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Scaling properties of the action in the Riemann-Liouville fractional standard map
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The Riemann-Liouville fractional standard map (RL-fSM) is a two-dimensional nonlinear map with memory
given in action-angle variables (I, θ ). The RL-fSM is parameterized by K and α ∈ (1, 2], which control the
strength of nonlinearity and the fractional order of the Riemann-Liouville derivative, respectively. In this work
we present a scaling study of the average squared action 〈I2〉 of the RL-fSM along strongly chaotic orbits, i.e., for
K � 1. We observe two scenarios depending on the initial action I0, I0 � K or I0 � K . However, we can show
that 〈I2〉/I2

0 is a universal function of the scaled discrete time nK2/I2
0 (n being the nth iteration of the RL-fSM). In

addition, we note that 〈I2〉 is independent of α for K � 1. Analytical estimations support our numerical results.
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I. PRELIMINARIES

The kicked rotor represents a free rotating stick in an
inhomogeneous field that is periodically switched on in in-
stantaneous pulses; see, e.g., Ref. [1]. It is described by the
second-order differential equation

θ̈ + K sin(θ )
∞∑
j=0

δ

(
t

T
− j

)
= 0. (1)

Here, θ ∈ [0, 2π ] is the angular position of the stick, K is
the kicking strength, T is the kicking period (that we set to
one from now on), and δ is Dirac δ function. By replacing
the second-order derivative in the equation of motion of the
kicked rotor with a Riemann-Liouville (RL) derivative of
fractional order α [2,3], the RL fractional kicked rotor (fKR)
is obtained [4,5]:

0Dα
t θ + K sin(θ )

∞∑
j=0

δ(t − j) = 0, 1 < α � 2. (2)

Above [2,3],

0Dα
t θ (t ) = Dm

t 0Im−α
t θ (t )

= 1

�(m − α)

dm

dtm

∫ t

0

θτ dτ

(t − τ )α−m+1
,

m − 1 < α � m,

with Dm
t = dm/dtm, 0Im

t f (t ) is a fractional integral given by

0Im
t f (t ) = 1

�(m)

∫ t

0
(t − τ )α−1 f (τ )dτ,

and � is the Gamma function.
The RL-fKR has a stroboscopic version, a two-dimensional

nonlinear map with memory, which is well known as the RL
fractional standard map (RL-fSM) [5]:

In+1 = In − K sin(θn),

θn+1 = 1

�(α)

n∑
i=0

Ii+1V
1
α (n − i + 1), mod (2π ), (3)

where I (t ) ≡ 0Dα−1
t θ (t ), n is the discrete time, and V k

α (m) =
mα−k − (m − 1)α−k . Then, the RL-fSM, given in action-angle
variables (I, θ ), is parameterized by K and α ∈ (1, 2], which
control the strength of nonlinearity and the fractional order of
the RL derivative, respectively. In fact, for α = 2, the RL-fSM
reproduces the celebrated Chirikov standard map (CSM) [6].

Compared with the CSM, which presents the generic
transition to chaos (in the context of the Kolmogorov-Arnold-
Moser theorem), depending on the parameter pair (K, α),
the RL-fSM shows richer dynamics: It generates attractors
(fixed points, asymptotically stable periodic trajectories, slow
converging and slow diverging trajectories, ballistic trajec-
tories, and fractal-like structures) and/or chaotic trajectories
[5,7–10]. Moreover, trajectories may intersect, and attractors
may overlap [7].
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FIG. 1. Average squared action 〈I2
n 〉int as a function of the discrete time n for (a) α = 1.1, (b) α = 1.5, and (c) α = 1.9. Open symbols (full

symbols) correspond to I0 � K (I0 � K). The blue dashed lines, plotted to guide the eye, are proportional to n. The average is over 100 orbits
with initial random phases in the interval 0 < θ0 < 2π . Red full lines are Eq. (9).

Among the available studies on the RL-fKR, e.g.,
Refs. [5,7–10], the analysis of strongly chaotic orbits has been
left unexplored. Therefore, here we undertake this task and
characterize the dynamics of the RL-fSM by computing the
squared average action 〈I2

n 〉 when K � 1.

