PHYSICAL REVIEW E 109, 034307 (2024)

Ordering dynamics of nonlinear voter models

Lucfa S. Ramirez®,""" Federico Vazquez®,>" Maxi San Miguel ®,'-* and Tobias Galla'$
Unstituto de Fisica Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB),
Campus Universitat llles Balears, E-07122 Palma de Mallorca, Spain
2 Instituto de Cdlculo, F' CEYN, Universidad de Buenos Aires and CONICET,
Intendente Guiraldes 2160, Cero + Infinito, Buenos Aires C1428EGA, Argentina

® (Received 31 October 2023; accepted 14 February 2024; published 13 March 2024)

We study the ordering dynamics of nonlinear voter models with multiple states, also providing a discussion
of the two-state model. The rate with which an individual adopts an opinion scales as the gth power of the
number of the individual’s neighbors in that state. For ¢ > 1 the dynamics favor the opinion held by the most
agents. The ordering to consensus is driven by deterministic drift, and noise plays only a minor role. For ¢ < 1
the dynamics favors minority opinions, and for multistate models the ordering proceeds through a noise-driven
succession of metastable states. Unlike linear multistate systems, the nonlinear model cannot be reduced to an
effective two-state model. We find that the average density of active interfaces in the model with multiple opinion
states does not show a single exponential decay in time for ¢ < 1, again at variance with the linear model. This
highlights the special character of the conventional (linear) voter model, in which deterministic drift is absent. As
part of our analysis, we develop a pair approximation for the multistate model on graphs, valid for any positive
real value of ¢, improving on previous approximations for nonlinear two-state voter models.
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I. INTRODUCTION

The voter model (VM) is a popular mathematical model,
inspired by opinion dynamics and social interactions [1-6].
One focus of interest is if consensus emerges from the imita-
tion dynamics of the VM, or if diversity prevails.

The VM describes a set of agents represented as nodes
in a contact network. In the simplest setting, each agent is
characterized by a binary opinion state. At each time step, an
agent is selected at random and adopts the opinion of one of
its neighbors. The neighbor is also selected randomly. With
these dynamics, the model has two absorbing states. In these
states consensus has been reached, that is, all agents hold
the same opinion. Therefore, no more opinion changes are
possible through imitation.

The simple two-state VM is a starting point for more
complex opinion dynamics models. Its simplicity allows for
multiple variations that capture different features of social
interaction [1-3]. One of these is the inclusion of “noise,”
that is, agents can spontaneously change their opinion [7-9].
Noisy VMs are closely related to the Kirman model of herding
in financial markets [10]. Further extensions of the basic VM
include models with more than two opinion states [11-21].
In some of these models the opinion states are equivalent to
one another in the sense that no opinion has any preferen-
tial status over another [11-16]. In other multistate models
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the different options are not equivalent [17-21]. The basic
VM can also be extended to include nonlinear interactions
[22-32].

It is of particular interest to physicists how these differ-
ent features affect the ordering dynamics, and in particular
quantities such as the time to reach consensus in finite sys-
tems [1-3,33-37]. A typical order parameter for the study of
ordering dynamics and the path to consensus is the density
of “active links.” A link in the interaction network is said to
be “active” if it connects agents who are in different opinion
states. In the binary VM, the mean density of active links can
be shown to have an exponential decay in time, both for mod-
els with complete interaction graphs [33] and on uncorrelated
graphs [36]. This exponential decay has a characteristic time,
7, that depends on the system size N and on the graph. For in-
stance, T ~ N for the complete graph (CG), and Erd6s-Rényi
networks (ER) [36,38] and T ~ N/In N for Barabdsi-Albert
(BA) graphs [36,37]. Recently, some of the current authors
showed that the density of active links decays exponentially
also in multistate VMs [14]. The decay times were found to
be the same as in the binary VM.

In this paper, we focus on nonlinear voter models
(NLVMs). The word nonlinear is here to be interpreted as fol-
lows: In the standard (linear) VM the probability with which
an agent changes to a particular opinion state is proportional
to the fraction of its neighbors in that state. In the NLVMs
this probability is instead a nonlinear function of the fraction
of neighbors in a particular state [22,23]. Specifically, we
consider settings in which the probability of switching to a
particular opinion state is proportional to the gth power of the
fraction of neighbors in that state. For ¢ = 1, this reduces to
the linear VM.

©2024 American Physical Society
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In much of the recent work on the NLVM [16,24-28] ¢
takes positive integer values. In this case the dynamics can
be interpreted as follows: A node consults with a panel of ¢
agents, selected at random from its neighbors (with replace-
ment). If all g neighbors agree with one another and are in a
state that is different from that of the focal agent, the focal
agent takes on that opinion. However, more generally, one can
consider ¢ as a mathematical parameter taking any positive
real value [29-32,39] as we do in this paper. In this second
wider interpretation, also used in social impact theory [40],
g measures the nonlinear effect of local majorities, which
is qualitatively different for ¢ < 1 or ¢ > 1. The distinction
between these two regimes is one key aspect of the present
work.

The main objective of this paper is to characterize the
dynamics of NLVM with multiple opinion states, and for
general values of the parameter g. While the linear multistate
VM (¢ = 1) can be reduced to an effective binary VM for
many purposes [3,12,14], this is not the case for the mul-
tistate NLVM (as we will show below). Consequently, one
can expect multistate NLVMs to behave quite differently than
their two-state counterparts. We will explore these differences
both at the level of individual realizations and as an ensemble
average.

The remainder of the paper is organized as follows. In
Sec. II we define the multistate NLVM model, and we in-
troduce the main macroscopic quantities of interest. We also
highlight some of the behavior of the models ¢ < 1, ¢ =1,
and g > 1. Section III focuses on the dynamics on complete
interaction graphs for the case of two opinion states. We here
summarize existing results but also present additional per-
spectives. The focus of Sec. IV is on a multistate model with
all-to-all interaction. We study both individual realizations
and the ensemble average, characterizing the time evolution
of different quantities by means of numerical simulations and
a mean-field approach. Section V deals with the dynamics
of the binary model on complex networks by means of the
pair approximation. In Sec. VI we then investigate the mul-
tistate model on complex networks and develop an analytical
description within the pair approximation. Finally, Sec. VII
contains a summary and our conclusions. Further details of
our analysis can be found in the Appendixes.

II. MODEL DEFINITIONS

A. Setup and notation

The model describes a population of N individuals who can
each be in one of M discrete states (the “opinions”). Individ-

uals are labeled i =1,...,N, and states e = 1, ..., M. The
variable s;(t) € {1, ..., M} represents the state of individual i
at time 7.

The individuals are located at the nodes of a static undi-
rected interaction network, and each individual can interact
with its nearest neighbors. We use the notation c¢;; for the
adjacency matrix, with ¢;; = c¢;; = 1 if individuals i and j are
neighbors, and ¢;; = c¢;; = 0 if they are not. We also set ¢; =
0. We write j € i to indicate that j is among the neighbors of i.
The degree of individual i is denoted by k; (k; = Y ;i Ci 7). The
total number of links in the graphis E =) ,_.¢;;. Ina CG,

i<j

i.e., a model with all-to-all interactions (c;; = 1 for all i # j),
we have E = N(N — 1)/2.

We denote the number of individuals holding opinion « by
ny, and we write n(t) = [ny(¢), ..., ny(¢)]. We also introduce
Xy = ny /N as the fraction of individuals in opinion state .

Throughout the paper we use the notation (. ..) to indicate
averages over realizations of the dynamics.

B. Dynamics and transition rates

In the most common setup of the VM, individuals change
their opinion through an imitation process. The dynamics
consists of the following two steps: (i) randomly select an
individual i, then (ii) randomly select a neighbor j € i, and
if the two individuals are in different states, i will copy the
state of j.

In a continuous-time setting of the basic VM the rate at
which individual i adopts opinion state « is given by

ni,ot

EO{Z_’ 1
: a )]

Ny = Z Ss‘,v,a (2)

jei

where

is the number of neighbors of node i who are in opinion state
o (8 is the Kronecker delta). The rate for i to change to « is
thus linear in n;,.

We consider a nonlinear version of these dynamics with
group interaction. Instead of copying the state of a randomly
selected neighbor, the rate of changing into state « is propor-
tional to the gth power of the density of neighbors in state «.

Mathematically (and again assuming time is continuous),
the rate with which individual i adopts opinion state « is

N« 1
Ti,a = (?) . (3)

These rates define the multistate nonlinear voter model (mul-
tistate NLVM). For g = 1 this reduces to the conventional
(linear) multistate VM.

C. Density of active links

Each link in the interaction network is either “active” or
“inactive” at any given time. A link (7, j) is considered active
when the two nodes it connects are in different states (s; # s,);
otherwise, the link is inactive.

We define the fraction of links of type «f,

1
Pap = E Zcij(as,-.ot(ss,-,ﬂ + 65‘}',(){85‘[,/3)5 (4)
i<j

for o # B. The total density of active links in the system is

then
1
p=D pap =17 D i1 =8y 5)

a<f i<j

D. Significance of the parameter ¢

In our model, the parameter g can take any positive real
value. This reflects nonlinear interactions as considered for
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FIG. 1. Density of active links in individual realizations of the multistate NLVM on complete graphs with system size N = 1000 and with
initially three opinions (M = 3). (a) g = 0.5, (b) ¢ = 1 (linear VM), and (c) g = 2. Each of the colored curves in the different panels represents
one realization. The dashed line indicates the initial density of active links (p = 2/3) for balanced initial conditions.

example in social impact theory [40] and in problems of
language competition [39,41,42].

Very different dynamics are expected forg < 1 and g > 1,
respectively. Relative to the linear model, values of g < 1
favor coexistence in the two-state nonlinear VM, and one finds
long-lived metastable states. On the other hand, consensus
is promoted for g > 1. For further details see, for example,
[29,39].

An illustration of the behavior of multistate nonlinear VMs
can be found in Fig. 1. We show how the density of active
links evolves in time in different realizations of the model on
a complete graph and with initially M = 3 opinion states. All
realizations were initialized with what we will call “balanced”
initial conditions, that is to say, at # = 0 a third of the agents
hold each of the three opinion states.

