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Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions
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The effect of phase-lag in pairwise interactions has been a topic of great interest for a while. However, real-
world systems often have interactions that are beyond pairwise and can be modeled using simplicial complexes.
We show that the inclusion of higher-order interactions in phase-lagged coupled Kuramoto oscillators shifts
the critical point at which first-order transition from a cluster synchronized state to an incoherent state takes
place. Considering the polar coordinates, we obtain the rotation frequency of the clusters, which turns out to be a
function of the phase-lag parameter. In turn, the phase- lag can be used as a control parameter to achieve a desired
cluster frequency. Moreover, in the thermodynamic limit, by employing the Ott-Antonsen approach we derive
a reduced equation for the order parameter measuring cluster synchronization and progress further through the
self-consistency method to obtain a closed form of the order parameter measuring global synchronization which
was lacking in the Ott-Antonsen approach.
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I. INTRODUCTION

Synchronization of interacting units occurs in many real-
world complex systems ranging from the circadian clock
in the brain and neural networks to power grids, cardiac
rhythms, and chemical oscillators [1]. It was the insights of
Winfree that Kuramoto later utilized to model the collec-
tive phenomenon of synchronization into a more manageable
form which tells us how the coupled Kuramoto oscillators
progress from an incoherent to a fully coherent state through
a second-order phase transition [2,3]. Later studies of the
coupled Kuramoto oscillator model, with and without a phase-
lag, have uncovered versatile phenomena such as global and
cluster synchronization [4], partially synchronized states [5],
explosive synchronization in a single layer [6], and multilayer
networks [7–9], etc. Particularly, phase-frustrated coupling,
which could also be perceived as time-delayed interactions, is
widespread in various physical systems [10–12]. For example,
in power grids the phase-lag parameter corresponds to the
energy loss along the transmission lines [13]. Also, a neural
network with distributed time delays can be modeled as a
coupled Kuramoto model with a phase-lag parameter [14].
Sakaguchi and Kuramoto investigated the effect caused by the
inclusion of a phase frustration parameter in an ensemble of
oscillators and uncovered that strong coupling of oscillators
can bring them together in one cluster which rotates with
a nonzero frequency, deviating from the algebraic sum of
the oscillator’s intrinsic frequencies [15]. This contrasts with
what was realized for the Kuramoto model having zero phase-
lag. Further, phase-lag is found to be responsible for causing
phase turbulence in self-oscillatory diffusive systems [16].
A few systems that have been modeled through Kuramoto
oscillators with phase-lag parameters are seismology [17] and
Josephson junctions [18,19]. Also, this model became the
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prototype model to investigate chimera where the nonlocally
coupled oscillators voluntarily split into synchronized and
incoherent populations [20].

However, all these investigations and results were largely
confined to purely pairwise interactions. Recent advances
have indicated that this simplistic view might not be suf-
ficient to fully decipher the underlying mechanisms behind
many real-world complex phenomena where higher-order or
n-simplicial interactions exist [21,22]. In complex systems,
n-simplex is formed by n + 1 interacting nodes, for example,
2- and 3-simplex represent triangle and tetrahedron, respec-
tively [23]. Many real-world complex systems such as the
brain, scientific collaborations, and social systems have un-
derlying higher-order interactions that are crucial for their
functioning and evolution [24]. In 2019, Skardal and Arenas
[25] had shown that the Kuramoto oscillators coupled through
2-simplex interactions manifest an abrupt first-order transition
to desynchronization with no complementary abrupt synchro-
nization transition. Also, in the thermodynamic limit there
exists continuum desynchronization transition points arising
due to changes in the initial conditions. Later Kachhvah and
Jalan [26] showed that adaptive 1- and 2-simplicial interac-
tions can lead to a first-order transition to antiphase clusters.
The past few years have witnessed remarkable growth in the
studies of coupled Kuramoto oscillators with higher-order
interactions on single-layer networks [27–32], furthermore
on multilayer networks [33,34]. Lately, Carletti et al. [35]
showed that only some particular topological oscillators in
higher-order networks exhibit global synchronization, which
is not seen in any arbitrary simplicial complexes.

