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Chaos and anomalous transport in a semiclassical Bose-Hubbard chain
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We study chaotic dynamics and anomalous transport in a Bose-Hubbard chain in the semiclassical regime
(the limit when the number of particles goes to infinity). We find that the system has mixed phase space with
both regular and chaotic dynamics, even for long chains with up to 100 wells. The consequence of the mixed
phase space is strongly anomalous diffusion in the space of occupation numbers, with a discrete set of transport
exponents. After very long times the system crosses over to the hydrodynamic regime with normal diffusion.
Anomalous transport is quite universal and almost completely independent of the parameters of the model
(Coulomb interaction and chemical potential): It is mainly determined by the initial distribution of particles
along the chain. We corroborate our findings by analytical arguments: scaling analysis for the anomalous regime
and the Langevin equation for the normal diffusion regime.
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I. INTRODUCTION

The interplay of classical and quantum chaos is an old but
still very relevant topic in the dynamics of few- and many-
body quantum systems. In recent years there is in particular a
surge of interest in quantum chaos, prompted by several novel
developments: experimental realization in an increasingly rich
array of cold-atom systems [1], the appearance of novel the-
oretical models such as the Sachdev-Ye-Kitaev model [2–4],
the appearance of sensitive tools for diagnostics of quantum
chaos such as the Krylov complexity [5–8] and the out-of-time
ordered correlators [9–12], and the unexpected connections of
quantum chaos to some deep and fundamental problems of
high-energy physics such as the black hole scrambling and
the information problem of black holes [9,13]. In particular,
the Bose-Hubbard model [14–16] is an archetypical strongly
correlated quantum-many body system, exhibiting a multitude
of interesting phenomena. Unlike the one-dimensional (1D)
Fermi-Hubbard model, the 1D Bose-Hubbard model is nonin-
tegrable and exhibits quantum chaos [17–21].

The interest for the classical-quantum correspondence in
chaotic dynamics is rooted both in reasons of principle (how
exactly classical chaos emerges from a quantum chaotic
system in the classical limit) and reasons of convenience—
simulations of quantum dynamics are computationally costly
and thus gaining some insight from the classical equations of
motion would be valuable. The Bose-Hubbard model is an
example of a system where the classical limit exists and can
be quite illuminating. Classical dynamics and the classical or
quantum correspondence in this model has been the subject of
much important work [22–27]. Of particular interest is the fact
that the phase space is mixed, i.e., neither regular (the system
is nonintegrable) nor fully chaotic. Mixed phase space is a rule
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rather than the exception in few-body systems [28,29] but in
Ref. [30] it was found also in the Bose-Hubbard model where
one would not expect it [31].

Our goal is to study the influence of weak chaos and
mixed regular-chaotic phase space on dynamics and diffu-
sion in a semiclassical one-dimensional Bose-Hubbard chain.
While the development and indicators of chaos, both classical
[22,23] and quantum [17,19,21,24,25,27,32–40] have been
studied in great detail in the Bose-Hubbard model, little work
exists on the interplay of diffusion and transport in general
with the chaoticity of dynamics. It is known that weakly
chaotic systems with mixed phase space are the hardest to
model statistically, since on the one hand the weakness of
chaos usually prevents normal diffusion [29] and on the other
hand perturbative, purely dynamical treatment is hardly pos-
sible for long times whenever the system is nonintegrable.
Anomalous scaling and anomalous diffusion are typical for
such systems [41–44] but it is notoriously difficult to classify
and explain the anomalous exponents.

In this work we have performed large-scale numerical in-
tegrations of classical equations of motion for Bose-Hubbard
chains of various lengths (up to 100 sites), finding remarkably
simple and robust superdiffusive transport at early times. We
will find that populations (ensembles) of initially close orbits
spread with time t as t4m or t2m with m ∈ N depending on the
initial and boundary conditions. Clearly, such fast spread of
orbits must end after some time, and after very long times it
finally becomes normal diffusion with a linear-in-time growth
of the variance. We will also offer some analytical arguments
to understand the anomalous regime.

As a final twist, our setup of solving the classical equa-
tions of motion for populations of orbits generated from some
initial distribution is actually equivalent to the (lowest-order)
truncated Wigner approximation (TWA), which corresponds
precisely to solving the classical equations of motion with
initial conditions averaged over the Wigner quasiprobability
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function W [45–47]. We can thus interprete our solutions of
classical equations of motion for ensembles as the leading-
order TWA approximation for the quantum dynamics, i.e., the
semiclassical regime. Such an approach to the Bose-Hubbard
model has already been explored in Ref. [24].

The plan of the paper is the following. In Sec. II we set
up the basics: the classical Hamiltonian and the equations of
motion. In Sec. III we study the general dynamical portrait and
classical chaos in the system, in particular the mixed nature of
the phase space and strong dependence on initial conditions.
Section IV brings our core results: anomalous diffusion of
chaotic orbits with a discrete series of scaling exponents, and
the transition to normal diffusion at longer times. Section V
sums up the conclusions and the directions of further work.

II. BOSE-HUBBARD MODEL IN THE CLASSICAL LIMIT

A. The classical limit

We consider 1D Bose-Hubbard model, i.e., a Bose-
Hubbard chain with L sites. The bosons are at chemical
potential μ, they can hop between neighboring sites with
hopping parameter J and at each site interact with Coulomb
repulsion UBH:

HBH =
L∑

j=1

[
−J (b†

jb j+1+b jb
†
j+1) + UBH

2
n j (n j − 1) − μn j

]
,

(1)

where b†
j, b j are the creation and annihilation operators at the

site j and n j = b†
jb j is the number operator. In this work we

consider only on-site interaction, i.e., there are no long-range
forces. The total number of particles N ≡ ∑

j n j is an integral
of motion as it commutes with HBH. We are interested in
the semiclassical limit, described, e.g., in Refs. [23,27]. This
limit is reached when N → ∞ while the number of sites
L stays fixed. Introduction of the complex variables ψ j as
(b†

j, b j ) �→ (ψ∗
j , ψ j ) ≡ (b†

j, b j )/
√

N leads to the vanishing of

the commutator: [b†
j, b j] = 1/N → 0. This yields the classi-

cal Hamiltonian:

H ≡ lim
N→∞

1

N
HBH

=
L∑

j=1

[
−J (ψ∗

j ψ j+1 + ψ jψ
∗
j+1) + U

2
|ψ j |4 − μ|ψ j |2

]
,

(2)

where U ≡ UBHN is now the natural measure of the coupling
strength (Coulomb repulsion). Following Ref. [27], we can
make a useful canonical transformation {iψ j, ψ

∗
j } �→ {Qj, Pj}

which makes the Hamiltonian more convenient both for ana-
lytical and numerical work. The transformation reads

Qj = i√
2

(ψ j − ψ∗
j ), Pj = 1√

2
(ψ j + ψ∗

j ). (3)

In terms of the new variables, the Hamiltonian becomes

H =
L∑

j=1

′
[
−J

(
QjQj+1 + PjPj+1

)

+ U

8

(
Q2

j + P2
j

)2 − μ

2

(
Q2

j + P2
j

)]
. (4)

We have denoted the sum by
∑L

j=1
′ because the first and the

last term are exceptional (we do not adopt periodic bound-
ary conditions but the usual hard-wall boundary conditions):
There are no Pj−1, Qj−1 contributions for j = 1 and likewise
no Pj+1, Qj+1 contributions for j = L. The equations of mo-
tion read:

dPj

dt
= −J (Qj−1 + Qj+1) + Qj

[
U

2

(
P2

j + Q2
j

) − μ

]
dQj

dt
= J (Pj−1 + Pj+1) − Pj

[
U

2

(
P2

j + Q2
j

) − μ

]
. (5)

Crucially, the number conservation leads to a constraint which
has to be satisfied together with the equations of motion:

L∑
j=1

|ψ j |2 = 1

2

L∑
j=1

(
P2

j + Q2
j

) = 1. (6)

This system (or equivalently the Hamiltonian (2)) has been
studied extensively [17,23,25–27]; it is equivalent to the dis-
crete nonlinear Schrödinger equation (DNSE) [48,49]. Being
nonintegrable, it is expected to exhibit chaos at least for some
initial conditions and parameter regimes; this was indeed
found in Ref. [17] and many subsequent works.