For g = 0.5 [Fig. 1(a)] we find that the density of active
links goes through cascades of plateaux for each realization.
Initially all realizations start with three opinion states and
remain near p ~ 2/3. The different realizations reside at this
initial plateau for different amounts of time. All realizations
eventually transit to an intermediate plateau at p =~ 0.5 and
eventually end at a consensus state. The times at which this
intermediate plateau is reached varies across realizations, as
does the departure time. In the linear VM ¢ = 1, [Fig. 1(b)]
realizations also go through intermediate plateaux, but the
value of the density of active links at each plateau differs
from realization to realization [14]. Figure 1(c) finally is for
q = 2. No plateaux are observed, and the path to consensus
appears far less noisy than in Figs. 1(a) and 1(b). We note
though that the time of departure from the initial density of
active links (p = 2/3) varies across realizations in Fig. 1(c).
We also highlight that, despite the larger size of the network in
Fig. 1(c), the time to consensus is much shorter than for g < 1
[Fig. 1(a)].

E. Master equation for the model on a complete graph

When any node can interact with any other node, the po-
sition of an individual on the interaction network becomes
irrelevant. The state of the system is fully described by the
vectorn = (ny, ..., ny).

The rates in Eq. (3) then reduce to

ng \?
T;'.,ot:(N_l>’ (6)

assuming node i is not already in state «. The total rate for
conversion of individuals in state 8 to state « in the population
is

q
Thoa(m) = ng ( N"j 1) . (7)

The time evolution of the probability P(n) of finding the
system in state n fulfils the master equation

d
P = ;(EQE,;I — D[Tams p(m)P(n)]. ®)

We have here defined the raising operator E,. It acts on func-
tions of n increasing the argument n, by one, i.e., we have
Ey.f(m) = f(ny,...,ne + 1, ..., ny). The inverse operator is
written as E '

III. TWO-STATE NLVM WITH ALL-TO-ALL
INTERACTIONS

In this section we focus on the model with M = 2 opinion
states on complete interaction graphs [25,32,39]. We review
the setup, the resulting rate equations, and their fixed-point
structure. We also present an estimate of the time to consensus
for ¢ < 1, based on an Arrhenius law for the escape from the
minimum of a potential. Further, we present a more detailed
analytical study of the special cases ¢ = 2 and g = 3.

A. Rate equations and different dynamical regimes
forg <1l,g=1,and g > 1

If there are only two opinion states (« = 1, 2), then the
state of the system on a CG is fully specified by the number n
of individuals in opinion state 1. All remaining N — n agents
have opinion 2. Alternatively (and using the analogy with spin
systems), the state of the system can be characterized by the
magnetization m = 2(n/N) — 1.
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FIG. 2. Upper panel: Illustration of the fixed-point structure of
the rate equation (10) for the two-state NLVM, forg < 1 and ¢ > 1,
respectively. Full symbols represent stable fixed points, open sym-
bols stand for unstable fixed points. Lower panel: Potential V (x) in
Eq. (12), for different values of g.

Events in the population either increase or decrease the
state of the system n by one. The rates 7, for these events
can be read off from Eq. (7),

n \? __ (N-n a
(N—n)( _1> s T, _n(N—l)' )

The states n = 0 and n = N are absorbing.
In the limit of an infinite population (N — o0) one finds
the rate equation

Xx=(1—-x)x?—x(1—-x)1, (10)

where x = n/N is the proportion of agents in opinion state 1.
The density of active links in the model with two states on a
CGis p = 2x(1 —x).

The fixed points of Eq. (10) are x* =0, x* = 1 and x* =
1/2. It is useful to write Eq. (10) in the form

d av
dx _ V&) (1)
dt ox
with the potential
Vi = B2 A0 1
(¢+2)
(g+1) 1 —x)eth 1
LY 4 (1 - ) ] 1)
(g+1)

A Landau expansion of this potential is given in [39]. The
fixed points correspond to the extrema of V (x).

We can now distinguish different regimes, depending on
the value of the exponent ¢, as illustrated in Fig. 2.

For g < 1 the central fixed point x* = 1/2 is linearly stable
and a minimum of the potential. The remaining two fixed
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FIG. 3. Time evolution of individual realizations of the two-state
(M = 2) NLVM on complete graphs (N = 200). (a) Different re-
alizations for ¢ = 0.9. All runs are seen to remain near x ~ 1/2
for significant amounts of time until finite-size fluctuations take the
system to consensus. (b) Density of active links for the realizations
in panel (a).

points are unstable (maxima of the potential). Infinite pop-
ulations started from any 0 < x < 1 will therefore converge
to x* = 1/2, and remain there indefinitely. Finite populations
first fluctuate around the deterministic fixed point x* = 1/2,
and are then taken to consensus by a sudden finite-size fluctu-
ation as illustrated in Fig. 3. As we will discuss in more detail
below the time to consensus increases exponentially with N
(Arrhenius law). We determine an approximate scaling of the
mean consensus time in Sec. IIID.

For g > 1 stability is reversed (Fig. 2). The central fixed
point x* = 1/2 is unstable and a maximum of the potential,
and the consensus states x* = 0 and x* = 1 are linearly stable
minima. Deterministic drift thus pulls the system towards one
of the absorbing states. Intrinsic fluctuations in finite popula-
tions are largely irrelevant in this case (except perhaps during
the initial departure from the region near the unstable fixed
point), and trajectories of the stochastic system approach con-
sensus relatively quickly as shown in Fig. 4. The mean time
to reach consensus grows logarithmically with the population
size N, as we will describe in more detail in Sec. III B.

We highlight the special case g = 1; the model then
reduces to the conventional (linear) two-state VM. The right-
hand side (RHS) of Eq. (10) vanishes in this case, and we have
x =0 and V(x) = 0. Any initial state x is marginally stable,
leading to a conservation of the average magnetization [43].

B. Further analysis forg =2 and g =3
1. Average density of active links

We now study the special cases ¢ = 2 and g = 3 respec-
tively. Analytical progress is then possible.
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FIG. 4. Behavior of the two-state NLVM with ¢ > 1 on complete
graphs. (a), (b) Time evolution of the fraction of agents with opinion
1, x, and the density of active links p, respectively, in individual
realizations (N = 4000). (c) Average density of active links, (p), in
a system of size N = 10* for ¢ = 2 and 3, and different initial con-
ditions, as indicated. Averages are over 10* independent realizations.
The solid curves are the analytical prediction from Eq. (15).

For g = 2, Eq. (10) becomes
x=x(1-x)2x —1), (13)

and the evolution of the density of active links p = 2x(1 — x)
fulfills

p=—p(—2p). (14)
The solution with initial condition p(t = 0) = pq is
£0
2p0 + (1 —2pg)e’
Surprisingly, the rate equation for x for ¢ = 3 turns out to be
identical to that for the case g = 2 [Eq. (13)], and, therefore,
the evolution of p is also given by Eq. (15) when g = 3.
Equation (15) indicates that the density of active links p
decays exponentially, except for the initial condition x = 1/2

(leading to py = 1/2). In this latter case x and p remain at
their initial values indefinitely. This is a consequence of the

p(t) = 5)

- 14
304 s
_—101
[ g
25 4 LA B LA B A A
PoN/2(1-2p)] 10° 10° 00 g &

T T LA LI | T T
10° 104 N 10°

FIG. 5. Mean consensus time 7 vs system size N for the M =
2 NLVM on a CG, for g =2 (squares) and ¢ = 3 (triangles), and
different initial conditions xo = 0.5, 0.55, 0.60, and 0.75 (from top to
bottom). Averages were obtained from 10* independent realizations.
Solid straight lines are the analytical approximation from Eq. (17),
while the dashed straight line shows the approximation 7 &~ 21InN,
valid for xy = 1/2. The slope for xo = 0.5 is twice as large as for the
cases with xy # 0.5. Inset: Collapse plot for xo # 0.5. The horizontal
axis has been scaled by the factor py/2(1 — 2p)).

symmetry between the two opinion states, and a valid de-
scription only on average (over realizations). In any single
realization of a finite system fluctuations will break the sym-
metry, and the system will eventually reach consensus.

In Fig. 4(c) we compare the analytical approximation from
Eq. (15), derived in the limit N — oo, with the average value
of p over several realizations of the dynamics, for ¢ = 2 and
q=3.

2. Mean time to consensus

Equation (15) can also be used to construct a rough es-
timate of the mean consensus time 7. To do this, we assume
that the system has reached consensus when either x < 1/N or
x > 1 — 1/N, that s, the minority opinion is (on average) only
represented by less than one individual. Using p = 2x(1 — x)
this translates into p < py = (1 — ). The subscript 1 indi-
cates that this is the density of active links when all but one
agent are in the same opinion state.

We use the time T at which the solution of Eq. (15) takes

the value p; as an estimate of the consensus time. We obtain

poN(N —4 4+ 4/N)
| = . (16)
2(1 = 2pp)(N — 1)
For N > 1 this can further be approximated,
N
o ~In [—p(’ } (17)
2(1 = 2p9)

This leads to 7y =~ In N for large N.
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In Fig. 5 we plot 7, as measured in simulations, as a func-
tion of N for different initial conditions xy. We find that the
approximate expression from Eq. (17) (solid lines) captures
the behavior of T with N observed in simulations (symbols)
and for various initial conditions xy # 1/2 (leading to py <
1/2). We find that results from simulations are consistently
higher by approximately 0.5 units of time compared to the
analytical estimate for all values of N shown. We attribute
this to the fact that some additional time is needed to reach
consensus from the point at which the minority consists of
one agent (we used the latter to obtain our analytical estimate
of 7).

The initial condition py = 1/2 (xo = 1/2) needs to be
treated separately. In simulations we find the approximate
scaling T ~ 2In N (blue symbols in Fig. 5), i.e., for large N
the consensus time with initial symmetric conditions is twice
as large as that for an asymmetric starting point. A similar
result was found for the majority rule model in Ref. [44]. This
scaling can be found analytically (blue dashed line) by setting
po = 1/2—2/N (x = 1/2 4+ 1/+/N) as the initial condition in
Eq. (17), leadingto t ~ 21In N for N > 1.

We emphasize that for the present cases (g = 2 and g = 3)
the initial escape is from the vicinity of a linearly unstable
state pp = 1/2. Our results agree with a more general result
for a decay from an unstable state in which 7 o In €~ !, where
€ is the variance of the noise acting on the system [45,46]. For
the present model we have € o< 1/N.

