
PHYSICAL REVIEW E 109, 034304 (2024)

Collective group drift in a partial-differential-equation-based opinion
dynamics model with biased perception kernels
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In the age of technology, individuals accelerate their biased gathering of information, which in turn leads
to a population becoming extreme and more polarized. Here we study a partial-differential-equation model for
opinion dynamics that exhibits collective behavior subject to nonlocal interactions. We developed an interaction
kernel function to represent biased information gathering. Through a linear stability analysis, we show that biased
populations can still form opinionated groups. However, a population that is too heavily biased can no longer
come to a consensus, that is, the initial homogeneous mixed state becomes stable. Numerical simulations with
biased information gathering show the ability for groups to collectively drift towards one end of the opinion
space. This means that a small bias in each individual will collectively lead to groups of individuals becoming
extreme together. The characteristic time scale for a group’s existence is captured from numerical experiments
using the temporal correlation function. Supplementing this, we included a measure of how different each
population is after regular time intervals using a form of the Manhattan and Euclidean distance metrics. We
conclude by exploring how wall boundary conditions induce pattern formation initially on the most extreme
sides of the domain.
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I. INTRODUCTION

The study of pattern formation dynamics in nature reveals
to us how a collection of interacting constituents come to-
gether to form unique spatial structures and maintain complex
spatial dynamics. The development of modeling techniques
for natural systems have lead to the modeling of systems
such as social dynamics in which the constituents are complex
human beings [1,2]. In particular, the dynamics of how people
come to an agreement or disagreement to form groups is
very similar to the processes of particle aggregation seen in
nature. An understanding of structural dynamics of our society
is beneficial for predicting social trends of large behavioral
groups and in engineering solutions to prevent or alleviate
formation of groups with extreme beliefs.

Extremism can arise in public opinions from social interac-
tions and from consuming extreme media [3]. When possible
choices become extreme, deliberation of those opinions leads
to increased group polarization [4]. In social interactions, in-
dividuals copy each other’s opinions, which leads to a growth
of extremism [5]. Uncertainty in deliberation of opinions has
been studied to show the impact that contact with extreme
individuals can have on open-minded individuals [6]. The
conclusion here is that some populations tend to be drawn to
exotic or eccentric opinions. Studies on social media analysis
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capture how post interactions are more prevalent on those that
display eccentric ideology [7].

In general, the expected behavior of any model of opinion
formation is the dynamic separation of a mixed or uniform
state into two or more distinct groups [8]. Many established
methods for modeling this take a discrete approach [1,2]. The
voter model, for example, is a pairwise interaction model
often studied on a social network with discrete opinion val-
ues. This is a convenient approach under the assumption that
opinions take on a discrete number of possibilities (perhaps a
yes-no question). However, when there are exceedingly large
possible opinions, or large populations, it makes sense to
approach modeling the system with a continuum.

Some continuous models involve interaction in a spatial
domain where interactions are determined only if two individ-
uals are close enough together. Bounded confidence models
assume there is no interaction between opinions beyond a
certain distance [9]. Deffuant et al. [10] proposed a contin-
uous analog to the voter model in which the opinion variable
takes on a continuous state, and the interactions depend on
the distance between two selected opinions. Another popular
bounded confidence model is that of Hegselmann and Krause
(HK) [11]. The HK model is very similar to the Deffuant
model in that interactions are based on a distance threshold.
However, instead of pairwise interactions, the HK model deals
with an all-to-one interaction. Every opinion inside the range
of a selected individual will influence their motion in the
opinion space. The goal of the HK model is to represent
meetings or rally dynamics in which lots of information is
shared before an individual makes a decision. Modifications
to the Deffuant and HK models have been made on adaptive
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networks to capture dynamic social structures [12,13]. Studies
of noise in HK dynamics shows how a phase transition occurs
depending on the radius of interaction [14]. This is but another
examination of when and how groups form in opinionated
systems.

Increased access to information through resources such
as the internet, web search engines, social media, and now
AI chat bots allow people to interact nonlocally by sharing
opinions even if the impact is weak [15]. The Deffuant model
can be modified to an all-to-all interaction making it global
[16], however, the interactions remain binary. Modifications
to interaction functions is a method used for studying view
points of populations and their reaction to information they
gather [17]. At the population distribution level, Sayama [18]
proposed a partial-differential-equation (PDE) model based
on nonlocal information gathering using an interaction kernel
function. Sayama showed that the opinion distance between
groups depends on the width of the interaction function. The
Sayama model also included diffusion to account for random-
ness in human behavior. Diffusion is a mechanism that has
been studied in the context of human behavior [19].

Each of the models above qualitatively describe the process
of a mixed population separating into distinct groups. The
major issues, however, are that they assume symmetric inter-
actions and the resulting groups fall into static equilibrium and
remain unchanged forever. This behavior is not representative
of real social systems in long temporal scales. For example,
political polarization displays particularly interesting behav-
ior [20–22] apart from steady-state solutions observed in the
models above. We do not observe the growth of extremism or
the feature that people and groups change. Bias compromise is
a social process not often captured in opinion dynamic models
[23].