B. Action-angle variables

We are interested in identifying the relevant dynamical
regimes in this system (regular, mixed, and chaotic); we
want to characterize them quantitatively and then to study
the statistical properties of ensembles of orbits, i.e., the
distribution functions. The logical path is then to intro-
duce the action-angle variables. According to the well-known
paradigm [28,29], in an integrable system the actions are just
the integrals of motion, and in the presence of nonintegrability
the Hamiltonian depends also on the angles so the actions
evolve in time. But if the chaos is not very strong, then they are
expected to be “slow variables” as opposed to the fast-winding
angles.

Let us now write the Hamiltonian H [Eq. (4)] in terms
of action-angle variables. Introducing the actions I j and their
conjugate angles φ j as

Pj = √
2I j sin φ j, Qj = √

2I j cos φ j, (7)

the Hamiltonian becomes

H =
L∑

j=1

′
(

U

2
I2

j − μI j

)
− 2J

L∑
j=1

′√I jI j+1 cos(φ j − φ j+1)

≡ H0(I) + JH1(I,φ), (8)

where we have divided the Hamiltonian into the integrable,
action-only part H0 and the perturbation H1. The nice
thing is that the actions have very simple meaning for the
Bose-Hubbard Hamiltonian: From Eq. (7), they are just the
occupation numbers (fillings) normalized to unity, i.e., the
classical equivalent of the number operators nj in the quan-
tum Bose-Hubbard Hamiltonian HBH. Therefore, by studying
the system in action-angle variables we simply study the
evolution of occupation numbers throughout the chain; from
now on, we use the terms action and occupation number
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synonymously. The Hamilton equations and the constraint in
the new variables read:

φ̇ j = −μ + UIj − J

[√
I j−1

I j
cos

(
φ j − φ j−1

)

+
√

I j+1

I j
cos

(
φ j − φ j+1

)]
, (9)

İ j = 2J[
√

I jI j−1 sin(φ j−1 − φ j ) + √
I jI j+1 sin(φ j+1 − φ j )],

(10)

L∑
i= j

I j = 1. (11)

From Eq. (4) it is obvious that when either U = 0 or J = 0
the Hamiltonian reduces to a sum of decoupled sites and the
system is integrable. The same is of course true for the form
(8): For J = 0 we obviously have I j = const, and for U = 0
we can introduce new variables (Ī j, φ̄ j ) so that the sites again
decouple. The limits of very small or very large U/J ratio will
thus exhibit nearly regular dynamics: They correspond to the
familiar Mott-insulating and superfluid regimes, respectively
[22–24].

While the action-angle variables are most convenient for
understanding the physics, numerical work is easier in the
(Pj, Qj ) variables [Eq. (3)] [50]. In Appendix A we summa-
rize the basic information on numerical integrations in the
paper.

III. CLASSICAL BOSE-HUBBARD MODEL:
DYNAMICAL PICTURE

A. Phase portrait

As we expect, the system exhibits a typical mixed phase
space, with regular islands scattered in the chaotic sea. The
obvious control parameter is U/J—both very small and very
large values correspond to near-integrable regimes, whereas
in-between we expect strong nonintegrability. Also, at some
value (U/J )c the Mott (localized) regime gives way to the
superfluid regime (a priori the relevance of the Mott-superfuid
transition for chaos is not clear). These considerations are
illustrated by the behavior of typical classical orbits, shown in
Fig. 1. For large U/J , the filled sites initially largely decouple
from the others, their motion remains quasiperiodic, and only
at later times do they transit toward more erratic dynamics.
This is the Mott-like regime—the full sites stay full and the
initially localized bosons stay localized for long times. For
smaller U/J , all orbits mix and all actions show clear secular
change.

We will see that the perturbative expansion fails in the
vicinity of 1:1 resonances, when two (or more, for resonances
of the form 1:1:. . . :1) angles have equal frequencies. From
the equations of motion [(9) and (10)], this happens simply
when two neighboring fillings are equal: I j = I j+1. Plotting
again the orbits and the evolution of the actions, for the same
parameters as in Fig. 1 but with different initial conditions,
starting with a 1:1 resonance between the occupied sites (site
4 and site 5), Fig. 2 shows that the Mott-like regime (top

FIG. 1. Orbits in the action-angle space In(φn) (left) and the time
evolution of the actions In(t ) (right) for typical orbits in the Mott-like
(top) and superfluid-like (bottom) regimes. The system is the Bose-
Hubbard chain at μ = 0 with L = 10 sites, with initial occupations
I4 = 0.31, I5 = 0.69, and zero at the remaining sites. The color code
(birghter and darker lines) stands for the sites 1 thru 10.

panel) becomes more persistent and the crossover value of
U/J decreases. The stability island of the resonance protects
the occupation numbers I4 and I5 from changing much for a
long time; the other actions look strongly chaotic and more so
in the superfluid-like regime.

So far we see how the chain moves from the Mott regime
to the superfluid regime on dialing U/J and how the resonant

FIG. 2. Same as in Fig. 1 but for the resonant initial conditions
(Bose-Hubbard chain at μ = 0 with L = 10 sites, with initial occupa-
tions I4 = I5 = 1 and zero at the other sites). For visual convenience
the actions in the figure are rescaled by 2 so the sum of the actions
is normalized to 2 rather than 1. The color code (brighter and darker
lines) again stands for different sites.
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dynamics strengthens the Mott regime. In the Sec. III C we
will see how this crosses with the development of chaos.

B. Perturbation theory: Nonresonant and resonant

The equations of motion can be studied within the standard
perturbation theory that works as long as we are far enough
from low-order resonances [28]. It is natural to treat J/U as
a small parameter of nonintegrability as we have done when
splitting the Hamiltonian (8) into H0 and JH1. For J = 0 as
the zeroth-order approximation we have the integrable system

I j = I (0)
j = const, φ j = φ j0 + ω jt = [

UI (0)
j − μ

]
t . (12)

Perturbative corrections are obtained from a series of
canonical transformations of the actions, pushing the angle-
dependent perturbation at successively higher orders in t . The
optimal order ν (which determines the Kolmogorov normal
form) is determined by the frequencies of the angles and their
proximity to resonances; however, for our purposes first-order
perturbation theory will be enough to see the hierarchy of
dynamical scales and their scaling properties (the key ingredi-
ents to understand diffusion).

The first-order correction is obtained from the
canonical transformation (I,φ) �→ (I′,φ′) generated
by the function χ that, for a generic perturbation of
the form H1 = J

∑
k h1k exp(−ık · φ), has the Fourier

expansion ıJ
∑

k
h1k
ω·k exp(−ık · φ). In our case the

coefficients are nonzero only for wave vectors of the form
k = (0, . . . 1,−1, 0, . . . 0), so we can keep labeling the sum
with the index i instead of the wave vector. For H1 as given in
(8) the generating function is [51]

χ = I′ · φ + 2J
L∑

j=1

′ 1

U

√
I ′

j I
′
j+1

I ′
j − I ′

j+1

sin(φ j − φ j+1), (13)

yielding the first-order corrected Hamiltonian as the sum of
the integrable zeroth-order part, the angle-averaged first- and
second-order perturbations (also integrable), and the second-
order angle-dependent part. Once we perform the above
canonical transformation, we use solely the new variables
(I′, φ′), and hence we can rename them to (I, φ) for simplicity,
writing the resulting Hamiltonian as

H ′(I,φ) = H0(I) + JH̄1(I) + J2H̄2(I) + J2H2(I,φ)

=
L∑

j=1

′
[

U

2
I2

j − μI j + 4J2

U

IjIj+1

(I j − I j+1)2

]

+ 8J2

U
+

L∑
j=1

′[h(2)
j (I) cos(φ j − φ j+1)