C. Quasilinear dynamics (g = 1)

It is further interesting to analyze the model in the param-
eter region g > 1, but very close to the linear case g = 1. To
do this we expand the RHS of Eq. (10) in powers of ¢ — 1. To
leading order the RHS is zero (conventional linear two-state

VM), and to subleading order we find
X
) . (18)
1 —x
From this one obtains

ela= -1
X(1) = [1+<1_x°) } (19)
X0

to be supplemented by an initial condition xj at time zero. For
q = 1 this reduces to x(¢) = xp forallt > 0.

For g > 1 and xy > 1/2 the solution in Eq. (19) approaches
the asymptotic value x =1 as r+ — oo, albeit very slowly
because g — 1 is small. For xy < 1/2 the solution approaches
x=0.

Focusing on xgp < 1/2 and assuming that the system
reaches consensus at a time t; for which x(7;) = 1/N we find
the following estimate for the mean consensus time:

x=(q— 1x(1 —x)ln(

1 InN
~ In
(g—1) In (F_M)

X0

T for N > 1. (20)

We recall that we have assumed that g — 1 is positive but small
to derive Eq. (18).

We have investigated the scaling of the consensus time
with N in simulations, results are shown in Fig. 6. We do not

4000
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7 8 9 10 11
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1000t . . .
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In(In(V))

FIG. 6. Mean consensus time 7 vs In/N (a) and vs In(InN) (b).
Data are from simulations for ¢ = 1.01, starting from the initial
condition xy = 0.4. Dotted lines are guides to the eye.

suggest that the figure provides clear verification of the
In(In N) scaling predicted by Eq. (20). Nonetheless we ob-
serve a slight downward bend in Fig. 6(a) where the horizontal
axis shows In(N). This bend is less pronounced in Fig. 6(b),
where 7 is plotted as a function of In(In N). This is an in-
dication that the predicted In(In N) scaling might be more
consistent with the data than a simple In N dependence.

D. Sublinear dynamics (g < 1)

When g < 1 the two-state model quickly reaches a long-
lived state in which densities fluctuate around x = 1/2 (see
Sec. III A). Consensus at x = 0 or x = 1 is eventually reached
by finite-size fluctuations.

An approximate expression for the behavior of the mean
consensus time t with ¢ and N can be obtained from the
Arrhenius formula, which predicts that the mean time for a
stochastic process with noise of variance D to overcome a
potential barrier of height AV will be proportional to ¢*"/?
(see, for instance, [47]).

Using this, the mean consensus time in the two-state
NLVM for a fixed g can be expected to be of the form t =
KelVo=0-VG=1/DI/D \where K is a constant to be determined,
and V(x = 0) — V(x = 1/2) is the height of the barrier given
by the potential V (x) of Eq. (12) [see Fig. 2(c)]. The diffu-
sion coefficient D can be obtained from the Fokker-Planck
equation for the model, which in turn can be derived from
the master equation (50) for M = 2 by means of a Kramers-
Moyal expansion in the limit of large but finite N [47]. We
find

OP(x,t)  O(F@P(x,1)  d(DE)P(x,1))
a dx + 9x2

. @D

where P(x,t) is the probability distribution for the model,
written in terms of x. The functions F(x) and D(x) are the
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FIG. 7. Mean consensus time t vs system size N for the two-
state NLVM on a complete graph. Averages are over 103 realizations,
starting from the initial condition xy = 0.5. The solid lines are from
the analytical approximation Eq. (25) adjusted by a factor K(q) to fit
the data.
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drift and diffusion terms, respectively. Those terms are given
by the transition rates in Eq. (9) as F(x) =[T~ —T*1/N
and D(x) = [T~ + TT1/(2N?), where the rates 7= are to be
evaluated at the point n = xN. We find

Fx) =x(1 —x)7 — (1 —x)x? (22)

and
(1 —x)x? 4+ x(1 —x)?
2N '

The drift term F(x) is also the RHS of Eq. (10).

We note that the Arrhenius formula is valid for a diffusion
coefficient D that is independent of x, while for the present
model the diffusion coefficient resulting from a Kramers-
Moyal expansion depends on the state of the system. We
use the constant value D = 1[D(0) + D(1/2)] = [29+DN]~!
as an approximation in the Arrhenius formula. Further, from
Eq. (12) we obtain

D(x) = (23)

[1—29]  [1—2@+D]
(g+ 124  (g+2)26+D"

Putting everything together, we find the approximation

<{2[1—2q] [1—2<q+1>]} )
T =K(q)exp|2 — N1, (25

AV =V(0) - V(1/2) =

(24)

(g+1) (g+2)

where K (q) is a prefactor, which would need to be determined
separately. This result is tested against simulations in Fig. 7,
where we see that Eq. (25) captures the right scaling behavior
of t with N for different values of ¢ < 1.

If we assume that the transition from the metastable state at
q < 1to consensus is a Poisson process taking place with rate
1/7, and taking into account that p &~ 1/2 in the metastable
state, then we expect that the ensemble-averaged density of
active links follows the exponential decay

(o) (1) ~ 37" (26)

=07, M=2
o N=12,1=13
o N=24,1=103
N=36,1=2850

<p>
0.1+
I / T T
0.0 t 0.5 1.0
0.01 - | - | |
0 500 1000 1500
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FIG. 8. Time evolution of the ensemble averaged density of
active links in the two-state model on complete graphs, for ¢ =
0.7. Symbols are from simulations, lines are the approximation in
Eq. (26), with the numerical values of T obtained from simulations
(see Fig. 7). The inset shows the same data, but plotted as a function
of t/t. The full line is the approximation from Eq. (26), while the
dashed line is an exponential fit for the case ¢ = 0.9, and propor-
tional to e~"/(©9%),

In the main panel of Fig. 8 we plot (po(¢)) for ¢ = 0.7 and
three different system sizes. We see the approximation from
Eq. (26) fits the data quite well. The inset shows p for g = 0.5,
0.7, and 0.9 plotted against # /. We find good collapse of the
curves for ¢ = 0.5 and 0.7, while there is a small deviation in
the slope for ¢ = 0.9. This discrepancy is likely due to the fact
that the potential V (x) becomes increasingly more shallow
near g = 1, so that the Arrhenius law no longer applies.

In summary, while the true stationary solution of the two-
state models consists of two delta peaks at the absorbing
states, we find long-lived metastable states for ¢ < 1, with
a lifetime that grows exponentially with N. These long-lived
states are centered on x = 0.5, and fluctuations about this
point can be described by a quasistationary distribution (QSD)
[48-50]. This distribution characterizes the system on the
timescale given by Eq. (25).

In terms of the original variable n, one can define the
distribution Q(n, t) = P(n,t|0 < n < N), that is, the distribu-
tion of n at time ¢, conditioned on the fact that the process
has not reached absorption by that time. The QSD, Q(n), is
the long-time limit of Q(n,t), and can be obtained as the
stationary solution of a modified master equation [49,50]. In
simulations, the QSD can be measured by averaging only
over realizations that have not reached the absorbing states.
Figure 9 shows results for the QSD for the two-state model
on complete graphs and for different values of the parameter
q. The calculation of the QSD from a master equation [49]
gives an overall good description of the results form numerical
simulations.
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FIG. 9. Quasistationary probability distribution for the two-state
NLVM on a complete graph (N = 100), for different values ¢ < 1.
Full lines correspond to the QSD obtained from the numerical in-
tegration of a modified master equation [49,50]. Symbols are from
simulations.

IV. MULTISTATE NLVM MODEL ON COMPLETE GRAPHS

A. Reduction to an effective two-state model
is not possible for g # 1

The dynamics of the linear model (¢ = 1) with M opinion
states can, for many purposes, be reduced to that of a two-state
model; see, e.g., [3,12,14]. Similar ideas are also used in popu-
lation genetics [51,52]. To carry out the reduction one focuses
on one opinion state «. The rate at with which individuals
switch out of this state on a complete graph is then given by

N — o
G B @)
o N — N -1

The rate of individuals changing into state « is given by the
same expression. This results in an effective model distin-
guishing only between two types of agents, those in state o
and those in any state that is different from «. The resulting
two-state model can then be used to predict the dynamics until
the extinction of the focal opinion.

On the other hand, the dynamical rules in Eq. (3) do not
allow the same reduction for the NLVM. This can be seen
from Eq. (7). The total rate of leaving state « in the nonlinear
model is given by

q
Ta,f = Zna (an 1) ) (28)

and it is clear that for g # 1 this cannot be written as a
function of n, only. Instead the full knowledge of all {ng} is
required.

B. Rate equations, fixed points, and their stability

We write x, = n,/N for the fraction of agents in opin-
ion state «, and X = (xy, ..., xy ). The rate equations then
become

M
%o = (1 — x)x% — x, Zxﬁq ) (29)
BFa

This is a set of M coupled ordinary differential equations, and
we note the reduction to x, = 0 for g = 1.

For general values of ¢, and a given value of M, the fixed
points are of three different types. First, there is the “full-
coexistence point” of the model with M opinion states,

1 1 1 1 (30)
XM=\ 757575 ]
M\ M MM

All opinions are present in equal proportions at this fixed
point.

Second, there are M distinct “consensus fixed points” given
by (1,0,...,0),(0,1,0,...,0),...,(0,0,...,1). At each
of these only one single opinion remains.

Between these are what we will refer to as the “partial-
coexistence fixed points.” For each £ =2,..., M — 1 there
are M!/[(M — £)!€!] fixed points for which ¢ opinions are
present with fractions 1/¢, and where the remaining M — ¢
opinions have gone extinct. The case £ = M — 1, for example,
describes fixed points of the form

x@ LL 0 # (31)
M_l_ M_l’M_l’.‘., ?"‘!M_l 9

where the zero entry is in position « (« € {1, ..., M}).

Linear stability analysis shows that the full-coexistence
point X, is stable if and only if ¢ < 1. The consensus states
on the other hand are linearly stable if and only if ¢ > 1.

The of stability the partial-coexistence fixed points is more
intricate. These are fixed points at which some opinions have
gone extinct, but where at least two opinions remain. In the
full phase space of the model with M opinions (the simplex
defined by x; + --- 4+ x)y = 1) these fixed points are always
saddle points for any ¢ < 1 or ¢ > 1. It is important to real-
ize though that these fixed points are located at the (hyper)
faces of the full simplex, and the faces are invariant under
the dynamics in Eq. (29) (any x, that is zero initially will
remain zero). This type of solution is also found for the noisy
nonlinear MSVM for integer g, when the noise rate is set to
zero [16], and in majority-rule models with multiple states
[53].