A recent study on a coupled Kuramoto oscillators model
incorporating phase-lag parameter α in the triadic interac-
tions along with the pairwise interactions has considered the
following form of the triadic coupling, sin(2θ j − θk − θi −
α), where θi is the phase of the ith Kuramoto oscillator
[36]. Here, in this article, we consider another phase re-
duction form of the complex Ginzberg-Landau equation for
2-simplex interactions [37], yielding the triadic coupling as
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sin(θ j + θk − 2θi − α). Such a form of the 2-simplex cou-
pling in the absence of a phase-lag is known to manifest a
two-cluster state that gets destroyed through an abrupt desyn-
chronization transition as coupling strength is adiabatically
decreased [25]. Here, we show that the inclusion of a phase
frustration term shifts the critical desynchronization point
toward the higher positive coupling strength value. That is,
starting with a cluster-synchronized state, as coupling strength
decreases adiabatically, desynchronization to an incoherent
state occurs for larger coupling strengths than that achieved
for the zero-phase-lag cases. The crucial difference between
the form of the triadic interactions considered here from the
form of the triadic interactions considered in Ref. [36] and
other existing models having phase-lag in the pairwise inter-
actions [15,38] is the existence of a stable two-cluster state, in
contrast to a stable global synchronized state.

In the thermodynamic limit, using the Ott-Antonsen
approach [39] we first derive the reduced dimensional equa-
tion for a cluster synchronization state, and then by using
the self-consistency method obtain the closed forms of the
order parameter corresponding to global synchronization. The
challenge lies in deriving an analytical expression of the
cluster frequency (�). Which we solved by converting the
coordinates into the polar frame facilitates deriving a relation
between � and α for higher-order interactions. Ergo, α can be
used as a control parameter to regulate the rotation frequency
of clusters to a desired value [40]. This is the first time, to
our knowledge, a relation between the cluster frequency and
phase-lag parameter is established. Further, we present the
numerical simulations for finite-size networks, which show a
good match with the analytical predictions performed in the
thermodynamic limit.

II. MODEL

We consider a higher-order extension of the Kuramoto-
Sakaguchi model with coupling taken as 2-simplex interac-
tions,

θ̇i = ωi + K2

N2

N∑
j=1

N∑
k=1

sin(θ j + θk − 2θi − α), (1)

where ωi is the intrinsic frequency of the ith oscillator and
K2 is the 2-simplex coupling strength for N oscillators. The
collective behavior of the oscillators can be analyzed using the
definition of the generalized order parameter zq = rqeιψq =
1
N

∑N
j=1 eqιθ j for q = 1, 2, where r1 and r2 measure the magni-

tude of global and two-cluster synchronization, respectively.
Two-cluster synchronization refers to the state in which os-
cillators get locked in two clusters rather than one single
cluster. Further, here r1 = r2 = 0 indicates that oscillators are
uniformly distributed in a circle of unit radius referred to as
an incoherent state, whereas r1 = r2 = 1 implies the global
synchronization in which all oscillators are locked in a single
cluster. Another case of r1 = 0 and r2 = 1 indicates antiphase
two-cluster synchronization. The mean phase ψq can be cal-
culated as

ψq = arctan

( ∑N
j=1 sin(qθ j )∑N
j=1 cos(qθ j )

)
. (2)

III. MEAN-FIELD EQUATION AND ANALYTICAL
CALCULATIONS

Order-parameter notions help us to write Eq. (1) in the
mean-field form such as

θ̇i = ωi + K2r2
1 sin(2ψ1 − 2θi − α). (3)

In the continuum limit N → ∞, the state of the system can
be given by density function ρ(θ, ω, t ), which describes the
density of oscillators with phase between θ and θ + δθ and
intrinsic frequencies between ω and ω + δω at time t . Since
the number of oscillators is conserved, ρ must satisfy the
continuity equation