Here we capture collective group motion by introducing
the mechanism of bias where a population will interact more
strongly to some opinions over others. We use Sayama’s
PDE-based model focusing on how changes in perception of
information impact the dynamics. This is done by introducing
an interaction kernel function subject to a bias parameter that
weighs opinions to the right end of the domain more heavily
than opinions on the left. For instance, the right end of the
space could represent the eccentric opinions and the left end
more traditional. The shape of the interaction kernel function
goes from odd symmetric to represent a completely unbiased
population to even symmetric to represent a population that is
heavily biased.

Subject to this biased kernel function, we conduct a linear
stability analysis to show that the resulting dynamics of a
homogeneous perturbed state can lead to stationary pattern
formation as well as dynamic traveling waves not previously
studied. We also show that a region of stability for the ho-
mogeneous state emerges for heavily biased populations. We
ran a series of numerical simulations to demonstrate dynam-
ics such as collective group drift that also displays many
dislocation defects where groups merge. After the patterns
formed, we measured the temporal correlation to study how
the popularity of opinions may change over time. On average,
with some amount of bias, groups shift with different speeds
leading to regions in the opinion space becoming less popular.
Measurements of the temporal correlation show the time scale

at which this can occur. We also studied how the distributions
change after regular time intervals using the Manhattan dis-
tance (L1-norm) and Euclidean distance (L2-norm) metrics.

Lastly, we explore the effect boundary conditions have on
the group formation. The studies above use periodic boundary
conditions for ease of simulation, however, we are interested
in how the structure of the domain may impact the groups
that form. We do so by running simulations with Dirichlet
boundary conditions. This is to simulate a scenario in which
there is an absolute maximum and minimum for how extreme
an individual can be.

II. METHODS

The model by Sayama [18] seeks to account for two key
behaviors that govern opinion formation: random choice and
an attraction towards popular choices. Modeling this in a
continuous space time takes the form of a diffusion-migration
model

∂P

∂t
= DP∇2P − c∇ ·

(
P

∫
R

P(x + y, t )g(y)dy

)
, (1)

where P is the population density as a function of opinion
space and time, DP is the rate of diffusion, c is the mi-
gration rate due to information aggregation, and g(y) is the
interaction function (perception kernel function) taken over
a region R (in one dimension, this is taken to be the radius
of interaction). The migration term is nonlocal allowing each
position in space to sample the state of opinions all around.
The nonlocal interaction property plays the role of increased
access to information. Mathematically, it is represented by
the cross correlation between the opinion distribution and the
interaction function. It can be interpreted as the total force
on an individual subject to all the nearby populations. Sam-
pling the opinions far away from your opinion is as easy as
a web search revealing articles, videos, and more types of
media available. The population density P(x) at opinion x is
influenced by nearby populations in the opinion space, each
of which is weighted by the perception kernel function g(y).
Alternatively, it can be thought of as the range of influence the
population with opinion x has on its neighbors.

It is interesting to note that Eq. (1) can be reduced to the
following form of a conservation law:

∂P

∂t
+ ∇ · J = 0, (2)

where J is the population flux accounting for both diffusion
and migration toward nonlocal choices,

J = −DP∇P + cP
∫

R
P(x + y, t )g(y)dy. (3)

The significance here is that the model assumes a constant
total population. This modeling decision is common when
studying a predefined social network from data, however,
it may not accurately account for the fact that populations
fluctuate.
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FIG. 1. Examples of the functional forms of the perception kernel function Eq. (4) with μ = σ = 1. At the extrema, b = 0.0 the kernel
function shape is odd symmetric representing a fully unbiased consumer of information, and b = 2.0 the population completely repels the
left-sided opinion states representing aversion. The horizontal axis can represent relative eccentricity to the point y = 0. This kernel function
is cross correlated with the opinion distribution to obtain the direction of migration in Eq. (1).

A. Pattern forming instability with biased interaction
kernel function

We consider a form of the perception kernel function g(y)
that can be either unbiased, moderately biased, or heavily bi-
ased. An odd-symmetric perception kernel function represents
a fully unbiased population that considers information equally
from the right and from the left. Human actors are not always
unbiased, so we introduce a perception kernel function with a
bias parameter b ∈ [0, 2]. The range outlines representations
from completely unbiased (b = 0) to heavily biased (b = 2).
The functional form of the kernel function is given by

g(y) = e−( y−μ

σ )2 + (b − 1)e−( y+μ

σ )2

, (4)

and shown in Fig. 1. The parameters μ and σ are included
for generalization of enhanced information gathering similar
to Sayama [18]. Without losing generality of our result, we
choose to keep these fixed at μ = 1 and σ = 1. Note that this
choice in parameters does induce a dimensionality in terms of
σ . For instance, x → x/σ and t → t/σ . Incidentally, this does
not change the qualitative results we observe from numerical
simulation thus we forwent a dimensional reduction analysis.