For g < 1 the flow of Eq. (29) is directed away from
the faces (or edges) of the full simplex. However, we note
that each partial-coexistence fixed point in the model with
M opinion states is a full-coexistence fixed point in a model
with a lower number of opinion states. For example, the fixed
points xf‘;‘l , in Eq. (31) represent full coexistence (at equal
proportions) in a model with M — 1 opinion states. For ¢ < 1
these fixed points are stable in the phase space of the reduced
model.
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FIG. 10. Flow diagram of the system dynamics for the nonlinear
VM with M = 3 states in a ternary plot. Arrows represent the direc-
tion of the deterministic flow [Eq. (29)]. Fixed points are represented
by full circles (stable in the phase space of the full model) and empty
circles (unstable) respectively. Black empty circles indicate saddle
points.

For g > 1 the full-coexistence fixed point is linearly unsta-
ble, and within each face or edge the partial-coexistence fixed
points are also unstable. The deterministic flow is directed
towards the consensus states.

We illustrate the different types of deterministic flow for
the model with M = 3 opinions in Fig. 10. The full phase
space is the simplex shown in the figure. The full-coexistence
fixed point is located in the center. There are three partial-
coexistence fixed points, one in the center of each edge of
the simplex. At these fixed points the population is divided
equally between two opinions. Finally, there are the three
consensus states at the corners of the simplex.

For g < 1 the central full-coexistence fixed point is linearly
stable; see Fig. 10(a). The flow of Eq. (29) is away from the
edges of the simplex, but if the dynamics is restricted to an
edge, then the corresponding partial-coexistence fixed point is
stable. The direction of the deterministic flow is reversed for
q > 1; see Fig. 10(b).

C. Density of active links and dynamics in finite populations

The density of active links [Eq. (5)] in the model on a
complete graph is given by

M M
p= 2ZZxax,g.

a=1 f>a

(32)

At the full-coexistence fixed point we thus have p = (M —
1)/M. At the partial-coexistence fixed points with £ remaining
opinions, p = (£ — 1)/£. At the consensus fixed points there
are no active links, p = 0.

We now briefly describe the behavior of the density of
active links in finite systems at the level of individual real-
izations (see Figs. 1 and 11).

When g < 1, the density of active links is first seen to fluc-
tuate around the coexistence value p = (M — 1)/M. Through
finite-size fluctuation one opinion then becomes extinct. This
then leads to a model with M — 1 opinions, and the system
settles near the full-coexistence fixed point of this reduced
model, i.e., around p = (M — 2)/(M — 1). Then another ex-
tinction occurs, and so on. This leads to a succession of
plateaux located at p = (M — € — 1)/(M — £), where £ rep-
resents the number of extinctions, until one opinion is left
after M — 1 extinctions. This is illustrated in Figs. 1 and 11
for M = 3 and M = 4. We note that the behavior is different
from that of the linear multistate VM, where the series of
plateaux can be quite different across realizations [14]. This
is a consequence of the deterministic pull towards the fixed
points of the type p = (M — £ — 1)/(M — £) in the nonlinear
model with ¢ < 1 and M — ¢ remaining opinions. This pull is
absent in the linear model.

For g > 1 the behavior of the multistate NLVM is very
different to that for ¢ < 1. The deterministic flow is towards
the consensus states, and the density of active links in finite
populations rapidly approaches p = 0, as shown in Fig. 1(c).

1.0 1.0 1.0
1@ 06 7] (b) p=0.66 (d ﬁ
1
0.8 - 047 h'.m
0.2 -
0.6 0.0 : MM
’ 0 50 100 150 ) 0 1500 3000 4500
o ] 0o : ] P
0.4 ' ; o Bl 04
e L I I
—g=02—yg=05| | oot T t &
1——q=09 et
0.0 P ———— 0.0 —— — 0.0 g b
0 500 1000 0 100000t 200000 0 15000 t30000 45000

t

FIG. 11. Single realizations of the NLVM with ¢ < 1 on a CG. (a) Time evolution of the fraction of agents x,, in a population of N = 3000
agents and M = 3 opinions (balanced initial conditions). The dashed yellow line shows x, = 1/3. Inset: Realizations with different initial
conditions evolve to x, = 1/3. (b) Evolution of p for ¢ = 0.9, N = 1000 and M = 3 (balanced initial conditions). (c) Fractions x, for the
same realization as in panel (b). Initially p >~ 0.66 (full-coexistence fixed point of the M = 3 model), until one opinion becomes extinct at
time ¢ ~ 83 000 (vertical dashed line), and thus p drops to a secondary plateau at p =~ 0.5, corresponding to the full-coexistence fixed point of
a model with two opinions. (d) Different realizations for the evolution of p (¢ = 0.9, N = 600, M = 4, balanced initial conditions). In each
realization, p drops from ~0.75 to 0.66 to 0.5 to 0, as opinions go extinct.
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FIG. 12. Time evolution of the average density of active links
(upper panel) and the mean number of opinion states present (lower
panel) for the model with initially M = 3 on a complete graph (N =
36, g = 0.5, average over 5000 runs). The dynamics is started from
balanced initial conditions. Symbols are from simulations. The blue
line in the upper panel is from Eq. (26) with T from Eq. (25). As seen
by comparing the upper and lower panels, the decay of (p) becomes
exponential broadly from the time when, on average, there are only
two opinions present.

D. Time evolution of the ensemble average
of the density of active links

We now turn to the behavior of ensemble-averaged density
of active interfaces.

1. g<1

We first focus on the model with ¢ < 1. Figure 12 shows
the typical behavior of the average interface density, obtained
from simulations. While the decay of (p(#)) is not exponential
in the early phases, the interface density becomes exponential
in the final stages when there are only at most two opin-
ions left in the system. (p(¢)) then follows the expression in
Eq. (26) for the nonlinear VM with only two opinions.

In the earlier stages of the time evolution the system is
characterized by a sequence of decay processes, first from M
opinions to M — 1, then to M — 2, and so on. We now study
the dynamics in these different stages. In order to delineate
the different stages, we adopt a basic heuristic. We measure, at
each time, the average number of opinions still present in the
system. We then record the times #, at which the average num-
ber of alive opinions is £ ({ =M — 1,M —2,...,2). Then
we say that, broadly, the decay from M to M — 1 opinions
happens between time zero and time #,_;, the decay from
M — 1 to M — 2 opinions in the time interval from #y,_; to
ty—» and so on. We also record the average density of inter-
faces (p), = (p(ty)) at each of the times 7,.

0.75 .
@b [ (a2)
o F0.7
CG, N = 100, I=3tol=2
0.7 M=4to/=3 _
<p> av 5000, q=10.7 E 0.6
0654
<p>,=0.645 |} <p> =049 Lo.s
1000 2000 50000 100000
0.1 1) (b2)
S M=4to/=3 I=3t01=2
1N T N =100}
1A N exp. fit || | S
\\ \ \\ = - N
0.01 : : L3 0.01
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. " ©
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FIG. 13. (a) Time evolution of the average density of active links
for the NLVM with M = 4 opinions on a complete graph (5000, N =
100, g = 0.7). Vertical dotted lines denote the time #; in panel (al)
and 1, in (a2). Panel (b1) shows (P) = (p) — (p); vst and (b2) (P) =
(p) — (p)2 vs t, for N = 100 and N = 80. Dashed red lines are fits
of the form Ce™"/™ . The time constant 7; is different in (b1) and (b2)
respectively, and depends on N. (c) 7; vs N for the transition from
four to three opinions (black squares), and for the transition from
three to two opinions (red circles).

An example can be found in Figs. 13(al) and 13(a2),
where we show the average density of interfaces for a
model with M =4 during the time interval from ¢t =0 to
t =1, [Fig. 13(al)], and in the time interval from #; to t,
[Fig. 13(al)]. The values of {p)3 and (p), are also indicated.

In Fig. 13(b) we then plot the quantity (P(¢)), where P(t) =
p(t) — {p),. This quantity is seen to decay exponentially, con-
firming that the earlier stages of the time evolution can also
be seen as Poissonian decay processes. The corresponding
timescales 73 and 7, can be extracted from exponential fits to
the data in Figs. 13(b1) and 13(b2), respectively. We highlight
that 7, grows exponentially with the system size, as shown in
Fig. 13(d).

The behavior of the average density of active interfaces
in the nonlinear multistate VM is very different from that
in the linear model. In the latter case the decay of (p) was
found to be exponentially throughout on complete graphs,
(p) = (p(0))e~"/T, with one single timescale T = (N — 1)/2
[14]. We reiterate that the set of plateaux for p differs from
realization to realization in the linear model. However, the
mean residence time in each plateaux and the typical “jump”
in p upon extinction of an opinion conspire such as to produce
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FIG. 14. Time evolution for the density of active links for a pop-
ulation of N = 30000 agents on a CG with M = 3 and g = 2. Gray
curve corresponds to unbalanced initial conditions (UIC)(x; = 3/5,
Xx; = x3 = 1/5) and the dark green curve to balanced initial condi-
tions. Individual realizations of the process are also shown; in orange
for the unbalanced case and in light green for the BIC. Blue dash lines
are « e~ and are guides for the eye.

an overall exponential decay of (p) with one single timescale,
independent of the number of opinions still present [14].

2.q>1

For g > 1, the behavior of p is quite different from that
presented above for g < 1. For a full description, we distin-
guish the cases in which the initial conditions are unbalanced
(UIC) or balanced (BIC). By unbalanced, we mean that when
initializing the dynamics, the states of opinion are not equally
represented in the population. Both cases are illustrated in
Fig. 14 forM =3 and g = 2.

For UIC the system approaches consensus rapidly. The
behavior of individual realizations (orange curves in Fig. 14)
is quite similar to the average (p(?)) (gray curve). A linear
stability analysis around a stable fixed point [(x}, xp, x3) =
(1,0,0), (0, 1,0), or (0,0, 1)] shows that in an infinite large
system p(¢) approaches zero as e’ (see Appendix C), denoted
by a dashed line, which agrees well with the exponential relax-
ation of (p(¢)) from simulations. This is the same exponential
relaxation as in the two-state model [Eq. (15)].