∂ρ

∂t
= −∂ (ρθ̇ )

∂θ
. (4)

Considering the frequency of each oscillator drawn from a
distribution g(ω), the density function can be expanded into
the Fourier series

ρ(θ, ω, t ) = g(ω)

2π

( ∞∑
n=−∞

ρn(ω, t )eιnθ

)
,

where ρn(ω, t ) is the nth Fourier coefficient ρ−n = ρ∗
n and

ρ0(ω, t ) = 1. We can write the density function into the sum
of the symmetric and antisymmetric parts; ρs(θ + π,ω, t ) =
ρs(θ, ω, t ) and ρa(θ + π,ω, t ) = −ρa(θ, ω, t ). The linearity
property of the continuity equation suggests that individually
ρs and ρa are solutions, and therefore the linear combina-
tion of both is also a solution. However, only the symmetric
part allows for dimensionality reduction using Ott-Antonsen
ansatz, as all the Fourier modes decay geometrically [39], i.e.,
ρ2n(ω, t ) = υn(ω, t ) where |υ(ω, t )| � 1:

ρs(θ, ω, t ) = g(ω)

2π

[
1 +

∞∑
n=1

ρ2n(ω, t )einθ + c.c.

]
. (5)

Plugging this and Eq. (3) into the continuity Eq. (4), we find
that each subspace spanned by odd terms eιnθ does not col-
lapse into a low-dimensional manifold, whereas the subspace
defined by even term e2ιnθ does, i.e., given as

∂υ

∂t
= −2ιυω + K2

(
z∗

1
2eια − z2

1υ
2e−ια

)
. (6)

In the continuum limit N → ∞, we have z2 =∫ ∞
−∞

∫ 2π

0 ρs(θ, ω, t )e2ιθ dθdω, which after inserting
the Fourier series expansion of ρs(θ, ω, t ) reduces to
z2 = ∫ ∞

−∞ g(ω)υ∗dω. Upon considering the frequency
distribution g(ω) to be Lorentzian g(ω) = 

π[(ω−ω0 )2+2]
with mean ω0 = 0 and spread  = 1, the complex integral
z2 can be calculated using Cauchy’s residue theorem by
contour integration in the negative half-plane, yielding
z2 = υ∗(ω0 − ι, t ). Further, taking the complex conjugate
of Eq. (6) and substituting ω = ω0 − ι,

∂z2

∂t
= −2z2 + K2

(
z1

2e−ια − z∗
1

2z2
2eια

)
.

Upon employing the definition of z2 and z1, while separating
the real and imaginary parts, Eq. (6) reduces to

ṙ2 = −2r2 + K2r1
2
(
1 − r2

2

)
cos(2ψ1 − ψ2 − α), (7)

ψ̇2 = K2r2
1

1 + r2
2

r2
sin(2ψ1 − ψ2 − α). (8)
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Note that these equations are achieved by considering the
contribution of the symmetric part (ρs) only, which does not
accomplish an explicit relation between r1 and K2, Hence we
proceed further with the self-consistency method.

We change the frame of reference θ → θ + ψ1 and enter
into the rotating frame of the cluster (ψ̇1 = �). Hence, Eq. (3)
can be written as

θ̇i = ωi − � − K2r1
2 sin(2θi + α). (9)

Note that when α = 0, oscillators are distributed in a complex
circle around the mean ψ1 guided by the frequency distribu-
tion g(ω). Also, on changing the value of K2 the frequency
range of the locked oscillators participating in clusters re-
mains symmetric about zero. However, for nonzero α values
the effective cluster frequency for K2 > K2c (i.e., the critical
coupling strength where the transition occurs) will be different
from the mean of intrinsic frequencies. Consequently, the syn-
chronized clusters rotate with a common nonzero frequency �

with the magnitude of the maximum frequency being different
from that of the α = 0 case.

