactions of a fixed size. For example, a user might be
interested in computing the expected degree of a node by con-
sidering only hyperedges of sizes up to a certain value, or only
for a fixed hyperedge size. These can be readily computed by
repeating the derivations above. For example, computing the
expected degree in Eq. (A4) only for hyperedges of sizes 2, 3,
or 4, we obtain

1

N

(
4∑

n=2

(
N − 2

n − 2

)
n

κn

) ∑
i< j∈V

uT
i wu j .

Notice that only the multiplicative constant
∑4

n=2

(N−2
n−2

)
n
κn

has
changed.

2. Choosing the normalization κn

The normalization constant κn rescales the probabilities of
the hyperedges of size n. This rescaling is needed to contrast
the effects of the high-dimensional configuration space �.
Removing the constant (i.e., setting κn ≡ 1 for all n) yields
exploding statistics due to the combinatorial factors appearing
for larger hyperedges; see, e.g., Eq. (A4).

While it is theoretically possible to sample from a model
with such κn values, the expected degree and size sequences
would not match those observed in real data. In all our exper-
iments we choose instead the following form for κn, in a way
that yields reasonable expected statistics:

κn := n(n − 1)

2

(
N − 2

n − 2

)
. (A5)

This expression satisfies two important properties. First, κ2 =
1, so that the probabilistic model restricted to binary inter-
actions is equivalent to the standard Poisson stochastic block
model, second, the expected degree in Eq. (A4) reduces to

〈dw〉 = 1

N

(
D−1∑
n=1

1

n

) ∑
i< j∈V

uT
i wu j .

This avoids combinatorial explosions in the expected degree,
and allows tuning the model based only on u,w.

The form (A5) has also a valid interpretation. The binomial(N−2
n−2

)
normalizes for the number of possible hyperedges of

size n that any two fixed nodes belong to (since one needs to
choose the remaining n − 2 nodes in the hyperedge among the
possible N − 2). The value n(n−1)

2 is the number of possible
binary interactions among n nodes, and is used to take the
average of the summands appearing in the expression (A1)
for the sufficient statistics: λe = ∑

i< j∈e uT
i wu j . We also note

that similar combinatorial expressions arise naturally in the
literature, due to the exploding configuration space [53,94].

While practitioners can make other possible choices with
similar properties, e.g., κn = (N−2

n−2

)
or κn = 2

n

(N−2
n−2

)
, we re-

mark that the methodology and the theory proposed in this
paper hold for any choice of κn > 0.

APPENDIX B: TECHNICAL DETAILS ABOUT SAMPLING

We include here all the technical details to approximately
sample from the probabilistic model. We start by giving some
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definitions, then we proceed to outline the three sampling
steps introduced in Sec. III. In the following, we consider
any fixed choice of parameters u,w. Notice also that all the
probabilities p(·) utilized in this section depend on u,w. To
avoid clutter, we implicitly assume this dependency in the
following derivations.

Definition. The unweighted (or binary) hypergraph is the
hypergraph with Ab ∈ {0, 1}|�| derived from the original
weights A ∈ N |�|. Formally:

Ab
e := δ(Ae > 0), ∀e ∈ �.

The binary degree sequence d is the degree sequence in the
binary hypergraph. In other words, it is the degree sequence
in the original hypergraph if we consider the hyperedges as
unweighted.

The sampling procedure is divided in three consecutive
steps:

(i) First, approximately sample the binary degree and size
sequences (d, k).

(ii) Second, sample the binary hypergraph Ab from
p(Ab|d, k). Notice that, since we sample a binary hypergraph,
hyperedges can only exist or not, i.e., Ab

e ∈ {0, 1} ∀e ∈ �.
(iii) Third, sample the weights of the final graph given the

binary one: p(A|Ab).
Why is this correct? We aim at sampling from p(A).

The procedure above corresponds instead to sampling from
p(A, Ab, d, k), so why is this correct? Notice that

A uniquely defines Ab,

Ab uniquely defines (d, k).

Thus, if all the sampled quantities A, Ab, d, k are compatible,
then we can observe that both the following equalities are true:

p(A, Ab, d, k) = p(Ab, d, k|A) p(A)

= p(A),

p(A, Ab, d, k) = p(A|Ab, d, k) p(Ab|d, k) p(d, k)

= p(A|Ab) p(Ab|d, k) p(d, k),

hence

p(A) = p(A|Ab) p(Ab|d, k) p(d, k).