The interesting part of Eq. (4) is that bias introduces
dynamics such as self-propelling motion and aversion (repul-
sion) that is not often integrated in opinion dynamics models.
By self-propulsion we mean that the interaction kernel func-
tion g(y) is nonzero at the origin. This results in the advection
term in Eq. (1) (second term) causing motion simply due to
a population interacting with itself. This may be that some
populations want to change their opinion regardless of the
state of opinions nearby.

The spatial dimension in Eq. (1) represents an opinion
on a continuous scale. The interpretation of position x could
be political, for instance, where a person lands relative to
the right-wing to left-wing spectrum. Alternatively, we can
think of the spatial position representing the magnitude of
eccentricity assigned to an opinion, x = 0 being standard or
uninteresting opinions and x = L being the most extreme or
eccentric opinions. Then, a drift to the right would capture
a population’s preference toward more eccentric or extreme
opinions.

To study the onset of pattern formation in Eq. (1), consider
an infinitesimal perturbation along the spatially extended di-
rection (here to be the x direction) to a homogeneous state
Ph. Substituting P(x, t ) → Ph + �P(t )eikx assumes periodic

structures and also alleviates the model of spatial deriva-
tives. This allows us to derive a linear model in terms of the
amplitude of perturbation �P. We choose the shape of the
perturbation to be a complex amplitude to achieve the most
general result in the linear model.

B. Local approximation

Dynamically speaking, information aggregation serves as
an attractive force between regions in the opinion space. This
effectively models the cooperation aspect in social systems.
The initiation of group formation depends on the shape of the
biased interaction kernel function g(y). This is not inherently
clear from the nonlocal model Eq. (1). We seek to decompose
the nonlocal term to recover local dynamical properties.

The nonlocal information aggregation term refers to the
following: ∫

R
P(x + y, t )g(y)dy. (5)

Assume that the region of interaction R is small compared to
the length of the opinion space. Therefore, y is also very small,
so we can Taylor expand the distribution function (dropping
the t for clarity)

P(x + y) ≈ P(x) + ∂xP(x)y + 1
2!∂

2
x P(x)y2 + . . . (6)

Making this substitution in the model allows us to factor
out the dependence on the distribution P(x, t ) in the integral.
Inside the integral will then contain a series of moments of
the interaction kernel function, terms of the form yng(y). At
the same time the population distribution is made local. The
model then contains an infinite series of higher-order deriva-
tives. As an approximation, the series is truncated within
sufficient enough terms. The number of terms we will use in
this approximation is two

P(x + y) ≈ P(x) + ∂xP(x)y, (7)

for a baseline look at the local representation of population
aggregation.

C. Numerical simulation and measurements of dynamics

To test the results of linear stability analysis, we conduct a
series of numerical simulations. We used a standard method to
discretize the continuous space into N equally sized cells, and
for the temporal evolution we used a forward-Euler algorithm.
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Simulating PDEs can lead to numerous numerical complica-
tions. To combat this, we conducted a series of trial and error
test scenarios to achieve spatial and temporal resolutions,
�x and �t , that produced qualitatively robust behavior. The
simulations are conducted in the JULIA 1.8.2 programming
language using only the base libraries. Source code is avail-
able online [24]. PDEs of pattern forming nature tend to have
a dependency on the ratio between the length of domain and
spatial resolution. Our simulations maintain the same length
L of the opinion space and same resolution �x. This is so we
are studying the effect of perception kernel function shapes.
We also keep the ratio of the diffusion rate and migration rate
DP/c constant, and we only vary the bias parameter b in the
kernel function.

Here we use the temporal correlation function to capture
the temporal change in the popularity distribution given the
different amounts of bias in information gathering. The tem-
poral correlation function is defined as

C(x, τ ) = 〈P(x, t )P(x, t + τ )〉t − 〈P(x, t )〉2
t , (8)

where the angled brackets indicate an average over t . We
begin the measurement of temporal correlation sufficiently
long after initial groups are formed, which we set to be τ = 0.
To avoid picking any one spot, we calculate the correlation at
each position in the opinion space and then take the average
〈C(τ )〉x this time over x. This results in one value for the
correlation after time τ . We also normalize the correlation by
dividing through by the initial value 〈C(τ = 0)〉x.

The temporal correlation function allows us to measure
changes in the opinion distribution through time and measure
characteristic time scales for the motion of collective groups.
We expect the steady-state solutions, whose patterns do not
change, to have a one-to-one correlation over the course of
the simulation. This indicates that the population distribution
remains in the same ordered configuration during the course
of the simulation. We run multiple simulations for each pref-
erence setting to improve accuracy of the result. It is also
possible that spatial defects such as dislocation (merging) of
two groups may occur long after initial patterns are formed.
This will have a minor impact on the correlation.