+ h̃(2)
j (I) cos(φ j − 2φ j+1 + φ j+2)

]
. (14)

For completeness we have included also the constant term
8J2/U even though it is irrelevant for the dynamics (it
would matter for the partition functions and thermodynamics
of the system). The expressions for the coefficients of the

second-order perturbation h2 j, h̃2 j can be found explicitly:

h(2)
j = −2J2

U

IjIj+1

(I j − I j+1)2
, (15)

h̃(2)
j = −2J2

U

Ij
√

I j−1I j+1

(I j − I j−1)2(I j − I j+1)2

× [
I2

j−1 + 2I2
j + I2

j+1 − 2(I j−1 + I j+1)I j
]
. (16)

As could be expected, the perturbation theory fails near 1:1
resonances I j = I j±1, when the coefficients diverge [52]. In
order to address resonant dynamics near the I j = I j+1 reso-
nance, we perform the textbook transformation,

(I j, I j+1; φ j, φ j+1) �→ (Ir, I0; �,φ)

= (I j, I j + I j+1; φ j − φ j+1, φ j+1), (17)

finding that I0 ≈ const so that the effective resonant Hamilto-
nian only depends on (Ir,�):

Hres = UI2
r + UI0Ir − 2J

√
Ir (I0 − Ir ) cos �. (18)

Obviously, for long chains with L � 1 the structure of the
phase space can be extremely complicated, with numerous
resonances and both chaotic and regular areas. The scaling
properties of the coefficients h(2)

j , h̃(2)
j in the nonresonant case

[Eq. (14)] and in the resonant one [Eq. (18)] will be useful
later when we try to understand the exponents of anomalous
transport.

C. Lyapunov exponents

We now probe the classical chaos of various configura-
tions by computing the Lyapunov exponents of the classical
equations of motion. There is one Lyapunov exponent per
degree of freedom, and thus we can label the as exponents λn

(n = 1, . . . L), just like the actions. Calculating the Lyapunov
exponents for the same configurations as in Figs. 1 and 2 we
find that chaos is uniformly strong for filled sites, whereas for
initially empty sites it goes down as the ratio U/J increases
and the system is closer and closer to the Mott regime (Fig. 3).
In the same figure we show also the case with randomly
chosen actions In(t = 0): This case displays uniformly weak
chaos [53]. The message is thus the following: Chaos is not
primarily related to localized or superfluid regimes, nor even
to the existence of the resonances (in Fig. 3 there cannot be
any resonances in the left panel, where only one site is initially
filled, yet the phenomenology is the same as in the central
panel, with the 1:1 resonance between I4 and I5). Chaos is in
fact determined by the action value: The fuller the site, the
stronger the chaos.

This is further corroborated by scanning the values of λn

as a function of both μ and U . Figure 4 shows the value of
the Lyapunov exponent λn(U/J, μ/J ) for different sites in
the chain with initially filled site 4. Although some corners
of the parameter space show strong chaos even for sites far
from the filled site, the exponent is overall the highest for the
initially filled site, and the size of the chaotic region generally
decreases with the distance from the full site. For the chain with
the initial condition I4(t = 0) = I5(t = 0) = 1/2, the other
actions being zero (Fig. 5), λ4 and λ5 are similarly much larger
than the other exponents.
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FIG. 3. The Lyapunov exponent λn (in units of J) as a function of the Coulomb interaction U/J at the chemical potential μ/J = 0.2, for
a Bose-Hubbard chain with L = 10 wells, with different initial conditions: single occupied site at n = 5 (a); two occupied neighboring sites
at n = 4 and n = 5, i.e., a classical resonance (b); and a random chain with arbitrary initial actions or occupancies generated from a uniform
distribution (c). The color code (same as in Figs. 1 and 2) denotes the site number, i.e., the degree of freedom (In, φn) for which we compute
the Lyapunov exponent; in order not to clutter the figure too much, we have only emphasized the colors for the initially filled sites (n = 4 and
n = 5), which consistently show stronger chaos. Chaos seems to be driven by the initial conditions, i.e., initial values of the actions In(t = 0).
For better visibility some of the lines are dashed; the dashing does not signify any specific physical property.

The figures suggest that the initial conditions and specif-
ically the distance from the nearest site with nonzero initial
occupation (the distance is zero if the given site itself has
nonzero initial occupation) in the main govern the nonlinear
dynamics of the system, whereas the U/J ratio governs the
global structure of motion (localized vs superfluid-like). We
still need to understand why the resonance seems unimportant
for the development of chaos and what—if any—influence on
dynamics is exerted by the Mott-fluid transition (the Lyapunov
exponents show no sign of abrupt change for any U/J value).

Our results on the Lyapunov exponents show general
agreement with the classical and quantum indicators of chaos
studied in Refs. [27,38,39]: Chaos is strongest for interme-
diate U/J values, and there are “optimal” and “nonoptimal”
routes to chaos, seen as bright orange and blue lines in Figs. 4

and 5. However, the strong dependence on the initial condi-
tions has not been discussed (to the best of our knowledge).
It can only happen in systems with mixed phase space [54],
and hence the phase space of the Bose-Hubbard Hamiltonian
(at least in the classical limit) remains mixed even in the
true many-body regime (we mainly show L = 10 results for
convenience but in the Appendix B we show that the same
behavior occurs also for chains with up to 100 sites).

Another property obvious from Figs. 3–5 is that generically
many (indeed, almost L) Lyapunov exponents are positive
[55]. In other words, the system is hyperchaotic, which was
already found for the Bose-Hubbard model (though with
slightly different interactions) in Ref. [56]. The strong hy-
perchaos that we see is in accordance with the situation for
localized states in Ref. [56]; we did not try to reproduce these

FIG. 4. The Lyapunov exponent λ (in units of J) as a function of the Coulomb interaction U/J and the chemical potential μ/J , for a
Bose-Hubbard chain with L = 10 wells, with the well n = 5 initially full and the rest empty. The Coulomb coupling U/J is varied from 0.5 to
50.0, i.e., we do not include the cases with U/J = 0 for these have exactly zero Lyapunov exponent. The color scale encodes for the size of
the exponent, from smallest (dark) to largest (bright).
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FIG. 5. The Lyapunov exponent λ (in units of J) as a function of the Coulomb interaction U/J and the chemical potential μ/J , for a
Bose-Hubbard chain with L = 10 wells, with the wells n = 4 and n = 5 initially full and the rest empty. The Coulomb coupling U/J is varied
from 0.5 to 50.0, i.e., we do not include the cases with U/J = 0 for these have exactly zero Lyapunov exponent. The color scale encodes for
the size of the exponent from smallest (dark) to largest (bright).

exact solutions (and the interaction terms differ anyway) but
we suspect that generically, in a large (L � 1) Bose-Hubbard
system, most of the exponents will be positive unless we
specially choose a solution corresponding to the minimum of
energy.

Finally, one is often interested in the maximum Lyapunov
exponent rather than the exponents for individual variables.
For our purpuses it is more informative to look at the
exponents corresponding to individual actions In but for com-
pleteness we give also the maximum exponent in Appendix C.

IV. DIFFUSION: ANOMALOUS AND NORMAL

A. Anomalous diffusion

In this section we study the evolution of distribution
functions in phase space P (In, φn; t ) and in particular the
broadening of the distribution due to diffusion. This will lead
us to the central phenomenon of interest for this paper—the
anomalous scaling laws for the second moment of the distribu-
tion. More specifically, we consider a population of orbits with
initial conditions drawn from a distribution which is initially
sharply peaked around some point (I (0)

n , φ(0)
n ) [57], and look

at the time evolution of the second moment (variance) of the
action:

σ 2(In) ≡ 〈
I2
n (t )

〉 − 〈In(t )〉2, (19)

where the left-hand side σ 2(In) is obviously also time depen-
dent [although we do not write explicitly σ 2(In)(t ) in order
not to crowd the notation]. Note that normal diffusion, driven
by an uncorrelated random-walk process (and described by

the Langevin equation with white noise [58] or alternatively
by the (normal) Fokker-Planck equation [59]), corresponds to
linear growth of the variance: σ 2(In) ∝ Dt , where D is the
diffusion coefficient. Although typical applications in fluids,
plasmas, and many-body systems exhibit diffusion in real
space, it also happens in the space of action variables in the
phase space of strongly chaotic Hamiltonian systems [29,42].
The rationale is that the evolution of angles for strongly
chaotic orbits can be well approximated by an uncorrelated
random process, leading to statistically independent incre-
ments of the actions at each “time step” (i.e., some typical
timescale). Weak chaos and mixed phase space are known
to lead to anomalous diffusion, with the scaling σ 2(In) ∝ t ζ ,
with ζ being some arbitrary exponent (ζ < 1 corresponding
to subdiffusion and ζ > 1 superdiffusion, including ζ = 2 for
ballistic flights).