Next, the whole population can be divided into two groups
of the locked and drifting oscillators such as |ωi−�

K2r2
1
| � 1 and

|ωi−�

K2r2
1
| > 1, respectively. Moreover, for the locked oscillators,

the coupling form of the higher-order interactions considered
in Eq. (9) renders two stable fixed points:

θ∗ = 1

2
arcsin

(
ωi − �

K2r2
1

)
− α

2
, θ∗ + π. (10)

This indicates the presence of two-cluster synchronization.
Since r1 cancels out the presence of the number of oscillators
in both clusters and measures effective synchronization, to
quantify two-cluster synchronization, we have defined z2 =
r2eιψ2 = 1

N

∑N
j=1 e2ιθ j , where the value of r2 will measure the

extent of two-cluster synchronization. Further, to study the
contribution of the locked oscillator the density function can
be written as

ρlock (θ, ω) = ηδ(θ − θ∗) + (1 − η)δ[θ − (θ∗ + π )],
(11)

where η and 1 − η depict the probability of oscillators and
having value θ∗ and θ∗ + π , respectively. Here, 0 < η < 1
signifies the fraction of locked oscillators present in the θ∗

cluster. Furthermore, z1 = ∫ ∞
−∞

∫ 2π

0 eιθρloc(θ, ω)g(ω)dθdω

provides the contribution from the locked oscillators,
given by

r1
lock = (2η − 1)

∫ K2r2
1 +�

−K2r2
1 +�

eιθ∗
g(ω)dω. (12)

Moreover, for the locked state θ̇ = 0 [Eq. (9)], using
the trigonometric identities, the above equation can be
expressed as

cos(θ∗ + α

2
) =

√√√√1 +
√

1 − ( ωi−�

K2r2
1

)2

2
,

sin(θ∗ + α

2
) = ±

√√√√1 −
√

1 − ( ωi−�

K2r2
1

)2

2
,

where θ∗ = � − α
2 . The contribution of the sinusoidal term

will be either positive or negative based on the limits of the
integration over ω. Hence, Eq. (12) can be expressed as

r1
lockeι α

2 = (2η − 1)
∫ K2r1

2+�

−K2r1
2+�

eι�g(ω)dω.

By plugging the value of � and comparing the real and imag-
inary parts, the contribution from the locked oscillators gets
determined as

r1
lock = (2η − 1)

[
cos

α

2

∫ K2r1
2+�

−K2r1
2+�

√√√√1 +
√

1 − (
ω−�
K2r1

2

)2

2
g(ω)dω − sin

α

2

∫ �

−K2r1
2+�

√√√√1 −
√

1 − (
ω−�
K2r1

2

)2

2
g(ω)dω

+ sin
α

2

∫ K2r1
2+�

�

√√√√1 −
√

1 − (
ω−�
K2r1

2

)2

2
g(ω)dω

]
. (13)

In addition, to analyze the contribution of the drifting oscilla-
tors, where |ωi−�

K2r2
1
| > 1,

r1
drift =

∫
| ω−�

K2r2
1
|>1

∫ 2π

0
eιθ ρdrift(θ, ω)g(ω)dωdθ, (14)

and from Eq. (4) in the steady state, ρdriftθ̇ should be a con-
stant, yielding ρdrift = C

θ̇
, where the normalization constant is

calculated as the total probability of finding the oscillators on
a circle with

∫ π

−π
ρdrift(θ, ω)d (θ ) = 1 for each ω:

ρdrift =
√

(ω − �)2 − (K2r1
2)2

2π |ω − � − K2r1
2 sin(2θ + α)| . (15)

It is clear from Eq. (15), ρdrift(θ, ω) = ρdrift(θ + π,ω), which
yields rdrift

1 = 0 [Eq. (14)], i.e., the contribution of the drifting
oscillators in r1 vanishes. Therefore r1 = rlock