In addition to the temporal correlation, we define another
measurement through the use of distance functions. We wish
to characterize how different a distribution is to a future distri-
bution at regular time intervals t → t + �. If the population
reaches a steady state, then the distance between subsequent
measured distributions will be zero (or very close to zero if
merging occurs). If the population returns to the stable homo-
geneous state, the total amount of changes will also go to zero,
however, in between these extremes there will be a peak at
which the distribution is most different in that particular time
interval. The first distance we use is the Manhattan distance
(or L1-norm) defined as,

dM =
∫ L

0
|P(x, t ) − P(x, t + �)|dx. (9)

The other distance is the Euclidean distance (or L2-norm),

dE =
√∫ L

0
[P(x, t ) − P(x, t + �)]2dx. (10)

After collecting data for many bias parameter b settings, we
average the distances over time to achieve a distance measure
as a function of b.

D. Impact of boundary conditions on unbiased group formation

By abstracting the opinion values into a continuous space,
we must also consider the structure of the space and its
bounds. For the simulations of the bias interaction model,
we are making use of periodic boundaries for ease of simu-
lation. However, opinions may not exist on a circle, but rather
they may go on infinitely in either direction or they may be
bounded by a hard wall. The scenario with infinite boundary
conditions is interesting in terms of extremism purposes be-
cause groups will drift forever, however, it is easy to see the
dynamics will not be tremendously different from the periodic
scenario.

Here we explore the situation in which the opinion space
has a defined size and the boundary values are of Dirichlet
type. We will give the distribution a value of zero on the
boundaries to indicate that individuals cannot have opinions
outside a predefined region

P(0, t ) = P(L, t ) = 0. (11)

This change in boundary conditions will have an impact on
pattern formation. In particular, large gradients are expected
to form on the boundaries at the start of the simulation. Nu-
merical simulations are conducted to study the effect hard
boundary conditions have qualitatively on the formation of
opinion groups.

III. RESULTS

A. Pattern formation instability with biased interaction
kernel function

Keeping only linear terms of �P and setting Ph = 1, the
resulting linear model is given by

d�P

dt
=

(
−DPk2 − ick

∫
g(y)dy − ick

∫
eikyg(y)dy

)
�P.

(12)

Details of this derivation are in Appendix A. The growth rate
� of the perturbation is a function of the spatial wave number
and corresponds to the term inside the parentheses

�(k) = −DPk2 − ick

(∫
g(y)dy + ĝ(k)

)
, (13)

where ĝ(k) is the Fourier transform of the perception kernel.
Given Eq. (13), the dispersion relation depends on the

shape of the perception kernel g(y) and its Fourier transform.
Assuming the perception kernel g(y) is a real valued function,
the Fourier transform can be decomposed into a real and
imaginary part,

ĝ(k) =
∫

g(y) cos (ky)dy + i
∫

g(y) sin (ky)dy. (14)

Doing so identifies that the amplitude growth rate can have
a purely real and purely imaginary component not previously
reported [18]. This is due to our choice in perturbation having
a complex valued wave form. If the perception kernel g(y)
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FIG. 2. A plot of the real part of the dispersion relation from
Eq. (15) for a variety of values for the bias parameter b keeping the
ratio DP/c = 1/2. Unbiased populations (b = 0.0) have the largest
possible wave number leading to the smallest possible characteristic
wavelength. As the population becomes more and more biased, the
largest wave number decreases and the characteristic wavelength will
increase leading to greater polarization. In this case, a bias value of
b = 1.0 is the transition point.

is odd symmetric for an unbiased population, then the cosine
integral in Eq. (14) goes to zero, and groups can form when the
real part of �(k) [Eq. (13)] is greater than zero. Conversely,
if the perception kernel g(y) is even symmetric for a heavily
biased population, then the sine integral in Eq. (14) goes to
zero and the only real part in Eq. (13) left is always negative.
This means that a heavily biased population will never form
groups.

The results of the linear stability analysis for our interac-
tion kernel function yields the following dispersion relation:

�(k) = − DPk2 + ck
(2 − b)

2
e−k2/2 sin (k)

− ickb

(
1

2
e−k2/2 cos (k) + √

π

)
. (15)

Figure 2 is a plot of the real part of � as a function of the wave
number k. The shape of this stability curve is consistent with
other conservative systems [25]. The transition from stable to
unstable starts with small wave numbers first. This emits large
wavelength patterns,

λ = 2π

k
. (16)

Lightly biased populations have more available wave num-
bers with positive growth rates meaning they can form groups
more readily. A population that is too biased will no longer be
able to form groups as the homogeneous solution becomes
stable. In this example, the unbiased (b = 0.0) actors will
self-organize according to the shortest possible wave length
between choices, λ = 2π/kmax. At this point the distance be-
tween groups will be the smallest. As we increase the amount
of bias b, then the largest wave number becomes smaller and
the characteristic wave length will grow.