Having verified the consistency of our sampling routine, we
now proceed to describe the three steps in more detail.

1. Sampling the binary degree and size sequences

The sequences d, k cannot be sampled exactly and ef-
ficiently. We propose instead an approximation based on a
version of the central limit theorem.

Consider the binary degree sequence d . For a node i, we
need to sample the number di of existing hyperedges that i
belongs to

di :=
∑

e∈�:i∈e

δ(Ae > 0). (B1)

Notice that the summands δ(Ae > 0) are independent
Bernoulli random variables with probability pe = 1 −

Pois(Ae = 0; λe/κe) = 1 − exp(− λe
κe

), therefore easy to sam-
ple one by one. Due to the exponential size of �, however,
sampling all of them is practically impossible.

Similarly, consider the size sequence k. For every hyper-
edge size � ∈ {2, . . . , D} (potentially up to D = N), we need
to sample the number k� of hyperedges of such size, defined
as

k� =
∑
e∈��

δ(Ae > 0),

where �� = {e ∈ � | |e| = �}.
The following theorem helps in approximately sampling

these quantities.
Theorem 1. Consider di, k� as defined above. Furthermore,

assume that u is bounded, i.e., ∃L > 0 : u < L, where the
inequality is intended element-wise. Then:

(a) For any hyperedge size � � 3, both di and k� satisfy the
assumptions of the Lyapunov Central Limit Theorem (see Ap-
pendix D for the statement). Thus, they can be approximately
sampled from a Gaussian.

(b) Furthermore, if we assume that the assignments u are
lower bounded away from zero, i.e., ∃ε > 0 s.t. u > ε, then
the statement above also holds for � = 2.

(c) To a first-degree approximation, we can compute the
mean and variance needed for the asymptotic Gaussian distri-
butions as

E[k�] ≈ Var(k�) ≈
∑
e∈��

λe

κe
, (B2)

E[di] ≈ Var(di ) ≈
∑

e∈�:i∈e

λe

κe
, (B3)

i.e., can be approximated by the weighted number of hyper-
edges and weighted degree.

The proof can be found in Appendix C. Practically, the
sampling proceeds as follows. First, we compute the theoret-
ical values in Eqs. (B2) and (B3), this can be done in linear
time similarly to the statistics in Appendix A 1. Then, we
separately sample d, k from Gaussian distributions with the
given means and variances. Since both sequences d, k need
to take integer values, we then round the samples element-
wise to the closest integer. Finally, we combine the sampled
sequences into a first list of hyperedges, representing a binary
(i.e., unweighted) hypergraph. We describe the recombining
algorithm in Appendix E.

2. Sampling the binary hypergraph

Once we condition on the binary degree and size se-
quences, we sample which hyperedges will be present in the
final hypergraph, i.e., all e ∈ � such that Ab

e = 1.
Formally, the conditional sampling of hyperedges can be

performed via the MCMC procedure introduced in Chodrow
et al. [53]. For this, we use a hyperedge reshuffling operator
to define the MCMC steps yielding a valid Markov chain
that preserves the initial d, k. The Markov chain starts from a
proposal list of hyperedges that is then modified at every step.
Notice that the main difference with the MCMC procedure
proposed in the original paper is that the acceptance-rejection
probabilities are based on our generative models, and hence
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they depend on the u,w parameters. Hence, we present next
how to compute such probabilities in detail.

During the MCMC, we start from two hyperedges e1, e2

and shuffle them to form two new hyperedges e′
1, e′

2. Impor-
tantly, one of the properties of the shuffle operator is that
|e1| = |e′

1| and |e2| = |e′
2|. The Metropolis-Hastings transition

probability to be computed is then

p(new configuration)

p(current configuration)

= p
(
Ae1 = 0

)
p
(
Ae2 = 0

)
p
(
Ae′

1
= 1

)
p
(
Ae′

2
= 1

)
p
(
Ae1 = 1

)
p
(
Ae2 = 1

)
p
(
Ae′

1
= 0

)
p
(
Ae′

2
= 0

)

=
(

exp
( λe′1

κe′1

) − 1
)(

exp
( λe′2

κe′2

) − 1
)

(
exp

( λe1
κe1

) − 1
)(

exp
( λe2

κe2

) − 1
) .