On the other hand, for BIC (p) initially stays around a
plateau given by (p) = (M — 1)/M (= 0.66 in the case of
Fig. 14). This is because each individual realization is ini-
tialized in the unstable fixed point of coexistence. It then
takes a time of order O(log N) to escape from this fixed point
via finite-size fluctuations [45,46]. The escape time for reach
realization is stochastic [45,46], as can be seen in the light
green curves in Fig. 14. Once a realization has left the area
around the unstable fixed point, the decay of the interface is

approximately exponential [dashed lines in Fig. 14 are a guide
for the eye, and indicate a decay proportional to e~']. The
initial shift, due to the random escape from the fixed point,
causes the ensemble average (dark green curve) to have an
exponential decay with a different decay time.

V. TWO-STATE NONLINEAR VOTER MODEL ON
COMPLEX NETWORKS

Up to now, we focused on the case of all-to-all interac-
tions. In this section we explore the model on more complex
networks. Analytical progress is here possible using approx-
imations taking into account the degree distribution of the
underlying graph [36,37,54-56]. Specifically, we implement
the so-called homogeneous pair approximation (HPA) devel-
oped in [36,54].

The HPA is designed to address dynamics on networks
with general degree distribution, but which are degree-degree
uncorrelated. More precisely, the pair approximation takes
into account correlations between the states of nearest neigh-
bors in the network, but neglects correlations between second
or higher-order neighbors. In a two-state model the dynamical
variables are therefore (i) the probability with which a node is
in the up-state (opinion 1), or equivalently, the magnetization,
and (ii) the probability with which any one edge is active,
that is the adjacent nodes are in opposite states. The qualifier
“homogeneous” indicates that these quantities are taken not to
depend on the degrees of the nodes involved. In other words,
the magnetization is the same for nodes of all degrees, and the
probability to be active is the same for all edges. The HPA re-
sults in a set of two differential equations for these quantities.
More sophisticated heterogeneous pair approximations have
been developed to provide a more differentiated description
[55,56].

The HPA is known to work well on uncorrelated networks
of arbitrary degree distribution, generated by connecting pairs
of nodes at random, and where degree correlations can thus be
neglected [36]. Examples are degree-regular random graphs
(DRRGs), Erdés-Rényi (ER) networks, and Barabasi-Albert
scale-free networks.

A related type of pair approximation for the NLVM stud-
ied was implemented in [29,31] (see Appendix B), where
q was restricted to integer numbers, and nodes are able to
change state only if they are connected to g or more active
links. It was also assumed that the underlying network is a
DRRG, i.e., in particular, Py = . This pair approximation
leads to the same results as the one developed previously in
[27] for the g-voter model. This latter model was introduced
in [22] and is similar to the NLVM, where the focal node
chooses ¢ different random neighbors (without repetition)
and, if they all share the same state, then the node adopts this
state.

A. Pair approximation

In this section we develop the HPA for the two-state NLVM
on complex networks for general ¢ > 0, following the same
approach as that introduced in [36] for the linear two-state
VM (g = 1).
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Within the HPA, the time evolution of the magnetization
m = x — (1 — x) and the density of active links p are approx-
imated by the equations

E ~ _ZZZP(S k,n)

k s=%x n=0

X Py, _(k, n) Am(s —> —s), (33a)
E A —ZZZP(S k,n)
k s=%x n=0
X Py _s(k,n) Ap(s — —s). (33b)

Here Ar = 1/N is the elementary time step in an analogous
discrete-time model. The quantity P(s, k, n) is the probability
that a randomly chosen node is in state s (s = + or —), has
degree k and that n of its neighbors are in the opposite state
—s. Further, P, _((n, k) = (n/k)? is the probability that the
node that was picked for update actually flips. If the flip takes
place, then the respective changes in the magnetization and
the density of active links are

A - —5) = —5—,
m(s ) SN

Ap( y=k2n (34)
§—> —85) = ———,
P 1N/2
where u is the mean degree of the network.
Within the HPA, the probability P(s, k, n) can be approxi-
mated as

P(s, k, n) = x;PBs(k, n), (35)

where x; = (1 + sm)/2 is the fraction of nodes in state s =
+1, Py is the degree distribution, and B,(k, n) is the probabil-
ity that n links connected to a node are active given that the
node has degree k and that it is in state s.
Again using the HPA, B(k, n) is a binomial distribution
for n,
Bs(k,n) =

(P_gs)"(1 = P_g ). (36)

k!
nl(k —n)!
Its parameters are the degree k of the node, and the proba-
bility that a neighbor of a node in state s is in state —s,

0
P g5 = g 37

Putting all this together we arrive at

d
d—T?ZZ”fZ
dp nis)  2(ntt'|s)

d _szz (k‘“ K > (35

In these expressions (- --|s) stands for the average over the
binomial distribution By(k, -), i.e., (n?|s) is the gth moment of
the distribution. For integer values of g these moments can be
evaluated directly, for instance we have

(nls) = kP_y,, (n?|s) = kP_y; + k(k — 1)P?
(n’|s) = kP_yj; + 3k(k — 1)P?

(n]s), (38a)

s|s?

g Hk(k =Dk —2)P . (39)

When ¢ is not an integer, the gth moments can be obtained
numerically for given k and P_y;.
For g = 1 Egs. (38) become

am _ (40a2)
— =0, a
dt

dp _ 2p 2p
ar u{(“_l)[ (1—m2>}_1}' o

These are the well-known results reported, for example, in
[36].

b

B. Further evaluation for ¢ = 2

We now briefly discuss the case ¢ = 2, where closed equa-
tion for m and p can be obtained. We will use these results
further below. The analysis of the model with g =2 also
highlights that network structure does not only enter through
the mean degree.

For g = 2, Egs. (38) become, after some algebra,

dm cymp?

i l—m @1
‘;—f=p[cz+ lffnz—c“((llf;f;fz], (41b)

where
a1 =21 — poy), (42a)
2 =2(1—-2u_1)/u, (42b)
3 =2(u—T+6u_1)/u, (42¢)
e =4 —3+2u_1)/un (42d)

are constant coefficients. In addition to the mean degree u, we
have introduced yu_; = Z,fi, P,./k. We note that, for m = 0,
Eq. (41b) agrees with the result in [32] obtained for the nonlin-
ear noisy voter model using the HPA. While the mathematical
analysis in [32] describes the system for zero magnetization,
Egs. (41) also take into account the evolution of m coupled
to p.

Every point of the form (m, p =0) with -1 <m < lisa
fixed point of Egs. (41) and is linearly unstable. The points
(1,0) and (—1, 0) are attractors of the dynamics (the system
tends to evolve towards these points) and describe consensus
states.

There is a further saddle point given by

c3 4,/ +4dcicy
m* =0, pf=—"77"—"7-——-/— (43)
2C4

which is linearly unstable in the ¥y = (1,0) direction and
linearly stable in the v, = (0, 1) direction, with associated
eigenvalues A = c2(p*)? > 0 and A, = —p*Vci +4eres <
0. This represents an active state (p* # 0) in which half of the
nodes are in either state £1.

C. Dynamical behavior and comparison against simulations

Figure 15 illustrates trajectories obtained from Eq. (38) in
the (m, p) space for different values of g. As seen in the figure,
these are in agreement with trajectories from simulations in
finite populations. A similar inverse U-shape of trajectories
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FIG. 15. Trajectories of the system in a single realization on the
m-p space starting from a point near the symmetric initial condition
(0, 0.5), for an ER network of mean degree . = 8, N = 100 nodes,
and ¢ = 0.9 (a), and N = 10* and ¢ = 2 (b). The two pink filled
circles denote the attactors (—1, 0) and (1, 0), which are unstable for
g = 0.9 (a) and stable for g = 2 (b). The yellow filled circle denotes
the stable fixed point (0, 0.435) in panel (a), and the unstable fixed
point (0, 0.362) in panel (b). Solid lines correspond to the determin-
istic trajectory obtained from the numerical integration of Eqs. (38)
for panel (a) and Egs. (41) for panel (b), where arrowheads indicate
the flow’s direction. The blue dashed line in (b) corresponds to the
deterministic trajectory starting from two different almost symmetric
initial conditions, (—0.001, 0.362) and (0.001, 0.362).

of single realizations in the (m, p) plane was observed pre-
viously in several works on voter-like models. It was first
reported in [36] for the linear voter model.

We run simulations on a finite network, where each node
is assigned states =1 randomly (with equal probability) and
independently. In Fig. 16 we plot the time evolution of the
density of active links p for single realizations on Erd&s-Rényi
graphs. p quickly evolves towards a quasistationary value
broadly consistent with the value of p at the unstable fixed
point in Eq. (38). This corresponds to the apex of the concave
curve (inverse U-shape) in the (m, p) space shown in Fig. 15.
In Fig. 16 we also compare the plateau value for p with that
predicted in [29,31] (see also Appendix B)

w—2q
2w —q)
shown in Fig. 16 as dashed lines. As can be seen in Fig. 16(b),
pip becomes more consistent with simulations for bigger val-

ues of . Thus we refer to this as the as the “large degree pair
approximation” (LDPA), as also indicated by the subscript

pipM =2) = (44)

0.7
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FIG. 16. Time evolution of the density of active links for single
realizations of the binary NLVM. Panel (a) shows for ¢ = 0.9 on
ER of N =36 with u =8, and panel (b) for ¢ = 2, on DRRGs
of N =6000 and mean degrees u = 8 and p = 20. When ¢ < 1
realizations stays around a p value we call £ until a finite-size
transition takes the system to consensus. For ¢ > 1 we see that p
rapidly decays to a plateau value &, where it remains for a short
time until it eventually decays to zero. Solid horizontal lines are the
predictions of the HPA [Eqgs. (38), (43) for (b)]. Dashed lines are
LDPA-prediction in Eq. (44).

“LD.” The approximation in Eq. (43) provides a good esti-
mate, while the approximation from [29-31] underestimates
simulation results, in particular for small mean degree L.
The difference between the results given by the HPA
[Eq. (38)] and LDPA [Eq. (44)] lies in how the rate equa-
tions are constructed. Although the update rule in both cases
is the same, the LDPA considers an approximation that im-
plies that to make a flip, exactly g neighbors are selected
without repetition; that approximation facilitates calculations
and gives consistent values for large © but no so for low u
(the LDPA is further described in Appendix B). Figure 17
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FIG. 17. Plateau value £ vs mean degree p in the binary NLVM
on networks. Balanced initial conditions are considered. Squares
correspond to simulations data, circles to the LPDA, and triangles to
the HPA. In panels (a) and (b) ¢ = 2 on a DRRG and an ER network,
respectively; the value of & for the HPA is that from Eq. (43). Panels
(c) and (d) correspond to a DRRG with ¢ = 0.5 and an ER network
with ¢ = 0.2, respectively. The value of & for the HPA corresponds to
the numerical integration of Egs. (38). While the HPA gives accurate
values of & for u 2 6, the approximation from [29] works well for
u 2 20.

provides further comparison of the performance of both meth-
ods against results from simulations for different g values
and a broad range of w. It should be noted though that the
approximation of Refs. [29-31] has the advantage of giving
a simple expression for general g. For large values of u both
expressions tend to p = 1/2, which corresponds to the fixed
point on a CG [Egs. (38)].