II. NUMERICAL RESULTS

For the numerical study we wrote a program in FORTRAN90
to compute the orbits of map (3) by straightforward iteration.
Moreover, since the memory property in map (3) forbids
the use of a large number of orbit realizations, instead of
investigating 〈I2

n 〉 directly, to smooth the curves 〈I2
n 〉 vs n, we

compute its cumulative-normalized value:

〈
I2
n

〉
int = 1

n

∫ n

n0=0

〈
I2
n′
〉
dn′. (4)

Specifically, we compute 〈I2
n 〉int for map (3) following two

steps: First we calculate the average squared action over
the orbit associated with the initial condition j as 〈I2

n, j〉 =
(n + 1)−1 ∑n

i=0 I2
i, j , where i refers to the ith iteration of the

map. Then, 〈I2
n 〉int is defined as the average over M = 100

independent realizations of the map (by randomly choosing
values of θ0 in the interval 0 < θ0 < 2π ): 〈I2

n 〉int(I0, K, α) =
M−1 ∑M

j=1〈I2
n, j〉.

In Fig. 1 we plot 〈I2
n 〉int as a function of the discrete time n

for representative values of α in the interval (1,2]: (a) α = 1.1,
(b) α = 1.5, and (c) α = 1.9. Several combinations of param-
eter pairs (I0, K ) are considered, as indicated in the right-hand
side of the figure. From this figure we observe two scenarios,
depending on the initial action I0 as compared with K : I0 � K
(open symbols) or I0 � K (full symbols). Specifically, when
I0 � K , 〈I2

n 〉int ∝ n for all n (see the blue dashed lines), while
for I0 � K , first, 〈I2

n 〉int remains approximately constant and
proportional to I2

0 up to a crossover time n∗, after which 〈I2
n 〉int

grows proportional to n.
From Fig. 1 it can also be seen that the crossover time n∗

depends on both I0 and K , while the dependence of n∗ with α

is not evident. Then, to look for the dependence of n∗ on the
map parameters, in Fig. 2(a) [Fig. 2(b)] we plot 〈I2

n 〉int vs n for
several values of I0 [K] and fixed K [I0]. In both figures we

use α = 1.1. We numerically extract n∗ as the crossing point
between the functions 〈I2

n 〉int = I2
0 and 〈I2

n 〉int = Cn (which is
the fitting to the data in the growing regime); as examples,

FIG. 2. (a), (b) Average squared action 〈I2
n 〉int as a function of n

for (a) K = 103 and several values of I0 (2×103, 4×103, 104, 2×104,
4×104, 105, and 2×105, from bottom to top) and (b) I0 = 105 and
several values of K (4×102, 103, 2×103, 4×103, 104, 2×104, and
4×104, from bottom to top). As in Fig. 1, the average is taken over
100 orbits with initial random phases in the interval 0 < θ0 < 2π . All
data in (a), (b) correspond to α = 1.1. The horizontal red dashed lines
in (a), (b) indicate 〈I2

n 〉int = I2
0 with (a) I0 = 4×104 and (b) I0 = 105,

respectively. The transverse red dashed lines in (a), (b) are fittings
of 〈I2

n 〉int = Cn to the data represented by asterisks (for n � 104)
with fitting constants (a) C = 294 658 and (b) C = 3 984 348. (c), (d)
Crossover time n∗ (c) as a function of I0 for constant K (K = 103)
and (d) as a function of K for constant I0 (I0 = 105). In (c), (d), three
values of α are reported: α = 1.1, 1.5, and 1.9. Red dashed lines
in (c), (d) are power-law fittings to the data of the form (a) n∗ ∝ Iγ1

0

with γ1 ≈ 2 and (b) n∗ ∝ Kγ2 with γ2 ≈ −2. Blue dot-dashed lines in
(c), (d) are Eq. (11).
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FIG. 3. Normalized average squared action 〈I2
n 〉int/I2

0 as a function of the normalized time nK2/I2
0 . Same data sets as in Fig. 1. The red line

is Eq. (10).

see the horizontal and transverse dashed lines in Figs. 2(a)
and 2(b), respectively. Thus, in Figs. 2(c) and 2(d) we plot the
obtained values of n∗ for α = 1.1 but also for α = 1.5 and 1.9.
Figures 2(c) and 2(d) reveal the power-law dependence

n∗ ∝ Iγ1
0 Kγ2 (5)

and the independence of n∗ on α. Power-law fittings of the
data in Figs. 2(c) and 2(d) provide γ1 ≈ 2 and γ2 ≈ −2, see
red dashed lines.