In this subsection we present the numerical results for
superdiffusion, i.e., for the exponent ζ > 1 observed in our
model. A fully general formula for ζ depending on the pa-
rameters and initial conditions is very hard to find but there
are general trends as follows:

(1) The anomalous transport exponents for the action In

take the values ζn = 2m or ζn = 4m (for m = 0, 1, 2, . . .);
they are strictly even integers and come in arithmetic series
with spacing 2 or 4. We find this very striking—such integer
and strictly “quantized” values are very rare in the literature
[29].

(2) The value of the exponent ζn for each site depends on
the initial conditions, that is, on the distribution of filled and
empty sites. If the site n is m sites away from the nearest filled
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FIG. 6. Log-log plot of the second central moment (variance) of the actions for an ensemble of orbits in the chain of length L = 10, with
U/J = 25, μ/J = 0.05. Initially the filled sites are n = 5 (left), n = 4, 5 (center), and n = 3, 6, 9 (right). The exponents take values 0, 4, 8, . . .,
determined by the distance from the nearest initially occupied site. Black dashed lines are analytic plots 〈�I2

n 〉 ∝ t4m. The color legend for the
site numbers (lighter and darker lines) is on the right. We use natural logarithms, with the basis e.

site n0 (so that m = |n − n0|), then the exponent is generically
ζn = 4m.

(3) In particular, the filled site has m = 0—the distance
from the nearest filled site is zero, thus ζn = 0—the distribu-
tion function spreads at most logarithmically.

(4) If partially filled sites with similar occupation numbers
are present (so that the notion of distance to the nearest filled
site is vague), then the exponents take the form 2m.

(5) The endpoints of the chain act effectively as filled
sites, meaning that the relation m = |n − n0| is modified as
m = min(|n − n0|, n, L − n).

From the above, each site n has in principle its own ex-
ponent ζn but of course some degeneracy will be present, as
for some n, n′ one may have ζn = ζn′ . Thus in general we do
not obtain as many scalings as there are actions. Once again,
remember that transport in the action space (the typical subject
of statistical studies of chaos [29]) in the Bose-Hubbard model
simply describes the distribution of the occupation numbers
along the chain.

Examples of the above findings are found in Fig. 6. For the
initial conditions with one, two, and three filled sites in a chain
with L = 10 wells we see the 4m scaling exponents and also
their dependence on the relative positions of filled sites. In
Fig. 7 we further corroborate our claims by finding the same
behavior for longer chains (L = 20). In Fig. 8 we specifically
show that the same scaling behavior is found independently of
the ratio U/J , i.e., independently of the Mott-like or fluid-like
regime and the degree of nonintegrability [60]. All figures are
given as log-log plots in order to clearly show the power-law
scaling.

Now we show the cases where the series 2m appears. This
happens for sufficiently complicated initial conditions, when

FIG. 7. Log-log plot of the second central moment (variance) of
the actions for an ensemble of orbits in the chain of length L = 20,
with U/J = 25, μ/J = 0.05. Initially filled sites are n = 7, 16 (left)
and n = 7, 12, 16 (right). The number of exponents is larger for
longer chains. The legend for the site numbers (lighter, darker, full,
and dashed lines) is on the right. We use natural logarithms, with the
basis e.

the chain abounds with partially filled and near-resonant sites.
Figure 9 brings a few examples; more examples can be found
in Appendix B.

In general, the number of exponents ζn decreases as the per-
centage of occupied sites grows. In particular, for a completely
homogeneous chain there is no transport at all (Fig. 10). This
can be explained in the following way. Given the number of
initially occupied sites k one can look at the k + 1 segments
of the chain defined by the occupied sites. This means that
our system can be effectively divided into a series of smaller
mutually connected chains. Sites symmetric to each other with
respect to the initially occupied site behave in the same way.
This is why the edge effects are so important, as they dictate
the transport through the subchains.

Finally, we note that for periodic boundary conditions we
observe no transport at all (for any initial condition and for all
parameter values). The explanation is easy: We have seen that
the sites symmetric with respect to the initially occupied one
behave in the same way (for example, if the site n was initially
occupied, then it gives rives to same exponent 4n for the sites
n − 1 and n + 1). In the ring case this logic does not hold
as the distances between the sites are nonunique, the system
equilibrates very quickly and does not undergo anomalous
diffusion.

FIG. 8. Log-log plot of the variance of the actions for an ensem-
ble of orbits (left) and an example of a single orbit (right) in the chain
of length L = 10, with U/J = 50 (top) and U/J = 5 (bottom), with
μ = 0. Initially filled sites are n = 4, 5. Although the top row shows
Mott-like localization and the bottom row the superfluid regime, both
regimes exhibit the same scaling laws for anomalous diffusion. The
legend for the site numbers (lighter, darker, full, dashed lines) is on
the right. We use natural logarithms, with the basis e.
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FIG. 9. Log-log plot of the second central moment (variance) of
the actions for an ensemble of orbits in the chain of length L = 10
at μ/J = 0.25 and U/J = 1 (left) vs U/J = 5 (right), with four or
six partially occupied sites at t = 0 (top or bottom row). The scaling
exponents are now a mix of 4m and 4m + 2 values, outlined by black
and gray dashed lines, respectively. The additional exponents are
obtained in the presence of multiple partially filled sites with similar
actions (occupation numbers). The color legend for the site numbers
(lighter and darker lines) is on the right. We use natural logarithms,
with the basis e.

1. Scaling analysis and the anomalous transport exponents

It is notoriously difficult to obtain the anomalous diffu-
sion coefficients analytically [43,44]: They are a consequence
of strong long-range and long-time correlations, resulting in
integro-differential equations for the kinetics (which are hard
even to write down, let alone solve). We can only offer a very
crude scaling analysis based on the general considerations of
Ref. [41].

The transport in action space around some initial values
I(t = 0) is dictated by the leading angle-dependent term in the
perturbative expansion around I (the angle-independent terms
describe integrable dynamics and cannot change the actions).
Away from resonances, the leading transport-inducing terms
are contained in H2 in Eq. (14), with the coefficients given
by Eqs. (15) and (16). If we start from a nonzero value for
some I j with I j±1 being initially much smaller or zero, then

FIG. 10. Evolution of the actions In(t ) (left) and of the second
central moment (variance) of the actions for an ensemble of orbits
〈I2

n (t )〉 (right) for the chain of length L = 20, with U/J = 5, μ/J =
0.25 for the homogeneous initial distribution (the total occupation is
equally distributed among all sites). In this case there is no transport
at all, in accordance with the claim that the scaling exponents are
determined by the distance to the nearest filled site—now all sites
have equal fillings. The color legend for the site numbers (lighter
and darker lines) is on the right. We use natural logarithms, with the
basis e.

we may regard I j±1 as the only dynamical degree of freedom
at early times while I j ∼ const (because the relative change of
I j is initially negligible). The total Hamiltonian H ′ in Eq. (14)
then has the form of a pendulum for I j+1 or I j−1, with mass
term proportional to U/2 and the potential term behaving
as −2J2/(UIj ) (at leading order in I j). The characteristic
timescale is given by the period of the pendulum [61]:

T ∼
√

I j

J
. (20)

Now if we rescale (T, I j ) �→ (T λT , I jλ�), then the above
equation will be invariant if

λ� = λ2
T . (21)

This is the scaling law for transport from I j to an initially
(near-)empty neighboring site. If we look at the transport
from jth to j ± m-th site instead, then we have the same
scaling for every site, but we now have m actions involved
in transport (from I j to I j+1, from I j+1 to I j+2, etc.) so in the
m-dimensional action subspace we have λI = λm

� , where λI

is the scaling exponent for the action transport (if m = 1 then
λI = λ� but otherwise they are not equal because the trajectory
exists in some higher-dimensional space). This implies

λI = λm
� = λ2m

T . (22)

From the renormalization group of kinetics formalism in
Refs. [41,42,44], the anomalous diffusion exponent is

ζm = 2 log λI

log λT
= 4m, (23)

in accordance with the numerical results.
The perturbative Hamiltonian considered above does not

make sense near a resonance even though even in resonant
cases we usually still see the 4m series, except if many res-
onances are present. We do not have a good understanding
of this. For the resonant case, the resonant Hamiltonian in
Eq. (18) has no discrete scaling symmetry: Assuming that
I0 � Ir , the leading term scales as I0 and the subleading
(potential) term as

√
I0. Hence the only scaling is (T, I0) �→

(T λ, I0λ) for characteristic time and action scales T and I0

and some rescaling factor λ; hence λT = λ�. For the actions,
we have λI ∼ λm

� just as in the previous case, and therefore

ζm = 2 log λI

log λT
= 2 log λm

log λ
= 2m. (24)

This is the same exponent as in the numerics; however, as we
said above, it does not happen whenever there is a resonance
(usually the resonances also have 4m) but only for some com-
plicated and rather fine-tuned configurations. We hope to gain
a better understanding of these phenomena in future work.

B. Normal diffusion and Langevin equation

The findings of superdiffusion in the previous subsection
hold only up to some epoch t∗ which in fact can be quite large,
of the order 105×t0. For t > t∗, a short transitional regime
with no clear trends in the time evolution of the variance is
followed by the epoch of normal diffusion with ζn = 1 starting
around some t = t∗∗ where t∗∗ can be very long [62]. One
numerical example is given in Fig. 11.
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FIG. 11. Evolution of the variance of the actions for an ensemble
of orbits 〈I2

n (t )〉 for the chain of length L = 10, with U/J = 10,
μ/J = 0. At earlier times [t/t0 � exp(7)] there is the usual robust
anomalous diffusion, with exponents ζ = 0, 4, 8 (dashed lines in the
left panel). After a fluctuating transitional period exp(7) � t/t0 �
exp(10), the initially nonfilled sites exhibit normal diffusion with
exponent ζn = 1, i.e., 〈I2

n (t ) ∝ t〉 (dotted lines in the left panel and
the zoom-in of the late-time epoch for n = 1, 8 in the right panel).
The color legend for the site numbers (lighter and darker lines) is on
the right. We use natural logarithms, with the basis e.

Normal chaotic diffusion is quite well studied starting
from the pioneering work of Chirikov [63]; a standard intro-
duction to the Chirikov theory and its later developments is
found in Ref. [29]. The Chirikov approach rests on assuming
completely uncorrelated dynamics of angle variables and the
averaging of the equations of motion for the actions over
the angles. While the leading-order result is very simple and
transparent, the Chirikov approach becomes more and more
complicated if higher-order corrections (i.e., correlations be-
tween subsequent “timesteps”) are to be included. We will
thus only compute the lowest-order result following [29,63],
and then we will show how to obtain a more systematic ap-
proximation scheme from the Langevin equation formalism
[64,65].

1. Leading-order diffusion matrix

We have L actions, thus diffusion is described by the dif-
fusion matrix D̂ of size L×L. However, the constraint reduces
the total number of independent degrees of freedom to L − 1.
Since the constraint can be solved explicitly, it poses no prob-
lems: We simply replace IL by 1 − ∑L−1

j=1 I j and consider the
system as a function of I1, . . . IL−1. We now have the reduced
diffusion matrix ˆ̄D of size (L − 1)×(L − 1), with elements
D̄i j for 1 � i, j � L − 1. Following Ref. [63] and the basic
notions of kinetics, the element D̄i j is given by the average of
the right-hand sides of the equations of motion:

D̄i j = 〈〈İi İ j〉〉, (25)

where 〈〈(. . .)〉〉 denotes the averaging over the angle variables
from 0 to 2π [66]. It is easy to check that most matrix entries
are zero. Explicitly, the elements are

D̄n,n+1 = 1

(2π )3

∫ 2π

0
dφn

∫ 2π

0
dφn+1

∫ 2π

0
dφn+2 İnİn+1

= −1

2

√
InIn+1

D̄n,n = 1

(2π )3

∫ 2π

0
dφn−1

∫ 2π

0
dφn

∫ 2π

0
dφn+1 İ2

n

= 1

2
(In−1 + In+1)

D̄n,n−1 = 1

(2π )3

∫ 2π

0
dφn

∫ 2π

0
dφn−1

∫ 2π

0
dφn−2 İn−1 İn

= −1

2

√
In−1In

D̄i, j = 0, |i − j| > 1. (26)

The diffusion coefficient matrix is only nonzero on, right
above, and right below the main diagonal. This is in line
with the locality of interactions—the actions are interpreted
as occupation numbers and particles have to travel from one
site to its neighbors, not jump to a non-neighboring site.

A complete solution of the resulting multidimensional dif-
fusion equation with hard-wall boundary conditions is quite
complicated (although there are no problems of principle in
finding it). However, in this paper we are mainly interested in
the diffusion coefficients themselves, since the rate of growth
of the variances 〈�I2

n 〉 is determined solely by the diffusion
coefficients. Before we compare the numerical data with the
theoretical prediction, we will construct also the Langevin
equation which provides systematic corrections to Eq. (26).

2. Langevin equation

Assuming that the evolution of angles (fast variables) is
well described by a Wiener process, the resulting equations of
motion for the actions (slow variables) acquire the form of
Langevin equation. This is another well-known way to obtain
the diffusion equation [64] and it allows us to go beyond
leading-order estimate for the diffusion matrix as we can
systematically include the correlations between angles at dif-
ferent times. Clearly, the Langevin approach also works only
for orbits that spend most time in the chaotic sea; the phase
space is generically mixed as we have shown numerically
(Figs. 1 and 2) and many orbits do not obey the Langevin
kinetics or only obey it after long transient times [67].

We work in the Ito formalism. The starting point are the
equations of motion [(9) and (10)] with the constraint (11).
In order to simplify the calculations and get rid of the square
roots of actions, we introduce new action variables (still with
the constraint):

a j ≡ √
I j,

L∑
j=1

a2
j = 1, j = 1, . . . L. (27)

It is easy to rewrite Eqs. (9) and (10) in terms of (a j, φ j ):

φ̇ j = −μ + Ua2
j − J

[
a j−1

a j
cos(φ j − φ j−1)

+ a j+1

a j
cos(φ j − φ j+1)

]
, (28)

ȧ j = J[a j−1 sin(φ j−1 − φ j )

+ a j+1 sin(φ j+1 − φ j )]. (29)

We now assume that the angles φ j can be approximated by
Gaussian random noise [68], which means that sines of their
difference also have finite second moment and define a Wiener
process. Equation (28) is thus dropped in the Langevin ap-
proach (we do not solve for φ j but approximate it by noise),
and in the second row the sines of the angle differences
become increments dWj of a Wiener process, yielding the
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equation (it is again convenient to write the variables as ma-
trices with two indices i, j = 1, . . . L, denoted also by hatted
letters):

dai = gi jdWj, ĝ

= J

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a2 0 . . . . . . . . .

−a1 0 a3 0 . . . . . .