1 + rdrift
1 ≈ rlock

1 .
Furthermore, from Eq. (7) we get the fixed-point solution
of r2 as

r2 = −1 +
√

1 + K2
2r1

4cos2 α

K2r1
2 cos α

. (16)

Further, to simplify the expression of the self-consistency
Eq. (13), we have to determine the rotation frequency �.
The summation in Eq. (2) can be written in terms of the
contribution from the locked and drifting oscillators, ψq =
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FIG. 1. (a) Schematic diagram depicting fixed points of locked (solid circle) oscillators participating with rotating clusters along with
drifting (open circle) oscillators. (b) r1 and, (c) r2 vs K2 for different α values depicting a shift in critical coupling strength. Here, α = 0 (violet,
open circles), π/6 (red, squares), π/4 (orange, right triangles), and π/3.5 (blue, left triangles). These results are obtained numerically by
simulating Eq. (18) adiabatically in the backward direction for N = 104 oscillators. Solid curved lines represent analytical prediction from
Eqs. (13) and (16) using � values from Eq. (17). Solid circles correspond to numerical simulation in the forward direction.

arctan( 〈sin(qθ )〉lock+〈sin(qθ )〉drift

〈cos(qθ )〉lock+〈cos(qθ )〉drift
). Oscillators lie in two clusters

having π phase difference [Eq. (10)]. It is straightforward now
to see that contributions from the drifting oscillators cancel
out due to the symmetric density distribution [Eq. (15)], as
depicted in Fig. 1(a). To calculate the arguments of ψ2, we
first expand the 〈sin(qθ )〉lock term in one cluster which is
η[sin(2θ1) + sin(2θ2) + · · · + sin(2θn−1) + sin(2θn)] and in
another cluster, (1 − η)[sin(2(θ1 + π )) + sin(2(θ2 + π )) +
· · · + sin (2(θn−1 + π )) + sin (2(θn + π ))] and upon adding
and solving we obtain,

ψ2 = arctan

(
sin 2θ1+ sin 2θ2+ . . . + sin 2θn−1+ sin 2θn

cos 2θ1+ cos 2θ2+ · · · + cos 2θn−1+ cos 2θn

)
.

Then, for the locked oscillators in a cluster lying at ψ1 + θ ′
there will exist another locked oscillator in the same cluster
lying at ψ1 − θ ′, since the intrinsic frequency distribution of
oscillators is symmetric [Fig. 1(a)]. Further, simplifying the
expression we get

ψ2 = arctan

(
sin 2ψ1[2(cos θ + cos θ ′ + · · · )]

cos 2ψ1[2(cos θ + cos θ ′ + · · · )]

)
.

Thus, we obtain ψ2 = 2ψ1. This enables us to provide an
important relation between the mean phase of global and
cluster synchronization, which is necessary to calculate � as
Ott-Antonsen only allows to get relation for even part of the
dynamics. Next, using Eq. (8) and the above relation, we get
ψ̇1 = �, such as

� = − tan α

√(
1 + K2

2r1
4cos2 α

)
. (17)

Next, by substituting � from Eq. (17), the analytical values of
r1 are found by numerically integrating Eq. (13) for fixed α,
K2, and η. Note that only the locked oscillators contribute in r1

[rdrift
1 = 0, Eq. (14)]. Thereafter, we calculate r2 from Eq. (16)

by inserting values of r1.

IV. NUMERICAL CALCULATIONS

Further, by using Eq. (17), the mean-field equation (9)
reduces to

θ̇i = ωi + tan α

√(
1 + K2

2r1
4cos2 α

) − K2r1
2 sin(2θi + α).

(18)

This equation incorporating a change of the reference frame
(free of ψ1) enables us to get rid of the rotation of the cluster.
We numerically simulate Eq. (18) in a rotating cluster frame
free of ψ1, instead of Eq. (3) for N = 104. The RK-4 method
is used with a time step = 0.05, and r1 and r2 are obtained
by averaging over 2 × 104 iterations after removing the initial
transient period. We would like to note that though results
from the numerical simulations of Eqs. (1) and (18) are the
same as Fig. 4(a), generating simulation results for Eq. (1) is
a time-consuming process.