D. Final approach to consensus

The approach to consensus on complex networks is qual-
itatively similar to that on CG studied in Secs. III B and
III D, which has two distinct behaviors depending on the value
of g. As we described in Sec. VC, for ¢ < 1 the system
evolves towards the stable fixed point (0, p*) and eventually
reaches consensus by finite-size fluctuations, in a time that
grows exponentially with N. Therefore, the average density of
active links decays to zero with a rate given by the inverse of
the mean consensus time 7, i.e., (p(¢)) & p*e™"/*. For ¢ > 1

there is a fast (logarithmic in N) approach to consensus as
a consequence of the drift towards one of the two absorbing
states. The mean consensus time also depends on the topology
of the network and the initial condition.

To gain further insight into the relaxation towards con-
sensus for ¢ > 1, we study the case ¢ = 2 within the HPA
developed in Sec. VA [in particular Egs. (41)]. As these
equations are nonlinear, an analytical exact solution is hard
to obtain. Still, valuable information can be extracted from
Egs. (41) by investigating how the system relaxes to the stable
consensus fixed points (1, 0) and (—1, 0).

In Appendix D we show that for an arbitrary initial condi-
tion m(0) > 0 and p(0) > O the asymptotic approach to (1, 0)
is of the form m(t) = 1 — €(¢) and p(t) = ae(t), where €(t)
is a function that satisfies 0 < €(t) < 1 and

c3 +1/c§+8(04 —c1)er

o°= 2 =) )

is a constant. Then, in the limit of large times, Egs. (41)
become

de(r) c1a?

dt 2

() (46)
to first (nonzero) order in €. One then has €(t) = € e—aa’t/2,
Thus, the relaxation towards the attractor (1, 0) is given by the
expressions

m(t) = 1 — (1 — mp)e 1"/?, (47)

p(t) = a(l — mg)e 1*"1/2, (48)

Estimating the mean consensus time 7 from the condition
m(t) =1 —2/N, we obtain from Eq. (47)

T izln [1(1 - mO)N}. (49)

cio 2
This estimate depends on the network’s topology through the
constants « and ¢, which in turn contain the mean degree i
and the quantity pu_; [see Egs. (42) and (45)]. In the high-
connectivity limit x> 1, the expression in Eq. (49) agrees
1—-m2)N
( 4m§)
obtained from Eq. (17) by using py = (1 — m(%)/2.

This analysis suggests that the scaling of the mean consen-
sus time with the population size is of the form t ~aln N +
b, where a and b depend on the network structure through the
moments ¢ and p_; and, additionally, b carries a dependence
on the initial magnetization my [see Eq. (49)].

Test against simulations are presented in Fig. 18. We ob-
serve a good collapse of the data for the different network
sizes, and that the approximation 2/(c;a?) appears to be
reasonably accurate for u 2 3, while deviations are seen for
lower mean degree. A similar overestimation of the mean
consensus time calculated with the HPA for low degrees
was found in the linear VM on ER networks [36], where
the estimated value of 7 diverges as the mean degree ap-
proaches the value p >~ 2. This is because the HPA assumes
that the macroscopic quantities x, and p are independent on
the nodes’ degree, which is not longer valid for networks with
low connectivity. Indeed, a very accurate analytical expression

with that for complete graphs t >~ In[

] for my <1,
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FIG. 18. Scaled mean consensus time 7 vs mean degree u for the
g = 2 NLVM on ER networks of various sizes N, as indicated in the
legend. The factor b is the y intercept obtained by a linear fit of the
curves T vs In N. The solid line is the analytical prediction 2/(c;a?)
from Eq. (49).

was given by means of an heterogeneous pair approximation
[55].

VI. PAIR APPROXIMATION FOR THE MULTISTATE
NLVM ON COMPLEX NETWORKS

We now consider the multistate NLVM on networks. We
focus here on determining the different plateaux values of the
density of active links and their dependence on the network
degree distribution. The behavior of the ensemble average of
p is qualitatively the same as for the complete graph (Sec. IV),
with the plateaux values of that case replaced by the ones
we determine in this section. We begin by a summary of the
behavior seen in simulations, and then move on to develop the
pair approximation approach.

A. Numerical simulations

Figure 19 shows the time evolution of the density of active
links p in single realizations of the NLVM on ER networks
for M = 4 opinions and two values of g. We observe the
presence of intermediate plateaux when g < 1 corresponding
to 4, 3, and 2 surviving opinions [Fig. 19(a)]. These are not
present for ¢ > 1 [Fig. 19(b)]. We thus conclude that individ-
ual realizations of the NLVM with multiple opinion states on
networks behave qualitatively similarly as those in the model
on complete graphs (compare with Fig. 1).

The plateau values for the density of active interfaces can
be estimated analytically through an extension of the pair
approximation for the model with two opinions [29]. This is
described in more detail in Appendix B. In this approximation
we obtain explicit analytical expressions for the stationary

value of p when M opinions survive that generalizes Eq. (44):
M — 1D)(n —2q)
pip = 2 (50)

M(pn —q)

For ¢ =1, Eq. (50) reduces to the accurate expression
for the plateau values obtained in [14] for balanced initial

0.8

[ER N=200,4=0.5 M=4,1=6 (@)
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FIG. 19. Time evolution of the density of active links p in in-
dividual realizations of the multistate NLVM for M = 4 opinion
states on ER graphs starting from balanced initial conditions. Panel
(a) is for ¢ = 0.9, panel (b) for ¢ = 2. In (b) we also show results
for complete graphs for comparison CG. Solid horizontal lines are
the predictions of the HPA [Eq. (55)]. Dashed lines are the LDPA
prediction in Eq. (50).

conditions. However, the approximation leading to Eq. (50)
has limitations for g # 1. For example, it is not accurate for
small values of p; see Fig. 20. Moreover, if ¢ < u < 2q one
obtains a nonphysical value pf, < 0. In order to obtain a
better approximation we next extend the HPA developed in
Sec. V to the general case of M opinions.

B. Homogeneous pair approximation for the general case M > 2
1. General formalism

We now construct the homogeneous pair approximation
for the model with multiple opinion states. More specifically,
our aim is to derive dynamical equations analogous to those
for the two-state NLVM [Eqgs. (33)]. We follow an approach
similar to that in Sec. V A.
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FIG. 20. Plateau value £ for the mean density of active interfaces
vs mean degree 1 in the model on ER networks. For g < 1 (a) we
show data for the first plateau in the time evolution of the system
(i.e., all M opinions are present). For ¢ > 2 we use balanced initial
conditions and show the interface density during the initial escape
from the state with all M opinions. Simulation data are shown as
squares. Triangles show the predictions of the HPA [Eq. (55) for
panel (a), Eq. (64) for (b) and (c)]. Predictions from the LDPA
[Eq. (50)] are shown as circles.

Suppose a node in state o and with degree k is chosen for
potential update. We denote by ng the number of neighbors
in state 8. A flip o — B (B # «) of the focal node occurs
with probability (ng/k)?. Then the number of active links
before and after the update is k —n, and k — ng, respec-
tively, and thus the change in the density of active links p is
(ny —ng)/(N/2). Summing over all possible node updates
we arrive at the following rate equation for p:

q( a T )
d; 1/N ZZZX“P"ZM G, “)< ) - N/;ﬂ '

k a=1 p#a
(5D

Here M, (k, n) represents the probability that a node of
degree k and state « has n; neighbors in state 1, n, neighbors
in state 2, and so on. We have written n = (ny, no, ..., ny).

Analogous to the two-state NLVM, we neglect state cor-
relations between second- or higher-order neighbors, and

approximate M, (k, n) as a multinomial distribution

My(k,n) =

(PM\O( )”M ’
ni:ny

(52)

‘ (Prja)" (Pajg )™ - - -
Ny

where Pg), is the probability that a randomly chosen neighbor
of a node in state « is in state 8. Within the pair approximation
and similar to Eq. (37), this probability is given by

Ppa
Py = 222, (53)

where pg, is the fraction of links connecting nodes in states o
and S.

We now focus on the stationary state, setting dp/dt = 0 in
Eq. (51). Since all opinion states are equivalent all opinions
are equally represented in the stationary state by symmetry,
ie., xo = 1/M for « =1,...,M. Given that all M(M — 1)
terms contribute equally to the sum in Eq. (51) we arrive at

2(M —1) ng\4
S Y kPO, Matem) () (= np) = 0 (54)
for any particular combination of « and 8. From this we find
Zxa (n%“)Ma) =0,

where (...) oq, stands for averages over the multinomial dis-
tribution in Eq. (52). We note that M, carries a dependence
on k.

(55)

nanﬂ

2. Linear model (¢ = 1)
When g = 1 Eq. (55) becomes

Zxa (nang) m (né)Ma) =0. (56)
The relevant moments of M, are
(nanﬁ>M = k(k - I)Pa\apﬂ\a
() pp, = kPpla + k(k — PG, (57)
Using Eq. (57) and the fact that Py, = 1 — Zy#‘ P,y in

Eq. (56), we arrive at

M
> xaPiPpja [(k - 1)(1 - mem) —1—(k— 1)Pﬂ|a}
k

m#o
=0. (58)

The symmetry of opinion states implies that p,g takes the
same value for all M(M — 1) combinations o # B. Noting
p= Za# Pap/2, we then have pg, =2p/[M(M — 1)] in
Eq. (53). Using this, and x,, = 1/M, we have
_£
M—-1

for o # B. The probability that a link is inactive is Py = 1 —
Zﬁf 4o Pnje = 1 — p. Putting everything together, and carry-
ing out the remaining sum over k in Eq. (56), we arrive at

Pyl = (59)

(60)

2
;[(M—Z)—M_I(M—l),o]=0
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and therefore at the fixed-point solution

1\ -2
o = <1 - M)% 61)

This reproduces the result of [14], where the linear multistate
VM was first reduced to an effective two-state model, and
where established pair-approximation results for two-state
models [36] were then exploited.