0 −a2 0 a4 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . 0 −aL−2 0 aL

. . . . . . . . . 0 −aL−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

L×L

,

×
L∑

j=1

a2
j = 1. (30)

Notice that there is no purely deterministic term (the whole
right-hand side is proportional to dWj) and that the Langevin
system is still constrained by the overall normalization con-
straint. The easiest way to proceed is again to solve the

constraint and express aL =
√

1 − ∑L−1
i=1 a2

i in gi j . In this way
we eliminate (aL, φL ), reducing the matrix of the system from
size L×L to size (L − 1) × (L − 1), with the variables

āi ≡ (a1, . . . aL−1), dW̄i ≡ (dW1, . . . dWL−1), (31)

which satisfy the equation

dāi = ḡi jdW̄j,

ˆ̄g = J

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a2 0 . . . . . . . . .

−a1 0 a3 0 . . . . . .

0 −a2 0 a4 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . 0 −aL−3 0 aL−1

. . . . . . . . . 0 −aL−2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(L−1)×(L−1)

. (32)

Ideally, we would like to transform (32) to the “canonical”
Langevin form, where the right-hand side is ā independent
and in general equal to the sum of a deterministic term and a
noise term [58]. In Appendix D we show that for the above
equation this is not possible. This in turn means that (32) is
not exactly equivalent to a diffusion equation; even under the
assumption of uncorrelated angles there is no purely diffusive
behavior.

However, we can still integrate Eq. (32) perturbatively
order by order. It will turn out that the lowest nonzero term
is the quadratic term, corresponding precisely to normal diffu-
sion. Expanding the equation around ā(0)

i ≡ āi(0) and likewise
ḡ(0)

i j ≡ ḡi j (ā(0)) we get:

āi(t ) = ā(0)
i +

∫ t

0
ḡi j[ā(t ′)]dW̄j (t

′)

= ā(0)
i + ḡ(0)

i j

∫ t

0
dW̄j (t

′)

+ ∂g(0)
i j

∂ āk

∫ t

0
[āk (t ′) − āk (0)]dW̄j (t

′)

= ā(0)
i + ḡ(0)

i j

∫ t

0
dW̄j (t

′)

+ ∂ ḡ(0)
i j

∂ āk
ḡ(0)

kl

∫ t ′

0

∫ t

0
dW̄l (t

′′)dW̄j (t
′). (33)

Assuming that the Wiener process is symmetric and white-in-
time so that

〈Wi(t )〉 = 0, 〈Wi(t )Wj (t
′)〉 = δ(t − t ′)σ 2

i j, (34)

we can calculate the expectation values of the first and second
moment of ā:

〈ān(t ) − ān(0)〉 = 0 (35)

〈[ān(t ) − ān(0)][ām(t ) − ām(0)]〉
= 1

2 ḡ(0)
ni ḡ(0)

m jσ
2
i jt + O(σ 4). (36)

Here σ 2
i j are the variances of the Wiener process and by σ 4 we

have schematically denoted the fourth-order momenta of the
process (which are not necessarily all equal). From (36), we
get the diffusion coefficient matrix:

D̄nm = ḡ(0)
ni ḡ(0)

m jσ
2
i j . (37)

The only remaining step is to compute the second moments
of the Wiener process, which are obtained by averaging and
normalizing [69] the right-hand side of the expressions for
φ̇iφ̇ j in (28) over all the angles. However, unlike equal-time
averages of İi İ j that yield the leading-order expression (26),
which become zero if |i − j| > 1, here even at equal times all
averages are nonzero: The Wiener process is white-in-time but
has long-range correlations.

The local contribution to the diffusion matrix is

σ 2
ii ≡

〈〈
φ̇2

i

〉〉
〈〈
φ̇2

i

〉〉 = 1, (38)

and it yields exactly the same result as (26) on plugging in
into (37). This is expected—the local average of the angle
already captures the nearest-neighbor transport of the actions.
The next-order corrections read (we change back from the
computationally convenient a j variables to the more natural
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FIG. 12. Logarithms of diffusion coefficients between the sites
n and m = n + 1 (circles) and between the sites n and m = n + 2
(squares) obtained by fitting numerically the growth rate of the ac-
tion variances 〈�I2

n 〉 for configurations with U/J = 50, 10, 1 [blue,
magenta, and red (dark to bright), respectively] and μ/J = 0 in a
chain of length L = 20 with initially occupied sites n = 4 and n = 5,
plotted against the predictions of the next-to-leading order estimate
(39). The black dashed curve corresponds to ideal match (analytic =
numerical). The agreement is far from perfect (bear in mind the scale
is logarithmic) but is in fact unexpectedly good for such a simple
model. The logarithms are natural, with the basis e.

I j variables):

σ 2
i,i±1 ≡ 〈〈φ̇iφ̇i±1〉〉

〈〈φ̇2
i 〉〉

= UIi
2μ − UIi

J2 + (μ − UIi )2 . (39)

The leading terms are now linear in the actions. Higher-order
corrections would involve higher-order terms in Ii for various
i; however, it does not make sense to go to arbitrarily high or-
ders as the Langevin approximation is itself of limited validity.
We now compare the numerical fits of the diffusion coefficient
to the analytic estimates in Fig. 12. The next-to-leading order
approximation (39) yields at least a good order-of-magnitude
estimate—perhaps not an impressive result by itself but we
find it encouraging bearing in mind the simplicity of the
analytical model.

Another way to understand transport, in particular the dif-
fusive regime, is to start from DNSE which is analytically
solvable for J small. We have not made much progress in this
direction but some thoughts can be found in Appendix E.

V. DISCUSSION AND CONCLUSIONS

Our key result is the existence of two regimes in the spread
of an initial ensemble of orbits: At early times there is anoma-
lous diffusion with a strikingly regular series of exponents,
equal to 4m or 2m (m = 1, 2, . . .) depending on the initial
conditions, which at late times crosses over to normal diffu-
sion with transport exponent 1. This might correspond to the
thermalization of the system, which we plan to check by com-
puting the thermodynamic potentials. Also, it is intriguing to
know what this superdiffusion-to-normal-diffusion crossover
means for the quantum dynamics.

One might be disappointed that the results we have so far
are purely classical: The really exciting and experimentally
relevant physics is in the quantum regime. Nevertheless, the
classical regime is often the key to a controlled treatment
of quantum dynamics, as the latter is very hard to study ab

initio and without approximations. In Refs. [22,23,25–27], the
authors have arrived at important conclusions for the quantum
model from the classical equations. In particular, Refs. [25,26]
have established the connection between the classical regime
and the Wigner and Husimi functions which provide impor-
tant insight into quantum decoherence and quantum chaos.
We plan to move in this direction in further work. Within
the formalism of the truncated Wigner approximation, clas-
sical distribution functions that we study in detail in this
work provide the initial condition for the evolution of the
Wigner function. In further work we will try to understand
the consequences of classical superdiffusion for the evolution
of Wigner function and decoherence, an important topic of
interest in recent works [34,35,46,70,71].

It is unclear how far one can go in analytical work on
this topic. We have provided a very simple derivation of the
superdiffusion coefficients but it is just a back-of-the-envelope
calculation which likely does not explain everything, in par-
ticular the transition from the 4m series to the 2m series of
exponents. On the other hand, the normal diffusion regime
is well described by the usual Langevin formalism; while
high quantitative accuracy is not easy to achieve, the essential
physics is certainly captured.