V. RESULTS

Figure 1(a) represents the schematic distribution of os-
cillators in a complex unit circle. The figure illustrates that
the locked oscillators are symmetrically distributed on a unit
circle following the nature of the Lorentz distribution of the
intrinsic frequency. There exist two antiphase clusters with
the locked oscillators density being η and 1 − η, respectively
rotating with a common angular frequency �. Figures 1(b)
and 1(c) delineate r1 and r2 as a function of K2 for differ-
ent α values and η = 0.9. The value of r2 remains greater
than r1, portraying two-cluster synchronization. Analytical
predictions are obtained for specific values of K2, η, and α.
The solution for r1 is derived from Eq. (13) by employing
values of � from Eq. (17). Additionally, the solution for r2

is determined from Eq. (16) after substituting the obtained
values of r1. There exists no forward synchronization as upon
increasing K2 the system always remains incoherent. It can
be seen that with an increase in α the backward transition
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FIG. 2. Synchronization profiles depicting r1 and r2 as a function
of K2: (a) and (b) are for different η values. Here, η = 1 (violet, open
circles), 0.95 (green, squares), 0.90 (magenta, right triangles), and
0.85 (red, left triangles). These results are obtained numerically by
simulating Eq. (18) adiabatically in the backward direction. Solid
lines correspond to analytical prediction obtained by Eqs. (13) and
(16) using � values from Eq. (17). Solid circles correspond to nu-
merical simulation in the forward direction.

point (K2c) for r1 and r2 both shift towards the right. That
is, the transition to the incoherent state occurs at a higher
critical coupling value. As it happens that a nonzero α value
yields a nonzero mean frequency [Eq. (17)], the intrinsic fre-
quency range of the locked oscillators satisfying the relation
(|ωi−�

K2r2
1
| � 1) no longer remains symmetric around mean 0.

Figures 2(a) and 2(b) respectively present results for r1

and r2 as a function of K2 for different values of η at a
fixed α value. To analyze the nature of the phase transition
to synchronization, we adiabatically increase and decrease
K2, representing the forward and backward direction, respec-
tively. In the forward direction, initially, all the oscillators
are distributed uniformly between [-π, π ] and frequencies are
drawn from a Lorentzian distribution, whereas in the back-
ward direction, initially the oscillators are distributed into two
clusters situated at diametrically opposite ends described by η.
As expected, in the absence of any pairwise couplings, there
exists no forward synchronization for any K2 value, whereas
the backward direction yields a first-order transition from
the cluster-synchronized state to the incoherent state. With a

decrease in η the critical transition point from the syn-
chronized to the incoherent state shifts towards the right.
Additionally, as η decreases, the oscillators having an initial
phase lying in the locked state attempt to distribute them in
diametrically opposite ends, which effectively renders fewer
oscillators to contribute in r1, due to which decreasing η leads
to an increase in the transition points for both r1 and r2, with r2

being greater than r1 for η < 1, depicting cluster synchroniza-
tion. In the thermodynamic limit, multistable branches exist as
an infinite number of stable partially synchronized states are
obtained through different arrangements of the initial condi-
tions in two different clusters, yielding a continuum of abrupt
desynchronization transitions. Moreover, we have shown the
parameter space plot (η vs K2c) for α = π/8 and α = π/6,
Fig. 4(b).