3. Further evaluation of Eq. (55) and test in simulations

When g = 2 Eq. (55) becomes
P
Zxak—];((nané)M —(n3) ) = 0. (62)
k

and we have
(nang) = k(k — DPyjaPpja
+ k(k = 1)(k = 2)PyjaP;
(m}) v = kPpio + k(k — 1P,
+ k(k — 1)(k — 2)P;,,.

o>

Using this in Eq. (62) and after some algebra, we find the
following plateau density for the model with ¢ = 2 and with
M opinion states:

. —B + /BF —4AC

Pg=2.m = A (64)
where
M
A= —m(ﬂ"'z#«—l —3), (65a)
B = 7 1[(M +2pu-1 —3)— (M +2)(1 — p_y)], (65b)
C=1-2u_. (65c¢)

We recall that the quantity p_; is the mean inverse degree,

>« Pe/k.

C. Test against simulations

We now test the predictions of the HPA against simulation
results. The main quantity we assess is the density of active
interfaces at the different plateaux during the time evolution
of the system. For ¢ < 1 these plateaux emerge from the
sequence of extinctions [as illustrated in Fig. 19(a)]. Forg > 1
we focus on the initial plateau after a start from balance initial
conditions [Fig. 19(b)].

Results can be found in Fig. 20. We find that the predic-
tions of the HPA agree better with simulations than those
of the large-degree pair approximation [Eq. (50)], especially
for small values of the mean degree. This can also be seen
in Fig. 19, where solid lines (HPA) are closer to simulation
results than dashed lines (LDPA).

We highlight that the HPA involves the network structure
not only through the mean degree. For example, when g = 2
the mean inverse degree p_; enters into the prediction [see
Egs. (64), (65)]. For general powers g of the nonlinearity
further moments of the degree distribution will be required.

VII. SUMMARY AND CONCLUSIONS

We have studied the ordering dynamics in voter models
with nonlinear imitation rules. More precisely, we have taken
the rate with which an individual adopts an opinion to scale
as the gth power of the number of its neighbors in this
state. We here summarize our main results before we draw
more general conclusions and discuss the wider implications.
The main features of the different models and of the ordering
dynamics in them are also collated in Tables I and II.

A. Summary of main results

1. No reduction to a two-state model when
the dynamics are nonlinear

It is well known that, for many purposes, it is possible to
reduce the dynamics of linear multistate voter models (¢ = 1)
to effective two-state systems [3,12,14]. This is because the
dynamics of the number of agents in one focal opinion does
not depend on the detailed numbers of agents in each of the
other opinion states. No such reduction can be made in non-
linear voter models, complicating the quantitative analysis.
Nonetheless, we have been able to characterize the ordering
process in the nonlinear model using a combination of simu-
lations and analytical methods.

2. Ordering dynamics is noise driven for q < 1, but not for q > 1

Depending on the value of ¢, we have find two distinct
types of ordering dynamics. This distinction applies both in
models with all-to-all interaction and on graphs.

The first type of dynamics is seen for ¢ < 1. The dynamics
then promotes minority opinions. This leads to long-lived
states of opinion coexistence, stabilized by deterministic drift.
These these states are described by the stable fixed points of
the underlying rate equations.

The extinction of opinions is driven by fluctuations. Indi-
vidual realizations go through a sequence of extinctions and
the corresponding plateaux for the density of active interfaces.
Unlike in the linear model, all realizations are seen to have the
same quantitative sequence of plateaux. For all-to-all interac-
tion, the interface density at these plateaux can be obtained
from the fixed points of the rate equations. The escape times
from the long-lived states are found to depend on g and to
scale exponentially in the population size N.

When g > 1 the deterministic pull favors majority opinions
and drives the system to consensus. Only the consensus states
are linearly stable fixed points of the rate equations. All other
fixed points are either unstable or saddle points. For balanced
initial conditions noise-driven symmetry breaking is required
in the early phases of the dynamics. Other than this, noise
plays virtually no role for the ordering, and there are no further
plateaux on the way to consensus. Broadly, the system follows
the deterministic rate equations.

Closed-form estimates for the consensus time can be found
for the model with two opinion states, all-to-all interaction,
and when either ¢ = 2 and g = 3. Approximations are also
possible via an expansion when ¢ takes values just above
one. The time to consensus is found to scale logarithmically
inN.
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TABLE I. Overview of behavior of individual realizations and ordering dynamics for nonlinear multistate VMs on complete interaction

graphs.
Plateaux for p in Ordering/behavior of
CG Drift individual realizations ensemble average
g<1 Towards Each realization has M — 1 plateaux, Escape from metastable states by fluctuations
coexistence located at &, = (£ — 1)/¢ (p) — (p)e ~ e/
€=2,....,.M) 7 ~ e/ CON
[Figs. 1(a), 11] (Figs. 12, 13)
g=1 None Each realization has M — 1 plateaux, Driven by fluctuations
the first plateau is at (M — 1)/M, (p) = poe'/*
and the rest can be at any value T~N
[Fig. 1(b)], Ref. [14] Ref. [14]
qg>1 Towards None Follows deterministic rate equations
consensus [except for noise-driven escape from balanced initial (p)y ~e@>1

conditions with a plateau at p = (M — 1)/M)]

[Fig. 1(c)]

Mean consensus time T ~ In N
(Fig. 14)

3. Noise-driven ordering: Absence of single exponential
decay of the average density for q < 1

We have also studied the evolution of the average density
of active interfaces across realizations. In the linear multistate
model, this quantity is known to show one single exponential
decay law throughout the ordering process, with a time con-
stant that is independent of M [14].

For ¢ > 1 we also find exponential decay at long times,
but unlike in the linear model this is driven by the underlying
deterministic pull rather than by noise.

For ¢ < 1 the evolution of the average interface density is
more intricate. As in the linear model, consensus is reached
via a sequence of fluctuation-driven extinctions. In the non-
linear model the escape time from each of metastable states
can be approximated as a Poisson process, giving rise to a
sequence of exponential decay laws. Nonetheless, no overall

single exponential decay, valid for the entire ordering process,
emerges for g < 1. This confirms the exceptional character
of the linear model, where there is no deterministic drift. In
the linear model the mean residence time in each plateau, and
the mean reduction in interface density upon extinction of an
opinion conspires to produce one single exponential decay law
[14].

4. Ordering dynamics on graphs and homogeneous
pair approximation

We have also compared the behavior of nonlinear voter
models on graphs with those with all-to-all interaction. We
find broadly similar behavior, but the mean consensus time
and other timescales of the ordering process can depend on
the structure of the network. There are further quantitative dif-

TABLE II. Overview of ordering dynamics for nonlinear multistate VMs on uncorrelated interaction graphs, with N nodes and degree
distribution P;. In general the coefficients A and B depend on the entire degree distribution, {P,}. Within the HPA the coefficient .A depends
on only the first and second moments of {F;} [14]. For ¢ = 2 and within the HPA the coefficient B depends on only © and u_;. The same is
true for any ¢ > 1 in the LDPA. We confirmed the ordering and behavior of the average density of active links for ¢ < 1 in simulations, but

these data are not explicitly shown in the paper.

Uncor-related Plateaux for p in Ordering/behavior of
graphs Drift individual realizations ensemble average
qg<1 Towards Each realization has M — 1 plateaux Escape from metastable states by fluctuations
coexistence located at &, ({P}, q) (p) — (p)e ~ e
e=2,....M 7, ~ el G ON
[Figs. 19(a), 20]
g=1 None Each realization has M — 1 plateaux, By fluctuations
first plateau at £y (), (p) = Em(u)e™’"
any value of p possible Tt AN (N > 1), A = A({R})
for subsequent plateaux Ref. [14]
Ref. [14]
qg>1 Towards One initial plateau if initial conditions are balanced Driven by deterministic pull
consensus [Fig. 16(b), Fig. 19(b)] (p)y ~e Bt > 1)

consensus time T ~ Bln N (N > 1), B = B({P})
[Egs. (48, 49) demonstrate this for M = 2, g = 2]
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ference, for example, for the interface density at the different
plateaux.

To describe nonlinear multistate voter models on un-
correlated graphs we have developed a homogeneous pair
approximation. Unlike previous approaches [27,29-31], our
approximation does not rely on ¢ taking integer values. In-
stead, our approximation can be used for any positive real
value of ¢, including in particular the range 0 < g < 1.
We also note that the only information some of the pre-
vious approximations use about the network is the mean
degree [27,29-31]. Our approach instead relies on more
detailed information on the graph, such as the mean in-
verse degree and/or higher-order moments of the degree
distribution.

We find that our approximation captures the ensuing
plateaux well and appears to be more accurate than previously
existing pair approximations which implicitly rely on large
mean degrees.

B. Conclusions

If anyone still doubts that simple dynamics such as those
of the voter model can give rise to surprisingly complex and
diverse behavior, then our study is one more piece of evidence
to the contrary (along with a large body of previous work). We
have systematically studied the effects of nonlinearity in voter
models with multiple opinion states and shown that several
distinct types of ordering emerge, depending on the exact type
of the nonlinearity. In particular, deterministic drift can either
promote order and consensus (when g > 1) or coexistence
(when g < 1). The former leads to a quick ordering process,
and the latter to long-lived metastable states. Our analysis
also highlights the special character of the conventional linear
voter model (g = 1), where there is no deterministic pull away
from or towards any opinion. The ordering is then purely
driven by noise, and, unlike in the model with g # 1, different
realizations undergo quite different paths towards order in the
linear model. Social scientists would perhaps refer to this as
“historical contingency” [57], i.e., the idea that the paths a
system can take are often determined by randomness rather
than a deterministic sequence of inevitable events.

Certainly, as we have shown, the statistical physics of the
models with sublinear, linear or supralinear imitation dynam-
ics are very different from one another. The aim of our work
was to contrast these with one another, both in systems with
all-to-all interaction and on graphs.

Give that nonlinearity in imitation dynamics can signifi-
cantly affect the formation of consensus in voter models, it is
natural to ask what the consequences of nonlinear imitation
might be for other models of social dynamics. Extensions of
the multistate voter model itself could include more general
nonlinear rules by which an agent chooses an opinion from a
sample of the states of several other agents.