For some hyperedges it could happen that κe � λe, which
may lead to numerical instabilities, as over or underflows in
the exponentials (the same holds for the other hyperedges). To
mitigate this risk we compute all the λ and the κ in log-space.
Using the fact that ex − 1 ≈ x when x � 1, if we measure that
for a hyperedge e we have log κe − log λe > τ for a certain
threshold τ , then we apply the approximation

exp

(
λe

κe

)
− 1 ≈ λe

κe
.

In practice, when one among e1 and e′
1 (and similarly for

e2, e′
2) satisfies the above condition, then we approximate the

following ratio as

exp
( λe′1

κe′1

) − 1

exp
( λe1

κe1

) − 1
≈

( λe′1
κe′1

)
( λe1

κe1

) = λe′
1

λe1

,

where the last step is due to the fact that the hyperedges have
the same size, i.e., |e1| = |e′

1|. This avoids computing the κ

values.

3. Sampling the weights of the hypergraph

Finally, we need to sample the Poisson weights from
p(A|Ab). Provided that the Ab weights yield a sparse re-
alization, we only need to sample the weights of the few
hyperedges present, signalled by Ab = 1. Hence, we need to
sample from the distribution

P
(
Ae = n|Ab

e = 1
) = P (Ae = n|Ae > 0),

which is a zero-truncated Poisson distribution. Sampling from
such a distribution efficiently is not immediate, we propose a
solution based on inverse transform sampling [95] next.

Consider a Poisson random variable X ∼ Pois(λ). We aim
at sampling from the distribution of the random variable Y
defined as

Y := X |X > 0.

To this end, we compute the cumulative distribution function
(cdf) of Y . For any v ∈ N \ {0}

FY (v) = P (Y � v)

=
v∑

m=1

P (Y = m)

= 1

1 − e−λ

v∑
m=1

P (X = m)

= FX (v) − P (X = 0)

1 − e−λ

= FX (v) − e−λ

1 − e−λ
.

Its inverse, called inverse-cdf or percent-point-function, is
given for any p ∈ [0, 1] by

QY (p) = min {v ∈ N | p � FY (v)}

= min

{
v ∈ N | p � FX (v) − e−λ

1 − e−λ

}

= min{v ∈ N | e−λ + p(1 − e−λ) � FX (v)}
= QX (e−λ + p(1 − e−λ)). (B4)

Thus, one can sample from Y by drawing a uniform random
variable p ∼ Unif(0, 1) and computing QY (p) via Eq. (B4).
Crucially, this is cheap to compute (and simple to implement)
because it corresponds to the inverse-cdf of a Poisson distri-
bution.

APPENDIX C: PROOF OF THEOREM 1

Proof. The derivations for the binary degree and size se-
quences are very similar, for simplicity we only present a
proof for the size sequence k�, for any fixed possible value of
�. In the following, call Ie := δ(Ae > 0) and pe its Bernoulli
probability pe = 1 − exp(− λe

κ�
).

a. Lyapunov CLT for � � 3. A possible way to show that
the Lyapunov CLT applies, is to show that

lim
N→+∞

∑
e∈�� E[|Ie − E[Ie]|3](√∑

e∈�� Var(Ie)
)3 = 0. (C1)

First, observe that

lim
N→+∞

∑
e∈�� E[|Ie − E[Ie]|3](√∑

e∈�� Var(Ie)
)3

= lim
N→+∞

∑
e∈�� pe(1 − pe)

(
(1 − pe)2 + p2

e

)
(∑

e∈�� pe(1 − pe)
)3/2

� 2 lim
N→+∞

∑
e∈�� pe(1 − pe)(∑

e∈�� pe(1 − pe)
)3/2

= 2 lim
N→+∞

1(∑
e∈�� pe(1 − pe)

)1/2 .

Hence, proving that
∑

e∈�� pe(1 − pe) → +∞, means that
the Lyapunov condition in Eq. (C1) is satisfied. Due to the as-
sumption that the u are bounded, there exists some 0 < L′ < 1
such that pe < L′ for all e (recall that pe depends on u through
λe in Eq. (A1)). In the following derivation, let i, j ∈ V be two
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arbitrary nodes. Then,

∑
e∈��

pe(1 − pe)

� (1 − L′)
∑
e∈��

pe

� (1 − L′)
∑

e∈��:i, j∈e

pe

= (1 − L′)
∑

e∈��:i, j∈e

[
1 − exp

(
−

∑
l<m∈e uT

l wum

κ�

)]

� (1 − L′)
∑

e∈��:i, j∈e

[
1 − exp

(
−uT

i wu j

κ�

)]

= (1 − L′)
[

1 − exp

(
−uT

i wu j

κ�

)] ∑
e∈��:i, j∈e

1.