While the dispersion relation reveals whether pattern for-
mation is available to the social system, we seek an expression
for what bias setting no longer facilitates group formation; we
will call this the critical bias threshold or setting. We can do so

FIG. 3. Plot of two boundaries showing the regions of stability
and instability for wave numbers over the range of bias values b. The
boundary is plotted from Eq. (17). As the ratio DP/c decreases, or
as the impact of diffusion becomes less and less strong, the region
of possible pattern formation (corresponding to the unstable region)
grows.

by the neutral stability analysis. Neutral stability is defined by
the boundary between the stable and unstable regions of the
model where Re(�) = 0. This leads to an expression for the
bias as a function of the wave number b(k). The critical bias
then corresponds to the value at which the last wave number
transitions from unstable to stable. For a conservative system
like the model here, this corresponds to b(k → 0).

There is a balance maintained by the diffusion and migra-
tion. This is determined by the ratio of the diffusion rate and
the migration rate DP/c. From Fig. 3, populations in which
mutual interactions are more impactful (ratio DP/c decreases)
are more readily eager to form groups given for any level of
bias. This is reflected in how the boundary shifts to the right.
The equation of the boundary comes from the neutral stability
analysis and takes the form

b(k) = 2 − 2DP

c
kek2/2 csc k. (17)

The details of this derivation are found in Appendix A. This is
defined over the region b ∈ [0.0, 2.0] representing the range
of an unbiased population to a heavily biased one.

We can calculate the transition point as the critical bias
setting that determines stability. The critical bias setting is
achieved by taking the limit of Eq. (17) as k → 0. The result
takes the form

bc = 2 − 2DP

c
. (18)

For example, when DP/c = 0.5, the critical transition point is
bc = 1.0 for a moderately biased population. This matches the
numerical result in Fig. 2. Details of this limit derivation are
found in Appendix B. Here, the dynamics now boil down to
two possible regions. That is pattern formation where b/bc <

1 and no pattern formation where b/bc > 1.
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FIG. 4. An array of simulation runs by varying the bias parameter b and keeping the ratio DP/c = 0.16. This choice of parameters is to
show more slowly how the group motion tilts before the homogeneous solution becomes stable at b/bc > 1. Here, the length of the opinion
domain L = 62, spatial resolution �x = 0.062, and temporal resolution �t = 0.001. When b = 0.0, the complex component of the dispersion
relation is 0 and thus the resulting patterns are stationary. On the other end when b = 2.0, there are no positive real valued growth rates for any
wave number resulting in a uniform distribution with no patterns. In simulations between these extremes, we observe a collective group drift
towards one end of the domain. The transition point for this simulation occurs at b = 1.68 in alignment with Fig. 3.

B. Local approximation

The result of localizing the nonlocal term leads to a new
PDE model with local dynamics

∂P

∂t
= DP∂2

x P − c∂xP
∞∑

n=0

an

n!
∂n

x P − cP
∞∑

n=0

an

n!
∂n+1

x P, (19)

where an refers to the nth moment of the bias interaction
kernel function g(y). The details of the derivation are found in
Appendix C. To gain some insight from this model, consider

only the terms up to n = 1

∂P

∂t
= DP∂2

x P − 2ca0P∂xP − ca1
(
∂xP2 + P∂2

x P
)
. (20)

Population aggregation behaves like the last three terms. Of
particular interest, the last term is nonlinear diffusion with a
negative coefficient. Antidiffusion seems to be a mechanism
for opinion dynamics. When one opinion is more popular than
others, the population will seek to aggregate around it. Simi-
lar mechanisms are found in approximations of the Deffuant
model [26]. To achieve pattern formation in this localized
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FIG. 5. Measurements of the average temporal correlation func-
tion ranging from an unbiased population b = 0.0 to a moderately
biased population b = 1.0. In this experiment (DP/c = 1/2), b = 1.0
is a transition point, so we do not include the simulations that return
to the homogeneous state. The values plotted are those up until the
system loses temporal correlation. The more biased a population is
the quicker the drop off.

model, we would suggest including terms at least up to a
fourth-order spatial derivative n = 3.

C. Numerical simulation and measurements of dynamics

Simulating the model outright with the new perception
kernel reveals new dynamic patterns. For kernels that are no
longer perfectly unbiased, the resulting groups experience a
collective drift motion during and after group formation; see
Fig. 4. Lightly biased groups drift to the right toward more
eccentric opinions very slowly, however, with greater bias, the
speed of the drift increases. This is evident in the amount of
tilt or the angle in space time that increases with greater bias.
Interesting to note, more popular groups (taller peaks) tend
to drift faster due to the nonlinearity in the advection term in
Eq. (1). As a result, if the simulation were left to continue
for a much longer time, we would see all the peaks coalesce
into one group due to the periodic boundary conditions. Given
infinite boundary conditions, some groups may end up getting
left behind to the left while larger groups drift faster away
to the right. The critical transition point in the simulation in
Fig. 4 is a bias value b = 1.68.