Equation (5) together with the observation that 〈I2
n 〉int ≈ I2

0
for n < n∗ allow us to scale the curves 〈I2

n 〉int vs n. Indeed, in
Fig. 3 we plot 〈I2

n 〉int/I2
0 as a function of the normalized time

nK2/I2
0 (i.e., n/n∗) and observe the collapse of all curves on

top of a universal function.

III. ANALYTICAL ESTIMATION

Now, to support and better understand the scaling per-
formed above, we derive an analytical estimation for 〈I2

n 〉int;
see, e.g., Ref. [11]. From the first line of map (3) we have that
I2
n+1 = I2

n − 2KIn sin(θn) + K2 sin2(θn), so we can write〈
I2
n+1

〉 = 〈
I2
n

〉 − 2K〈In〉〈sin(θn)〉 + K2〈sin2(θn)〉.
Since for chaotic orbits we can assume that 〈sin(θn)〉 = 0, the
term 2K〈In〉〈sin(θn)〉 can be eliminated. Therefore

〈
I2
n+1

〉 = 〈
I2
n

〉 + K2

2
, (6)

where we have used 〈sin2(θn)〉 = 1/2. Then, by noticing that

〈
I2
n+1

〉 − 〈
I2
n

〉 =
〈
I2
n+1

〉 − 〈
I2
n

〉
(n + 1) − n

≈ dJ

dn
,

we rewrite Eq. (6) as the first-order differential equation,

dJ

dn
= K2

2
, (7)

where J ≡ 〈I2
n 〉. Therefore, by solving (7) we can write

〈
I2
n

〉 = I2
0 + K2

2
n, (8)

where we have used J0 = 〈I2
0 〉 = I2

0 and n0 = 0. Finally, by
substituting Eq. (8) into Eq. (4), we can also write down an
explicit expression for 〈I2

n 〉int:

〈
I2
n

〉
int = I2

0 + K2

4
n. (9)

Indeed, Eq. (9) reproduces our numerical data well, as can be
seen in Fig. 1 where we have included Eq. (9) as red lines.

IV. DISCUSSION AND CONCLUSIONS

Given the good correspondence of Eq. (9) and the numeri-
cal data, it is clear that it reproduces the scaling laws reported
in Sec. II, which can be summarized as

〈
I2
n

〉
int =

⎧⎪⎪⎨
⎪⎪⎩

∝ K2n , when I0 � K,

≈ I2
0 , n < n∗

∝ K2n , n > n∗

}
when I0 � K.

Moreover, Eq. (9) can also be used to demonstrate that the
ratio 〈I2

n 〉int/I2
0 is a simple universal function of the variable

n = n/n∗: 〈
I2
n

〉
int

I2
0

= 1 + n, (10)

where the crossover time n∗ is now naturally defined as

n∗ ≡ 4I2
0 K−2, (11)

in agreement with Eq. (5). Finally, in Figs. 2(c) and 2(d), and 3
we plot Eqs. (11) and (10) (see dot-dashed blue lines and red
full lines), respectively, and observe an excellent agreement
with the numerical data.

It is relevant to notice that for strongly chaotic orbits,
K � 1, the average squared action 〈I2

n 〉 for the RL-fSM does
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not depend on the order α of the fractional derivative. Indeed,
the panorama reported here for 〈I2

n 〉 vs n is equivalent to that
of CSM [11,12] as well as that of the discontinuous standard
map [11,13], both with K � 1. This could be understood from
the analytical estimation of Sec. III by noticing that to obtain
the expression for 〈I2

n 〉 we mainly used the first equation of
map (3), which does not contain the parameter α; i.e., the
property of memory, parametrized by α, is only present in the
equation for θ , which is a cyclic variable. So when K � 1,
〈I2

n 〉 must be independent of α. That is, to observe effects of
α on the dynamics of the RL-fSM, K ∼ 1 should be set, see
Refs. [5,7–10].

We stress that similar studies can be carried out for other
types of nonlinearity (not just the continuous sine-shaped
nonlinearity in the first equation of the RL-fSM) and for other

types of fractional derivatives. This, in fact, will be the subject
of future investigations.

Finally, we want to add that our work falls within the scope
of the general fractional dynamics (GFDynamics), a line of
research recently introduced in Ref. [14].
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