Finally, notice that
∑

e∈��:i, j∈e 1 → +∞ with N → +∞, due
to the fact that the number of hyperedges containing i, j tends
to infinity (if the hyperedge size � is at least 3).

b. Lyapunov CLT for � = 2. Here we also assume that u <

ε. Then there exists some L′′ > 0 s.t., for any two nodes m and
l , their interaction is bounded away from zero, i.e., uT

l wum >

L′′. Similarly to above, let i be an arbitrary node:

∑
e∈��

pe(1 − pe)

� (1 − L′)
∑

e∈��:i∈e

pe

= (1 − L′)
∑

e∈��:i∈e

[
1 − exp

(
−

∑
l<m∈e uT

l wum

κ�

)]

� (1 − L′)
∑

e∈��:i∈e

[
1 − exp

(
−L′′

κ�

)]

= (1 − L′)
[

1 − exp

(
−L′′

κ�

)] ∑
e∈��:i∈e

1.

Similar to the case for � � 3, the quantity
∑

e∈��:i∈e 1 tends to
infinity for diverging values of N .

c. Approximation of the statistics. The statistics E[k�] and
Var[k�] are hard to compute efficiently in closed form. How-
ever, we can approximate them using the fact that 1 − e−x ≈ x
and (1 − e−x ) e−x ≈ x, when x � 1. Then,

E[k�] =
∑
e∈��

1 − e− λe
κ� ≈

∑
e∈��

λe

κ�

,

Var(k�) =
∑
e∈��

(
1 − e− λe

κ�

)
e− λe

κ� ≈
∑
e∈��

λe

κ�

.

We expect these approximations to be valid when λe
κe

� 1.
This is a sparse regime attained when only few among all the
possible hyperedges are present and is a realistic assumption
in many practical applications.

APPENDIX D: LYAPUNOV CENTRAL LIMIT THEOREM

We state here the Lyapunov central limit theorem [96] that
we utilize in our main proof in Appendix C.

Theorem 2. Consider a sequence of independent random
variables {Xi}i∈N , and define μi := E[Xi], and σ 2

i := Var(Xi ).
Also, define

s2
n :=

n∑
i=0

σ 2
i .

If there exists some ε > 0 such that

lim
n→+∞

1

s2+ε
n

n∑
i=0

E[|Xi − μi|2+ε] = 0,

then the quantity

1

sn

n∑
i=0

(Xi − μi )

converges in distribution to a standard Gaussian random vari-
able.

APPENDIX E: A MATCHING ALGORITHM
FOR THE d, k SEQUENCES

After separately sampling the binary degree sequence d
and the size sequence k, as described in Appendix B 1, these
need to be combined to obtain a valid set of hyperedges.
However, given two arbitrary sequences d, k, there does not
necessarily exist a hypergraph that satisfies both. For example,
the average (unweighted) degree can be calculated both from
d and k; the two values obtained need to match. For this
reason, we need a “matching algorithm” to extract a set of
hyperedges that are consistent with both d, k. Notice that this
task in not straightforward. Indeed, also Chodrow [53]—who
first introduced the Markov chain shuffling procedure—had
to start the MCMC from a valid hyperedge list. The cur-
rently available implementation [97] can only replicate the
sequences of existing hypergraphs, but it is not clear how
to proceed from scratch with no initial data, thus reducing
the applicability of the method. Our work generalizes the
sampling to arbitrary starting sequences. This is a contribution
in-and-of-itself, as in principle this could be applied to other
sampling procedures with different underlying generative pro-
cesses than the one we described in Sec. II, as long as they
provide some initial d, k sequences.

Before presenting our method, we make some remarks.
First, sampling separately d, k assumes the approximation
p(d, k) ≈ p(d ) p(k). The matching procedure mitigates the
impact of this approximation, as it modifies one of the two
sequences should they not match. Second, it is possible to start
the MCMC directly from the hyperedge configuration of a real
hypergraph, as we illustrate in our experiments with real data
in Sec. V. This effectively corresponds to fixing the sequences
d, k to those of the data, which are necessarily consistent.
These are then preserved during MCMC while the hyperedges
are mixed. Hence, in this case there is no need for a matching
algorithm. We thus assume that a user would like to start from
a desired set of values for both quantities, without worrying
about their consistency.