Finally, our results bring some unexpected conclusions
about the nature of chaos in many-body systems. Despite
the common expectation that systems with few degrees of
freedom exhibit mixed (regular or chaotic) phase space while
the many-degrees-of-freedom systems (when they are nonin-
tegrable) show developed chaos because of many interacting
modes, this is not so in the Bose-Hubbard model: There are
always weakly chaotic orbits, and the strength of chaos is
mainly determined by occupation numbers, not by nonintegra-
bility parameter U/J (where both U/J → 0 and U/J → ∞
correspond to integrable cases and the regime U ∼ J is ex-
pected to be “most nonintegrable”) or the transition between
the Mott and the superfluid regime (the transition between
the two is obvious when looking at shapes of single orbits,
but not in their chaoticity or in the spread of the ensemble).
One might think that additional conservation laws effectively
reduce the number of degrees of freedom in our equations,
but the only conservation laws are the conservation of energy
(as in any Hamiltonian system) and the number conservation,
leading to the constraint [Eqs. (6) and (11)] that we explicitly
take into account. These two constraints alltogether reduce the
dimension of phase space from 2L to 2L − 2 which is by itself
insufficient to explain the persistence of anomalous transport
even for L = 10 or even L = 100. There might be pseudointe-
grals of motion, leading to approximate conservation laws and
approximately confining the dynamics to a low-dimensional
manifold in phase space. But these are notoriously hard to find
and thus for now we do not know if this is the explanation; in
the literature, to the best of our knowledge, nothing is known
about such pseudointegrals for the Bose-Hubbard system.

All of this is quite surprising and we hope to provide a
quantitative explanation in further work.
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APPENDIX A: NUMERICAL METHODS

We briefly comment on the numerical procedure used for
the calculation of orbits (and also for obtaining the statistical
distribution of orbits). The problem reduces to the integration
of the equations of motion for the (Pj, Qj ) variables as given
in Eq. (5). We perform the integrations in the Mathematica
package with the routine NDSolve. For each set of integra-
tions one needs to adjust the accuracy and precision goals
so that the result becomes independent of their exact values.
While it is possible to integrate the equations as a constrained
system with the explicit implementation of the constraint (6),
we have found that for most initial conditions, unconstrained
integration yields results which are very close to those from
constrained integration: The violation of the constraint and
the relative discrepancies in the values of the variables in
the unconstrained integration are both of order of 1%. We
have thus often used unconstrained integration, monitoring the
value of the constraint; when the difference grows larger than
some tolerance we stop the integration. This still allows us
to integrate for quite long times, often up to t = 5×105 in
units of 1/J , and is much faster than constrained integration.
Of course, for every configuration we also perform a few tests
with the full constrained integration as a benchmark and sanity
check. When the integration is done, we obtain the actions and
angles (I j, φ j ) from (Pj, Qj ) according to Eq. (7).

Lyapunov exponents are obtained by writing down and
solving the variations of the equations of motion (5). The
equations are linear in the variations δPj (t ), δQj (t ), which
depend also on the solutions Pj (t ), Qj (t ). Therefore, we first
solve the equations of motion for Pj, Qj , and then we solve
also the variational equations [72]. The results are pretty stable
with respect to the initial value of the variation within the
interval from 10−6 to 10−14, whereas the necessary integra-
tion time varies depending on the values of the Lyapunov
exponents themselves (but again there is a broad interval
of timescales which yield practically the same value of the
exponents).

APPENDIX B: FURTHER EXAMPLES
OF THE SCALING LAWS

As an illustration of universality, we demonstrate the
anomalous diffusion scaling laws for one more distribution
of initially filled sites and for a low U/J value, deep in
the superfluid regime (Fig. 13). It is also illustrative to see
how the exponent may change its value as the configuration
equilibrates and initially empty or near-empty sites become
near-full (Fig. 14). In accordance with the general rule, once
the ratio of occupation numbers (actions) In/In−1 becomes
large, one of the sites is effectively empty compared to the
other and the exponent changes from ζ = 2 to ζ = 4.

FIG. 13. Evolution of the actions (left) and the log-log plot of the
second central moment (right) of the actions for an ensemble of orbits
in the chain of length L = 10, with U/J = 0.375, μ/J = 0.250, with
initial nonzero actions I2, I6, I8. The exponents still obey the general
laws we have found. The color code is the same as in Fig. 11. The
logarithms are natural with the basis e.

We also want to emphasize that our findings (and our
numerics) stay valid even for very long chains (Fig. 15). In
most of the paper we have kept L = 10 just in order to be able
to show full information in the figures (it is unfeasible to plot
100 curves) but there is no problem of computational nature
to reach, e.g., L = 100 (integration up to times t/t0 ∼ 106 for
an ensemble with 100 orbits takes less than half an hour of
computer time even for L = 100). Also, the anomalous scal-
ing laws remain the same, and the phase space stays mixed:
Despite the general belief that mixed dynamics is mainly a
characteristic of nonintegrable few-body systems, for classical
Bose-Hubbard chains it is still present even with hundreds of
degrees of freedom, despite the nonintegrability of the system.
It would be interesting to check analytically if the regular
islands persist even in the limit L → ∞.

Finally, in relation to the connection between transport and
chaos, it might be useful to show the Lyapunov exponent not
only as a function of U, μ and the initial conditions (although
that is indeed our main concern) but also as a function of
energy. This is the way the route to chaos is studied for clas-
sical Bose-Hubbard equations in Refs. [27,39,70]. Figure 16
shows the Lyapunov exponent for a set of orbits with differ-
ent μ,U values tuned so that the orbits start with different
energies. The roughly parabolic decay of λ with the growth
of energy captures one of the two branches of the dependence
λ(E ) studied in Ref. [27]. The decay of chaos with increasing

FIG. 14. Log-log plot of the second central moment (variance) of
the actions for an ensemble of orbits in the chain of length L = 10,
with U/J = 50 (left) and U/J = 5 (right), with μ/J = 0.5. Initially
filled sites are n = 3, 5, 6, 9, with fillings 2/3, 0.01, 2/3–0.01, 2/3,
respectively. Notice how the action I5 starts out with the exponent
ζ5 = 2 which, however, later turns into ζ5 = 4 as the occupation of
this site becomes comparable with the sites n = 3, 6, 9 which start
which much higher fillings. Unlike the parameters of the system
(μ,U ), the initial conditions are crucial in determining the anoma-
lous transport. The color code for site numbers (dark to bright) is on
the right. The log-scale assumes natural logarithms with the basis e.
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FIG. 15. Log-log plot of the second central moment (variance) of selected actions (it is unfeasible to plot 100 actions) for an ensemble of
orbits in the chain of length L = 100, with U/J = 1.25 and μ = 0, with three different initial conditions—initially filled sites are n = 30, 60, 90
(left), n = 30, 90, 95 (center), and n = 10, 20, 30, 40, 50, 60 (right). The phase space is still mixed, the same universal scaling laws apply as
for short chains, and the calculations are still well controlled. The color code for site numbers (dark to bright) the same as in the previous
figure. The log-scale assumes natural logarithms with the basis e.

energies is intuitive, as highly energetic orbits are dominated
by the kinetic energy and little influenced by interactions.
We do not see the growing branch, obtained in Ref. [27]
for larger negative energies (understood from the fact that
orbits with very large negative energies are strongly localized
and thus effectively see just a harmonic oscillator potential),
probably because of different initial conditions and nonzero
chemical potential (which was not considered in Ref. [27]).
An important conclusion is that λ is almost independent of
μ, and therefore the frequent focus on the μ = 0 case in the
literature is justified.

APPENDIX C: BEHAVIOR OF THE MAXIMUM
LYAPUNOV EXPONENT

In Figs. 3–5 we have given the behavior of Lyapunov expo-
nents for individual In variables. This is of primary interest for
us as we want to understand the connection—if any—between
the strength of chaos and the diffusion scaling exponent. We
have found that indeed both chaos and anomalous diffusion
depend on the initial condition—filled vs empty, though dif-

FIG. 16. Lyapunov exponent for a set of orbits with different
0 < U/J < 110 and 0 < μ/J < 2, plotted as a function of the initial
energy (determined by U/J , μ/J and the initial conditions). Chaos
becomes weak for orbits with positive energies as they are dominated
by the kinetic energy and thus are nearly regular. The near-horizontal
lines of different colors (darker or brighter) correspond to the orbits
with the same U but different μ: To a very good approximation, only
U determines chaos whereas mostly μ determines the energy.

fusion more crucially so. On the other hand, the dependence
on U/J and μ/J , while almost nonexistent for diffusion, is
present also for the Lyapunov exponents—they first rise (up
to about U/J ∼ 5) then fall with increasing U/J , where they
rise with μ/J for the whole interval we have studied.