Some of these extensions may add realism to existing
models of opinion dynamics. But even if this is not the main
motivation, it seems likely that work along those lines will
reveal new types of ordering, and therefore add to the sta-
tistical physics of interacting agent systems with absorbing
states.
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APPENDIX A: LINEAR STABILITY ANALYSIS
FOR RATE EQUATIONS
1. Jacobian and full-coexistence fixed point

The rate equations for the model with M opinions are
q

Yo = (1 — x)xd — X Z xg — x| 1— Zxﬁ
Bt pEM pAM

= fo,
fora = 1,..., M — 1. We note again that there are only M —

1 degrees of freedom in the model with M opinions, due to
SM X, = 1. We have thus used x,; = 1 — > pim XB-

a=1

(AL)

We have
0 fo
N (I D I S/
00Xy
B#a.p#M
q q—1
_ I—Zx,g + gxg I—Zx,g , (A2)
B#M B=M
and, for 8 # «,
g—1
0 fu _
o, = —qxaxi ! qr [ 1= xp (A3)

p#M

At the full-coexistence fixed point we have x, = 1/M for o =
L....M—1.
After some algebra we then find

g—1
e on(4) 2

= (A4)

where B8 # « in the second line.

This means that the Jacobian at the full-coexistence fixed
point is diagonal, with diagonal elements (g — 1)(1/M)?~".
Thus, this fixed point is stable when g < 1, and unstable when
qg > 1.

2. Partial-coexistence fixed point

The Jacobian becomes singular for ¢ < 1 when one or
more of the opinions have gone extinct. We therefore assess
the stability of the partial-coexistence and consensus fixed
points with a different method.
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First, we look at the fixed point at which one opinion
has gone extinct, and where all other opinions are equally
represented in the population. We choose the extinct opinion
to be opinion M.

The point [1/(M —1),...,1/(M —1),0] is the full-
coexistence fixed point in a model with M — 1 opinions. So,
within the space of opinions 1 to M — 1 only, this fixed point
is stable for ¢ < 1, and unstable for g > 1.

We only need to study what happens if we introduce a
small fraction of agents, €, holding opinion M. We assume
that opinion o (o =1, — 1) is then held by a fraction
Xo = 1 — y,€, where Z - ya = 1. We assume that € < 1.

We then have, from the rate equations,

é=(l—e)el—e )Y (I—yge),

a#EM

=l -t —¢ Z(l — yq€)l.

a#EM

(AS5)

For g < 1, the RHS is dominated by the term €7, and therefore
remains positive. This means that the fixed point is unstable
against the reintroduction of opinion M.

For g > 1, the lowest power of € on the RHS of Eq. (AS)
comes from the last term. More precisely, and given that (1 —
ve€)! =~ 1 — qy,€, we have € & —(M — 1)e. Hence, the fixed
point is stable against the reintroduction of opinion M.

Once one opinion has become extinct, the model reduces
to a nonlinear VM with M — 1 states. The partial-coexistence
fixed point with M — 1 opinions in the model with M opinions
becomes the full-coexistence fixed point of the model with
M — 1 opinions. The procedure to assess the stability of fixed
points can then be iterated.

3. Consensus fixed point

Let us now look at the stability of the fixed point de-
scribing consensus on opinion M, against the introduction of
the other opinions. We assume xy =1 —¢€ and x, = y,€ for
a=1,....M —1, w1ch -1 ya = 1, where again € < 1.

We have (from the rate equation for x;;)

M
—é=(-e)e—(1—€)) ()

a=1

M
~e(l—ge)— (1 —e)et Yyl

a=1

(A6)

where we draw attention to the minus sign on the LHS (result-
ing from xy; = —€).

For g < 1, the RHS of Eq. (A6) is dominated by the term
—e? and will hence be negative overall. Thus, € > 0, and the
fixed point is unstable. For ¢ > 1 on the other hand, we have
€ ~ —e, and hence, the fixed point is stable.

APPENDIX B: LARGE-DEGREE PAIR APPROXIMATION
(LDPA) FOR MULTISTATE NONLINEAR VOTER MODELS

We discuss here a pair approximation along the lines of
Refs. [27,29,31]. This existing work is for the two-state model
in random regular networks of degree p. As discussed in the

main text, this approximation turns out to be valid for ER
networks of sufficiently large mean degree. We here gener-
alize this to an arbitrary number M of opinion states.

The starting point is the following equation for the time
evolution of the average density of active interfaces

d M M
—f =YY xP@— pAp@— ). (B
a  B#a

Here x, is the probability of picking a node in opinion state
o. P(a — pB) is the probability that a subsequent change of
opinion & — B occurs. In our model, this probability is the
gth power of the fraction of neighbors of the focal agent in
opinion state S. In the spirit of a pair approximation, this
fraction is given by the fraction of active links of type «of8
among the links of an agent of type «. This, in turn, can be
written as pop/(2x, ). The change in the density of active links
is, as before, Ap(¢ — B) = u — 2ng — Z}}Zﬁa gy

In order to approximate A p, and following [27,29,31], one
can now assume that g is integer. Then P(e¢ — B) can be
thought as the probability of finding a set of ¢ randomly cho-
sen neighbors all in state 8. If neighbors are chosen without
repetition, then at least g of the focal individual’s neighbors
must be in state . The remaining © — g neighbors can be
in any state. Given that the focal agent is in state «, and the
probability for a neighbor to be in state y is 04, /(2X4 ), hence,
we arrive at the following approximation:

Apla — B) ~ u—2[qg+ (1 — @)Pup/2(xa)]

— D (= Dy /(2x).
y#a.p

In the stationary state we set dp/dt = 0 in Eq. (B1), and
use the fact that all opinions are equally distributed (x, =
1/M), as well as pyg/(2xy) = p/(M — 1), and the fact that
all flips contribute equally. We then have

0= M — D~ (—L—Y B2

= MM - )M<M—1> ®2)
(n—qp (n—q)p

X{“‘2[4+m]‘(1‘4‘2)m}'<’33)

From this we find

« _ M —=1)(pn—2q)
o= M=)
which is Eq. (50).

; (B4)

APPENDIX C: LINEAR STABILITY ANALYSIS FOR THE
CASEM =3 AND g =2INCG

For M = 3 and g = 2, the rate Eq. (29) reduce to
K= —xxf —xlg + 0 —x—x)],

—Xz[xf +(=x —Xz)z],

(Cla)

X = (1 — x2)x3 (C1b)

where we have used x3 = 1 — x; — x».
We now study the linear stability of the fixed point at x; =
1,x, = 0. We write x; = 1 — €| and x, = €5, and linearize in
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€1 and €. We find

de A€ (C2)
_— = €,
dt
where
(-1 0
A= ( 0 _1> (C3)

and € = (e1, &2)". Thus, ¥* is linearly stable under a small
perturbation in any direction. Then the time evolution of x;
and x; after a perturbation from the fixed point is given by

xi@®) ~1—[1—x(0)]e", (C4a)
x2(t) &~ x2(0)e . (C4b)

From these equations we obtain that the density
of active links p = 2(x;x2 + x1x3 + x0x3) = 2[x1x + (x1 +
x)(1 — x; — xp)] decays as

p(t) ~ 2[1 —x1(0)]e” (C5)

in the long-time limit # >> 1, after a small perturbation. This
exponential relaxation of p is quoted in Sec. IV D 2.

APPENDIX D: APPROACH TO STABLE ATTRACTORS
FOR THE CASE M =2 AND g = 2 ON COMPLEX
NETWORKS

Here we show that, for an arbitrary initial condition
m(0) > 0 and p(0) > 0, m(¢) —> 1 and p(t) = a[l — m(2)]
asymptotically, that is, in the limit ¢ >> 1.

To show this, we first note that dm/dt as given by the
RHS of Eq. (41a) does not have any zeros in 0 < m < 1, is
continuous in m, and in particular is strictly positive (¢; > 0
duetop_; < 1)for0 <m < 1and p # 0. It is reasonable to
conclude that m tends to 1 in the long-time limit.

Then, using this result we find from Eq. (41b) that dp/dt
is negative for large ¢, given that the last term in Eq. (41b)
dominates as m approaches 1. We note that ¢4 > O for the
networks in our simulations (we have u +2u_; > 3 for
DRRGs and ER networks with mean degree n > 2). Thus
p tends to 0. Therefore, the point (1,0) is an attractor of
the dynamics for an arbitrary initial condition m(0) > 0 and

p(0) > 0. Note that (1,0) and (—1,0) are not fixed points
because the RHSs of Egs. (41) are not defined for m = %1 and
p=0.

Let us now define a new variable u = p/(1 — m?). We then
have

.= m?)p + 2mpri
- (1 —m?)?

, (D1)

which becomes

it = ufcy + csu + [(2c) — co)m® — c4)u?} (D2)

after replacing the expressions for m and p from Egs. (41).
The fixed points of Eq. (D2) satisfy the relation

w{[(cs — 2c)m? + c4lu® — c3u — ¢} = 0. (D3)

The fixed point u* = 0 corresponds to the solutions p =0
and m # %1. This represents the line of unstable fixed points
(m, 0) (with —1 < m < 1) of Egs. (41).

The other two fixed points are

c3 £ /e +4l(cs — 2¢1)m? + caler
U4 = . (D4)
2[(cs — 2¢1)m? + c4]
For i > 2 we have ¢4 > 0, and ¢, > 0, and thus u_ < 0 for
—1 < m < 1, independent of the sign of (c4 — 2¢1)m? + c4.
However, the solution #_ < 0 is nonphysical because it gives
p<0forO<m<1l,andm > 1 for p > 0.

Then, the physical solution u#; > 0 is obtained under the
condition ¢4 > ¢y, which we find to be fulfilled for & > 4 in
DRRGs and p 2 3.2 for ER networks. If these conditions
hold, then we find in the t+ — oo limit that m — 1, and
o(t) — a[l — m(t)] to first order in 1 — m < 1. The constant
o is given by o = 2u (m = 1), i.e., we have

c3 ~|—,/c§+8(c’4 —c1)c

o = £
2(c4 — 1)
as said in Eq. (45). Finally, as we are interested in the behavior
close to (1, 0), we can define a function €(¢) that satisfies 0 <
€(t) < 1 and rewrite m and p to first order in € as m(t) =
1 —e()and p(t) = o[l — m(t)] = we(?).

(D5)
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