Figure 5 shows the characteristic time for biased popula-
tions to lose temporal correlation. A fully unbiased population
remains in roughly the same configuration through time as
seen when b = 0.0, so the temporal correlation stays at 1.
However, introducing a small amount of bias will cause the
population to change its order slowly. More and more bias
causes the population to change up opinions more and more
quickly. This captures the average speed at which a population
will drift to more eccentric opinions. These dynamics appear
to be understudied in the realm of opinion dynamics.

When considering consistent time periods t → t + 1, pop-
ulations with a small amount of bias, b ≈ 0.25 in particular,
appear most different; see Fig. 6. The bias setting for the
population that changes the most is subject to vary depending
on the time interval we choose. Say we survey a population
once a year, then we can measure how different the opinions

FIG. 6. Measurements of the Manhattan distance (blue) and Eu-
clidean distance (red) on average from time t → t + 1 for various
levels of bias. The simulation parameters are the same for the nu-
merical simulations in Fig. 5 to get a profile that was not too heavily
skewed. We measured the distance between ten different time steps
and five separate simulations (totaling to 50 measurements for each
point in the graph). Increasing the number of simulations will smooth
out the curve.

are through time and map it to how biased the population
ought to be. By modifying the time between sampling, the
peaks in Fig. 6 will shift right or left based on allowing
more or less time, respectively, for the population to drift. An
approximate analytical scheme for obtaining this bias setting
may be subject of future investigation and mapping data could
help connect this result to the real world. The time scale
from t → t + 1 is what takes a population of that level of
bias to drift from their initial group position to the position
of a new opinion that was previously unpopular. Populations
with greater bias become stable to homogeneous solutions so
the distribution of opinion population through time would not
change. The initial mixed opinion state stays mixed through-
out time. The significance of this measurement is that if you
sample a population with surveys on a regular basis, you may
be able to deduce how biased a population is.

D. Impact of boundary conditions on unbiased group formation

When we place fixed boundaries on the opinion space,
those on the edges have fewer opinions to interact with on
one side. What we observe is that groups quickly form toward
the most extreme sides of the space (Fig. 7). Giving a mixed
population, say for a case study, a new topic to debate on, the
most definitive opinions form first due to the large gradients
generated by the boundaries. Essentially, this represents the
definitive “strongly agree” or “strongly disagree” groups that
form. After that, as those in the middle continue deliberating,
we start to see moderate groups forming towards the center.

With bias in the population, groups no longer have the
option to wrap around the domain. As a result, groups begin
to pile up on the right end of the space. Eventually, all partic-
ipants come to an agreement in extremity. We do not observe
any kind of rebound dynamics because the population as a
whole keeps its preference toward opinions on the right.

We did not test free boundaries conditions in this study,
but we expect the same qualitative behavior as the periodic
boundary simulations. The difference there is that the opinion
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FIG. 7. A series of population density distributions at differ-
ent times simulated with Dirichlet boundary conditions P(0, t ) =
P(L, t ) = 0. The solid black line is for b = 0 and the dashed line
is for b = 0.4. Initial pattern formation occurs towards the edges of
the opinion space and propagate inwards.

groups can drift outside of our window on forever. Another
difference is that instead of the biased groups all coalescing
into one, large groups may be able to escape from slower
moving groups. The question that then comes up is what it
means for the opinion domain to be infinite. Extending to
higher dimensions may be a better approach to this.

IV. DISCUSSION

Modeling social systems at different scales not only helps
in understanding the systems themselves, but also in tackling
the fundamental properties of self-organizing dynamics. We
examined two modeling extensions and applied them to a
PDE-based model of opinion dynamics. Those were biased
information gathering and the effect of boundary condition on
pattern formation. The partial differential equations approach
seeks to study the problem of how people form opinions
at a macroscopic description differing from those studied
in complex social networks. This is especially beneficial
when considering large populations of which constructing
an explicit social network is impossible and computationally
demanding. From the analysis presented here, bias (mod-
eled as an asymmetric dynamical interaction) may to be a

mechanism behind the increased interest in the formation of
extreme groups.

Even small amounts of bias induces a collective group
drift in the resulting groups such that the distribution slowly
moves towards the eccentric end of the spatial domain. The
linear and neutral stability analyses demonstrate the potential
for pattern formation given parameter settings along with the
critical value for the bias parameter where group formation
becomes no longer possible. Numerical simulations show that
as groups drift, the more popular opinions tend to drift faster
and merge with smaller groups. On average, due to this mo-
tion, the organization of the opinion distribution will change
at different rates. The temporal correlation function showed
how the speed at which distributions change depends on the
amount of bias in the population. More biased populations
will deviate more rapidly. Through use of a periodic distance
measurement, we may be able to determine how bias a popu-
lation is.