We can instead look at the maximum Lyapunov exponent,
i.e., the exponent in the direction of maximal growth of the
variation. While often used in the literature as the more robust
measure of chaos, it washes away some interesting properties
of local dynamics, in particular the optimal routes to chaos and
order seen as bright and dark lines in Figs. 4 and 5. In Fig. 17
we plot the dependence of the maximum exponent λm for
the same range of parameter values. Overall dependence on
interactions and chemical potential is the same but much more
homogeneous and without optimal and nonoptimal routes.
This is expected as the chaos in the fully developed regime
should be less sensitive to initial conditions. However, for
purposes of understanding transport, such an indicator is not
very informative.

(a) (b) (c)

FIG. 17. The maximum Lyapunov exponent λm (in units of J) as
a function of the Coulomb interaction U/J and the chemical potential
μ/J , for a Bose-Hubbard chain with L = 10 wells, (a) with the well
n = 5 initially full and the rest empty (b) with the wells n = 4 and
n = 5 initially full and the rest empty (c) with all wells initially full
with random fillings (adding to 2 in accordance with the constraint).
The Coulomb coupling U/J is varied from 0.5 to 50.0, i.e., we do not
include the cases with U/J = 0 for these have exactly zero Lyapunov
exponent. The overall behavior of the maximum Lyapunov exponent
is similar to the behavior of individual exponents in Figs. 3–5; how-
ever, fine details such as the optimal and nonoptimal routes to chaos
cannot be seen in the maximum exponent. The color scale (blue to
red, i.e., dark to bright) shows the increasing values of the Lyapunov
exponent.
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APPENDIX D: CANONICAL FORM
OF THE LANGEVIN EQUATION

Here we attempt to transform the Langevin equation (30)
into the canonical form, where the right-hand side does not
depend on the variables ai, instead it is in general the sum of a
(possibly time dependent) deterministic external force F and
(possibly time dependent) noise term Ĝ(t )dW, where the W is
a Wiener process with variance w2. We follow the procedure
for the change of variables a �→ A in Wiener processes [58]
and adopt (for this Appendix) the vector notation, denoting the
vectors a j, j = 1, . . . N by bold letters (in addition to denoting
matrix by a hat, as we did already in the main text):

da(t ) = ĝ(t, a)dW �→ dA(t ) = F(t )dt + Ĝ(t )dW, (D1)

dA =
(

∂A
∂t

+ 1

2
w2ĝ2 · ∂2A

∂a2

)
dt + ∂A

∂a
· ĝ · dW, (D2)

F = ∂A
∂t

+ 1

2
w2ĝ2 · ∂2A

∂a2
, Ĝ = ĝ · ∂A

∂a
, (D3)

∂A
∂a

= ĝ−1 · Ĝ,
∂2A
∂a2

= −ĝ−2 · ∂ ĝ

∂a
· Ĝ, (D4)

∂2A
∂a∂t

= ĝ−1 · dĜ

dt
− ĝ−2 ∂ ĝ

∂t
· Ĝ, (D5)

∂F

∂a
= 0 ⇒ d log Ĝ

dt
= ∂ log ĝ

∂t
+ w2

2
ĝ · ∂2ĝ

∂a2
= 0, (D6)

0 = ∂

∂a

(
∂ log ĝ

∂t
+ w2

2
ĝ · ∂2ĝ

∂a2

)
solvability condition,

(D7)

Ĝ = exp

[
w2

2

∫
dt ĝ · ∂ ĝ

∂a

]
, (D8)

F = w2

2

∫
da

(
∂2ĝ

∂a2
− ∂ ĝ

∂a

)
· exp

[
w2

2

∫
dt ĝ · ∂ ĝ

∂a

]
.

(D9)

For our system, since ∂ ĝ/∂t = 0, the solvability condition
(D7) boils down to ĝ′ · ĝ′′ + ĝ · ĝ′′′ = 0 yielding log(ĝ · ĝ′′) =
const, which means either ĝ = ĉ0 + ĉ1 · a for constant c0, ĉ1

(if the constant on the right-hand side equals zero), or it
implies a solution for ĝ in terms of inverse error functions.

The latter is manifestly not the case for our ĝ and the former
is only true if we ignore the constraint and thus indeed only
have a linear dependence of ĝ on a. Then however the matrix
ĝ is not invertible hence there is no solution. If we include the
constraint and solve the effective system with L − 1 sites as
in (32), then we do not satisfy the condition (D7), and hence
there is again no solution (or in other words, the expression for
ˆ̄G in the last line is not ā independent as we wanted it to be).
We conclude that this system cannot be reduced to a canonical
Langevin equation with an ā-independent right-hand side.

APPENDIX E: ANOMALOUS TRANSPORT
VERSUS DYNAMICS

Looking at the description of dynamics and Lyapunov
exponents in Sec. III, we have concluded that the transport
exponents mainly have to do with the distribution of occupa-
tion numbers, just like the Lyapunov exponents in Figs. 4 and
5: The existence of resonances and the strength of nonintegra-
bility (i.e., U/J ratio) both have little influence on the scaling
laws, and likewise do not influence much the chaoticity of
individual orbits. Rather, chaos is the characteristic of a near-
filled site n surrounded by near-empty sites n − 1, n + 1 (in
the sense that In > In+1, In−1), and this situation also implies
the transport exponent 0. The further we are from a filled site,
the smaller the Lyapunov exponent and the larger the transport
exponent. Therefore, large transport exponents (which are far
from normal diffusion) indeed go hand in hand with weak
chaos, as found in many circumstances in Ref. [42]. The
long-term universal normal diffusive regime is reached only
after the initial cell (ensemble) in phase space has spread out
sufficiently to “forget” its initial condition.

For finite μ and large U/J values, i.e., in the Mott-like
regime, the discrete nonlinear Schrödinger equation which,
as we have mentioned previously, follows from the contin-
uum limit of the Bose-Hubbard chain, provides a simple but
useful model of transport. The first step is to write the ac-
tions as I j (t ) = a∗

j (t )a j (t ), with a j (t ) = f j (t ) exp[ıφ j (t )], the
constraint now becoming

∑
j | f j |2 = 1. Plugging this into the

equations of motion, we get

ı ḟ j + J
(

f j−1 + f j+1
) − μ f j − U | f j |2 f j = 0. (E1)

FIG. 18. Time evolution of the action for sites 7, 13, and 16, for a chain of length L = 20, with U/J = 13.3, with sites n = 7 and n = 16
initially filled, obtained from the numerics (blue or darker) and from the J = 0 DNSE (magenta or brighter). The period of oscillations is
very well predicted by DNSE, although the amplitudes and the overall shape differ significantly, particularly for the initially empty sites
(the rightmost panel). Nevertheless, we find even such very limited agreement unexpected for such a simple approximation. It suggests that
early-time dynamics is collective in nature and thus possesses many additional near-integrals of motion; they cease to be near-conserved at
longer times, when thermalization and anomalous diffusion kick in.
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The homogeneous (J = 0) solution satisfying the initial con-
dition I j (t = 0) = I0 reads

f j (t ) =
√

μ√(
μ

I0
− U

)
e2ıμt + U

. (E2)

Squaring the module of the above solution we can obtain the
actions. The zeroth-order result in J (i.e., J = 0) is the only
one we can obtain analytically. But a look at Fig. 18 suggests
it is not a bad approximation for high U/J values; in partic-
ular the period 2μ is indeed well matched to the numerical

result. This result holds at shorter timescales; in the long term,
the integrable, zero-hopping approximation breaks down. The
morale is that the short-time, anomalous transport regime is
dominated by collective motion with many quasi-integrals of
motion (for J = 0 they become exact integrals of motion):
The collective character of the DNSE leads to long-range
correlations and anomalous diffusion. For longer times, the
J = 0 approximation is no longer meaningful and we lose
the quasi-integrable character of dynamics, the long-distance
correlations and anomalous diffusion, again in accordance
with the intuition of Refs. [42,44].
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