We now describe our proposed matching algorithm. If there
exists at least one hypergraph with sequences d, k, then we
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Algorithm 2. Hyperedge construction from sequences.

Input: Degree sequence d , size sequence k, priority sequence
choice pr ∈ {degseq, dimseq}

Result: List of hyperedges L
> Iterate over hyperdge sizes and specified number

of such hyperedges

1 L = [ ]
2 for s = 2, . . . , D do
3 for j = 1, . . . , ki do
4 hye = ExtractHye(s, d, k, pr)
5 if len(hye) >1 then
6 L ← L + [hye]
7 end
8 end
9 end

> If the priority is the degree sequence, have all

nodes reach the required degree

> Call GeTwo the function counting the number of

nodes with nonzero degrees in the sequence

10 if pr = degseq then
> While there are at least two nodes with nonzero

remaining degree, produce hyperedges

11 while GeTwo(d) � 2 do
12 maxdim ← min(GeTwo(d), D)
13 s ← random{2, ..., maxdim}
14 hye ← ExtractHye(s, d, k, pr)
15 L ← L + [hye]
16 end
17 end

call d and k compatible. Our algorithm guarantees that, if
d, k are compatible, one hypergraph with such sequences will
be produced. If they are not compatible, however —as is the
case for most samples from Appendix B 1—then only one of
them can be preserved. For this reason, the user is required to
specify which sequence needs to be preserved; we refer to this
as the priority sequence. The algorithm dynamically modifies
d, k until exhaustion of the priority sequence, if the sequences
are compatible then no modification to the other sequence
will be made, as they will terminate together. Intuitively, our
algorithm works as follows. It extracts a hyperedge of a given
size from the nodes with the highest available degrees, until
exhaustion of the size sequence k. If k is the priority sequence
and no nodes are available, then random nodes are extracted
to satisfy the required hyperedge sizes, otherwise smaller
hyperedges might be produced. After exhaustion of the size
sequence, if d is still not exhausted, but it is the priority
sequence, then keep drawing hyperedges to exhaust d (even
if k is not preserved). The function described in Algorithm 3
draws the hyperedges and prioritizes d or k depending on the
priority sequence. We present a pseudocode description of the
matching algorithm in Algorithm 2.

APPENDIX F: GENERATION OF THE SYNTHETIC DATA

1. Synthetic data with varying properties

We include additional details about the data and plots gen-
erated in Secs. IV A and IV B.

Algorithm 3. ExtractHye.

Input: Hyperedeg size s, degree sequence d , size sequence k,
priority sequence choice pr ∈ {degseq, dimseq}

Result: A hyperedge hye.
The input d is modified in place.

> Extract one hyperedge while preserving the

degree or size sequence

1 if pr = degseq then
2 hye ← {s nodes v with the highest dv values.
3 If not enough nodes satisfy dv > 0, possibly return

less than s nodes}
4 end
5 else if pr = dimseq then
6 hye ← {s nodes v with the highest dv values.
7 If not enough nodes satisfy dv > 0,
8 select some random nodes with db

v = 0
9 untill s nodes are chosen.}
10 end

> Update the degree sequence by decreasing the

degree of the nodes selected

11 for v in hye do
12 if dv > 0 then
13 dv ← dv − 1
14 end
15 end

For the plots in Sec. IV A, we consider five equally sized
communities with a total of N = 100 nodes and a maximum
hyperedge size D = 10. For a node belonging to community
1 (and similarly for nodes belonging to other communities
2, 3, 4, and 5) we consider an initial hard assignment uhard

i =
(1, 0, 0, 0, 0) and parametrize with α a convex combination
given by

uα
i := α uhard

i + (1 − α) (1, 1, 1, 1, 1).

In all plots in Fig. 2, the x axis represents different decreasing
values of α: the value α = 1 represents a hard assignment,
and decreasing values move the membership towards a soft
membership. Notice also that, for every node i, the maxi-
mum community assignment doesn’t change with α: if uhard

i =
(1, 0, 0, 0, 0), then arg maxkuα

ik = 1 for all α > 0 (and simi-
larly for nodes belonging to other communities). The affinity
matrix w is the diagonal matrix of all ones, rescaled by a scalar
to keep the average degree fixed to 5 across configurations
of α.