By treating opinion dynamics as a spatial system, the
boundaries to the space become important for the dynamics to
unfold. We found that fixed boundaries force opinion forma-
tion more readily on the boundaries before moderate opinions
are formed. This results in a greatly polarized population at
the beginning. Due to the characteristic distance desired by
the model, it is also observed that the groups on the edges
are slowly forced closer and closer to the extreme boundaries.
Boundary conditions may be enough to push groups out to the
extreme ideologies.

The collective group drift is particularly interesting in that
we may be seeing large masses of people change their opinion
in sync towards an eccentric direction. This could be related to
discussions of increased polarization by having two peaks that
drift in opposite directions. We did not observe these dynam-
ics in the model presented here because the bias perception
kernel function is only bias toward one direction. In reality,
the shape of the perception kernel function may depend on the
position in the domain. That way the distance in opinion space
between the groups would increase through time. Boundary
conditions play a role in limiting how far they can go. We
utilized periodic boundary conditions to get a sense of long-
term behavior, however, we note how the structure of opinion
spectra may not be periodic in nature. For instance, they may
be infinite, in which case, the drift would go on forever toward
greater and greater extremism. High dimensions may help
to understand the meaning of this scenario. Also, due to the
nonlinearity in migration speed, it may be possible that some
smaller groups are left behind. It may also be possible to
have hard boundaries from which drifting groups rebound off
of and drift back in the opposite direction much like active
particle dynamics. Again, this is not observed in our model
because bias is geared towards one direction only.

We also note how populations in the real world do not
remain constant as the current model assumes. For instance,
Eq. (1) follows a conservation law implying that the pop-
ulation in the opinion domain is constant. The model here
may represent an already predefined social network whose
interactions can drive this particular group to develop extreme
ideas. Including a simple population growth reaction term
may be sufficient for unique dynamics such as spatiotemporal
chaos. We previously studied population kinetics through a
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logistic model. This reaction term alone causes the peaks to
be squashed by overgrowth and the troughs to grow seemingly
out of nothing [27]. It is anticipated that additional reaction
terms will lead to additional spatiotemporal dynamics of in-
terest.

More research should be focused on heterogeneous pop-
ulations to understand the effect of mixing different types of
people. This could be by letting the interaction kernel function
depend on the location in space x. That way each position is
subject to a different interaction kernel function representing
varying degrees and directions of bias in one simulation. The
opinion dynamics scene needs more modeling efforts into
nonstatic pattern formation as shown here.

Due to the stochastic nature of human behavior, it may be
useful to relate the model studied here to statistically moti-
vated models such as the kinetic model from Toscani [28],
where we note the formalism using Focker-Planck models.
The local limit of the model studied here can be further studied
to understand pattern formation in single-species systems.

Another potential next study is to introduce some form of
social impact gradient in the background to drive the system.
The idea here is similar to a temperature gradient in a system
such as Rayleigh-Bénard convection. Another way to drive
the system might be with additional perturbations at regular
time periods. This would represent public events that shock
the population.

One of the current issues in social dynamical modeling is
its relationship with empirical data. Connecting this research
with experimental data is a tough task. A first step is to find a
mapping between our results to other models and real-world
data. Within data science, there are techniques of semantic
analysis based on social media reactions or comments that
may have an insight into the shape and structure of an indi-
vidual’s perception of information [7]. Without knowing the
shape of the perception kernel, we can make assumptions and
study the possible resulting behavior. The actual shape of the
kernel may be determined experimentally through surveys or
interpolated from data on social media.

A lot of experimental probes into opinion dynamics are
also focused on social networks in how people interact. It may
be beneficial to measure macroscopic trends to see how the
distribution of opinions may change. Related to this study, it
would be to measure the temporal correlation function or the
distribution distances from experimental data. One approach
could be to quantify how eccentric political opinions have
changed over a few decades. In the U.S. for instance, we
have seen political majority deviate every few years based on
presidential elections.