In Fig. 3(a) it can be seen that for the Lorentzian distribu-
tion considered here, the symmetry breaking around the mean
arising due to the inclusion of α will lead to fewer oscilla-
tors [Fig. 3(b)]. Consequently, fewer oscillators contribute to
the locked state with an increase in α. Figure 3(c) plots the
rotation frequency of the clusters as a function of K2. For
α = 0 the cluster remains stationary for K2 values, yielding
� = 0. However, for nonzero alpha values, � manifests a
linear dependence on K2 with an increasing slope [Eq. (17)],
even for the mean intrinsic frequency being zero. This demon-
strates that the phase-lag parameter regulates the rotation
frequency of the synchronized clusters, which can be adjusted
to a desired value by changing α. A similar phenomenon is
demonstrated for pairwise interactions with phase-lag but for
the global synchronization [40]. The crucial difference of the
model considered here having triadic interactions from the
pairwise interactions is that the former case yields two clus-
ters, in contrast to global synchronization in the latter case.

VI. CONCLUSION AND OUTLOOK

To conclude, we have analyzed the effects of phase frus-
tration parameters on the coupled Kuramoto oscillators on
simplicial complexes. We evaluated r1 and r2 order param-
eters which measure the extent of global and two-cluster
synchronization, respectively. In the absence of any pairwise

FIG. 3. Schematic diagram depicting the range of the oscillators taking part in the two-cluster state for (a) the α = 0 case and (b) for α 	= 0
value illustrates that oscillators taking part in the synchronized clusters may not be symmetric about mean 0. (c) K2 vs � for η = 0.9 and
different values of α such as 0 (red, diamonds), π/8 (blue, circles), and π/6 (magenta, squares) plotted using Eq. (17).
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interactions, r1 = r2 = 0 remains at one stable state for all K2

values. Starting with a set of initial conditions corresponding
to a synchronized state, as K2 decreases adiabatically, there
exists an abrupt transition to a completely incoherent state.
With an increase in the α value, this transition point for both r1

and r2 shifts towards the right. Further, using the Ott-Antonsen
dimension reduction approach, we derived the time-dependent
order parameter equations for the even part of the density
function. To obtain the closed form of the asymmetric part,
we proceed by the self-consistency method, which provides
a relation between the order parameters (measuring global
and cluster synchronization) and K2. Additionally, to obtain
the solutions for r1 and r2, we require an explicit expres-
sion of cluster frequency �, which is not achievable through
the Ott-Antonsen ansatz or by the self-consistency relation,
Eq. (13). We propose an analytical method for determining
the expression of �, using a polar coordinate frame. An ex-
plicit dependence of � upon α indicates that α can be used
as a control parameter to adjust the rotation frequency of
clusters to a desired value. The analytical results are noted
to be in good agreement with the numerical results. Also,
dependence of the mean cluster frequency on α provides an
explanation behind the origin of nonzero mean cluster fre-
quency even for intrinsic frequency distributions having zero
mean.

This model can be generalized by including a phase-
lagged pairwise term along with the 2- simplex interac-
tion for which the self-consistency analysis becomes more
challenging. Moreover, this model can be extended to
multilayer networks. As demonstrated by Jalan and Suman
[33], multilayer networks can exhibit multiple first-order
transition points instead of a single transition point to
global synchronization. It will be interesting to investigate if
phase-lagged higher-order interactions will lead to multiple
first-transitions to cluster synchronization. Further, there have
been recent attempts to analyze coupled Kuramoto oscillators
with inertia on simplicial complexes [32]. An extension of
the current work is to develop an analytical framework for

FIG. 4. (a) K2 vs r1. Open symbols represent direct simulation of
Eq. (1) for N = 1000, and solid lines represent calculations from the
mean-field equation (18) for N = 10 000 oscillators. (b) Analytically
obtained critical transition point (K2c) [Eq. (13)] as a function of η for
different α values.

the coupled Kuramoto model with inertia having phase-lag
[41], which makes the model more generalized and suitable
for wider applications.

The source code for this study is available upon request.
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APPENDIX

K2 vs r1: Figure 4(a) illustrates a good match between the
results obtained from direct simulation of Eq. (1) and those
obtained from the mean-field equation (18), in which � values
are calculated from Eq. (17).

Parameter space η vs K2c: Figure 4(b) plots show a change
in K2c as a function of η for different values of phase-lag
parameter α. K2c decreases with an increase in η.
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