For the plot in Fig. 2(a), we consider the strength of the
interactions within and between communities. Every one of
the five vertices represents one community. The thickness of
the edges between communities a and b is proportional to the
following quantity:

T (a, b) :=
∑
e∈E

Ae(e
2

) ∑
i< j∈e

δi∈aδ j∈b,

where δi∈a = 1 when node i belongs to community a, defined
as above a = arg maxkuik .

The thickness of the circles surrounding the five ver-
tices corresponds to the within-community interactions, i.e.,
T (a, a) for every community a.
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FIG. 8. Correspondence of the degree and size sequences be-
tween data and samples. We check for the correspondence between
the sequences of the samples and the original House Bills dataset,
which is utilized to initialize the MCMC procedure. Due to the
properties of the reshuffling operator, the sequences need to coincide.

2. Synthetic benchmark data

We include additional details for the generation of the data
utilized in Sec. IV C. We generate data with N = 500 nodes,
K = 3 equally sized communities, and hard community
assignments. The adjacency matrix w is the K × K identity
matrix. Additionally, we condition on a size sequence, i.e.,

the count of hyperedges per hyperedge dimension, given
by: {2: 500, 3: 400, 4: 400, 5: 400, 6: 600, 7:
700, 8: 800, 9: 900, 10: 1000, 11: 1100, 12:
1200, 13: 1300, 14: 1400, 15: 1500}. The expected
degree resulting from such a sequence is 248.6. Like for other
experiments, we utilize the default MCMC configuration of
nb = 100 000 burn-in steps and ni = 20 000 steps between
samples.

APPENDIX G: MATCHING SEQUENCES ON THE HOUSE
BILLS DATASET

In Fig. 8 we show the perfect correspondence between
the degree and size sequences as observed in the real data
and in the samples. As we initialize our sampling procedure
directly from the hyperedge configuration of the real data,
such correspondence is guaranteed by the properties of the
reshuffling operator.

APPENDIX H: STRUCTURAL MEASURES
FROM CONFIGURATION MODEL

For comparison, here we run the experiments in Sec. V B,
but create samples via the hypergraph configuration model
from Chodrow [53], as opposed to our method. The configura-
tion model takes a dataset and mixes its hyperedges preserving
the initial degree and size sequences. In this sense, it can be
seen as a less structured version of the method we propose
here. In Fig. 9, we show the adjacency matrix, hyperedge
inclusions, hyperedge eigenvector centrality, and subhyper-
graph centrality computed on samples based on the House

(a) (b)

(d)(c)

FIG. 9. Comparing the statistics on real data and samples obtained from the configuration model. We plot (a) the adjacency matrices, (b)
the hyperedge inclusions occurrences, (c) the hyperedge eigenvector centrality distribution, and (d) the subhypergraph centrality distribution
for the House Bills dataset. Here, samples are obtained via the hypergraph configuration model [53]. Due to less structure being incorporated
into the sampling procedure, samples and real data present substantial differences.
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Bills dataset. As can be observed, the samples obtained via
the configuration model have less resemblance to the original
dataset.

APPENDIX I: HYPOTHESIS TESTING
ON THE HOUSE BILLS DATASET

Synthetic samples allow carrying out statistical hypothesis
testing more formally. A common example is that of
testing whether modeling explicitly one or more structural
characteristics of the data allows explaining also other
macroscopic features that are not explicitly considered in the
modeling assumptions. We provide an example of such an
application here.

We consider the case of the House Bills dataset from
Sec. V B, and generate synthetic samples by explicitly mod-
eling the community structure (represented by the inferred
affinity matrix and membership vectors) and the degree and
size sequences. We test whether such features help to explain

also one that is not explicitly controlled: The average shortest
path length between any two nodes. To perform testing, we
collect the statistics from the generated samples, and perform
a Student’s t test to compare the sample population with the
real data. The p value of 1.5 × 10−4 rejects the null hypoth-
esis, implying that the average shortest path in the real data
falls outside the population observed in the samples.

Similarly, we proceed testing for similarity in the hyper-
edge eigenvector centrality between the data and the samples,
represented in Fig. 6(c). Here, we compute the overlap be-
tween the histograms of hyperedge eigenvector centralities
from the samples and the real data, and proceed similarly
by computing the overlap between pairs of samples. Com-
paring the two populations obtained yields a p value of
0.037: when considering a confidence interval of 99%, we
cannot reject the null hypothesis that these populations have
the same mean, confirming that the hyperedge eigenvec-
tor centrality is approximately recovered in the synthetic
samples.
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