Modeling complex human interactions through continu-
ous opinion dynamics is a very flexible and robust way to
study how people come to agreements and disagreements. We
show here how adjustments to a simple model can lead to
new dynamics not typically discussed in opinion dynamics.
This leads to new potential directions to explore for trying
to understand social interactions. Continuing to improve this
understanding will lead to better social policies that limit
extreme or dangerous group formation.
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APPENDIX A: LINEAR STABILITY DETAILS
WITH BIASED INTERACTION KERNEL

Starting with the model equation in one dimension

∂P

∂t
= DP

∂2P

∂x2
− c

∂

∂x

(
P

∫
P(x + y)g(y)dy

)
, (A1)

we make a small amplitude, time-dependent perturbation to
a homogeneous solution. This leads to the substitution P →
Ph + �P(t )eikx . The expansion comes out to

eikx d�P

dt
= −DPk2�Peikx − ick�Peikx

∫
(Ph + �Peik(x+y) )g(y)dy − ick(Ph + �Peikx )

∫
�Peik(x+y)g(y)dy, (A2)

eikx d�P

dt
= −DPk2�P − ickPh�Peikx

∫
g(y)dy − ickPh�Peikx

∫
eikyg(y)dy, (A3)

d�P

dt
=

(
−DPk2 − ickPh

[∫
g(y)dy +

∫
eikyg(y)dy

])
�P. (A4)

In the second step, we eliminated any term containing order
�P2 as �P is already small. We eliminated the exponential
from each term to simplify further. The homogeneous steady
state Ph is arbitrary and can be set equal to 1 to clean up
the result. The end result is a linear model in terms of the
amplitude perturbation with growth or decay rate as a function
of k,

�(k) = −DPk2 − ick

(∫
g(y)dy +

∫
eikyg(y)dy

)
. (A5)

An analytical form of Eq. (A5) can be obtained through the
use of our particular perception kernel

g(y) = e−(y−1)2 + (b − 1)e−(y+1)2
. (A6)

We chose μ = σ = 1 to simplify the analysis. Note this
choice induces a dimensionality of x/σ , t/σ , etc. Dropping
this dimensional reduction rigor does not change our results
qualitatively. The analytical form can be achieved by perform-
ing the integrals in Eq. (A5), assuming the bounds are infinite
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for ease of calculation∫ ∞

−∞
g(y)dy = b

√
π. (A7)

The second integral is simply the Fourier transform of the
perception kernel g(y). The result after some manipulation is

ĝ(k) = b

2
e−k2/2 cos (k) + (2 − b)

2
ie−k2/2 sin (k). (A8)

All together, the result of the linear stability analysis yields
the dispersion relation

�(k) = − DPk2 + ck
(2 − b)

2
e−k2/2 sin (k)

− ickb

(
1

2
e−k2/2 cos (k) + √

π

)
. (A9)

Plots of the real part for different values of b are shown in
Fig. 2.

We can then use the result from the dispersion relation to
find curves of neutral stability. Since we only care about the
real part for stability purposes, set the Re�(k) = 0 and solve
for b. The result is

b(k) = 2 − 2DP

c
kek2/2 csc k. (A10)

A plot of the boundary along with stable and unstable regions
for given values of b are shown in Fig. 3.

APPENDIX B: DERIVATION OF TRANSITION POINT

A point of interest is at what bias value the dynamics of
a homogeneous solution become stable. From the plots of

the neutral stability curves in Fig. 3, a population that is too
heavily biased will no longer form groups. This occurs at the
intersection of the b axis or when k = 0.

The right-hand side of Eq. (A10) is undefined at k = 0, so
we take the limit as k → 0,

bc = lim
k→0

(
2 − 2DP

c

kek2/2

sin k

)
(B1)

= 2 − 2DP

c
lim
k→0

kek2/2

sin k
. (B2)

The limit can be computed by L’Ĥopital’s rule and found to
go to 1. Therefore the critical or transition point occurs at

bc = 2 − 2DP

c
. (B3)

APPENDIX C: DERIVATION OF LOCAL APPROXIMATION

The nonlocal information aggregation term refers to the
following: ∫

R
P(x + y, t )g(y)dy. (C1)

Assume that the region of interaction R is small compared
to the length of the opinion space. Therefore, x + y is very
close to x, so we can Taylor expand the distribution function
(dropping the t for clarity)

P(x + y) ≈ P(x) + ∂xP(x)y + 1
2!∂

2
x P(x)y2 + . . . (C2)

With this substitution, the nonlocal term is approximated at
the following:

∫
R

P(x + y, t )g(y)dy ≈ P(x)
∫

g(y)dy + ∂xP(x)
∫

yg(y)dy + 1

2!
∂2

x P(x)
∫

y2g(y)dy + . . . (C3)

= a0P(x) + a1∂xP(x) + a2

2!
∂2

x P(x) + . . . (C4)

=
∞∑

n=0

an

n!
∂n

x P, (C5)

where an refers to the nth moment of the bias interaction kernel. Substitute this back into the model Eq. (1),

∂P

∂t
= DP∂2

x P − c∂x

(
P

∞∑
n=0

an

n!
∂n

x P

)
, (C6)

= DP∂2
x P − c∂xP

∞∑
n=0

an

n!
∂n

x P − cP
∞∑

n=0

an

n!
∂n+1

x P. (C7)

[1] C. Castellano, S. Fortunato, and V. Loreto, Statistical
physics of social dynamics, Rev. Mod. Phys. 81, 591
(2009).

[2] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romić, Z.
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