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We consider the system of the Rosenzweig-MacArthur equations with one consumer and two resources.
Recently, the model has been generalized by including an optimization of the consumption rates βi [P. Gawroński
et al., Chaos 32, 093121 (2022)]. Also, we have assumed that β1 + β2 = 1, which reflects the limited amount of
time that can be devoted to a given type of resource. Here we investigate the transition to the phase where one
of the resources becomes extinct. The goal is to show that the stability of the phase with two resources strongly
depends on the initial value of βi. Our second goal is to demonstrate signatures of transient chaos in the time
evolution.
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I. INTRODUCTION

Population dynamics is a cornerstone of theoretical ecol-
ogy [1–3], with links to economic sciences [4] and game
theory [5], and with the Lotka-Volterra [6,7] and Rosenzweig-
MacArthur (RMA) [8] models as leading examples. The latter
approach has been advanced in recent years on a variety of
fronts. The tools applied include fractional derivatives [9],
time discretization [10], and stability analysis [11], among
others. Often the objective is to capture a given phenomenon,
such as paradox of enrichment [12], variable mortality [13],
prey taxis [14], spatial distribution of population [15], non-
linear diffusion [16], traveling waves [17], hydra effect [18],
chimera patterns [19], synchrony and asynchrony [20], and
others. Taking into account a spatial dependence [15,21] of the
density of consumers and/or resources (predators and prey)
allows considering various means of hunting and/or escape
[22,23]. Although certainly incomplete, this list places the
RMA model at the core of modeling ecological systems.

The concept of dynamic optimization appears here in a
natural way as an ongoing modification of decision variables
to improve consumption [24,25]. This can be achieved by
allowing the variables to depend on the current state of the
system. Optimization of this kind of predator search rate has
been implemented for a model of one consumer and one
resource [26], and it was shown to convert the functional re-
sponse from the Holling II to Holling III type. Another form of
dynamic optimization is to impose the condition of maximal
consumption, at each point of the trajectory, by appropriate
values of the decision variables. Then, the states with maxi-
mal consumption are reached immediately. This approach has
been applied in a series of papers by Křivan et al. [27–29].

In our recent article [30], a dynamic optimization of the
consumption rates of two resources by a consumer has been
discussed within the RMA model for one consumer and two
resources. The dynamic character of the rates βi has been
implemented via an additional equation of motion of the rates,
dβi/dt = v∂C/∂βi, where C is the density of the consumer,
the consumption rates of the resources Ri are bound by the

condition β1 + β2 = 1, and v is a parameter. The evolution
dβi/dt is equivalent to an application of one step of the
gradient ascent method. In this way, and contrary to Ref. [29],
the model has a tendency to optimize with speed controlled
here by the factor v. In this way, the dynamic optimization
in our approach can be treated as an intermediate solution
between the static optimization where the consumption rates
are constant and the solution where the consumption is max-
imized immediately in each time step. The former technique
has already been announced in Foraging Theory by Stephens
and Krebs ([24], p. 151). The latter has been worked out by
Křivan et al. [29]. Effectively, in our formulation the velocity
of optimization is positive and finite. On the other hand, dy-
namic optimization as such can be seen as a gradual approach
to equilibrium in game-theoretical problems, as duopolies of
various kinds. We believe that our assumption of gradual
variation of the rates βi is more realistic than the case of
static optimization, where the rates do not change, and than
immediate optimization (as in Ref. [29]).

In Ref. [30], a phase diagram has been worked out in a
plane (αii, v), where αii is a Verhulst-like coefficient in the
time evolution of the ith resource. There, two phases have
been identified, say B and G, which differ in the number of
active (nonzero) resources: two resources in phase B and only
one in phase G. The aim of the present paper is to explore the
system dynamics: When and how does the transition from B
to G appear?

In the present paper, our goals are as follows. First, a
chaotic behavior is identified at the early stage of the time
evolution. Second, it is shown that the stationary phase dia-
gram of the system preserves memory of the initial values of
the rates βi; in particular, the critical value of the parameter
v where the transition from phase B to phase G is strongly
dependent on βi(t = 0).

In the next section, the model equations are given, to-
gether with values of these parameters, which remain fixed
throughout the text. Section III is devoted to the numerical
results: the temporally chaotic character of the solutions (the
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so-called transient chaos [31,32]) and the dependence of the
phase diagram on the initial values of the rates βi. The results
are discussed in the last section.

II. THE MODEL

In the RMA model, the equations of motion for the densi-
ties of consumer C and two resources Ri, i = 1, 2 are [33]

dC

dt
= pC

β1R1 + β2R2

1 + b(β1R1 + β2R2)
− mC, (1)

dR1

dt
= R1(1 − α11R1 − α12R2) − pR1β1C

1 + b(β1R1 + β2R2)
, (2)

dR2

dt
= R2(1 − α21R1 − α22R2) − pR2β2C

1 + b(β1R1 + β2R2)
, (3)

where βi is the rate of taking advantage of resource Ri, and αi j

is the Verhulst term which produces a limitation of growth
of resource Ri, imposed by resource Rj . Further, p is the
attack rate of the consumer, b is the Holling’s II functional
response term of the consumer, and m is the mortality rate of
the consumer [33].

As in Ref. [30], these equations are supplemented as fol-
lows. The first is the condition β1 + β2 = 1, which denotes
a limitation of time of the consumer devoted to a given re-
source. This limitation can be seen as a simple example of
“an interaction between interactions” [34]; namely, the active
consumption of one resource hampers the consumption of
another one.

Further, the rates βi are also subject to time evolution,
according to the rule

dβi

dt
= v

∂C

∂βi
, (4)

where i = 1, 2, the right-hand side derivative is of the func-
tion C(β1, β2) = C(β1, 1 − β1) for i = 1, C(β1, β2) = C(1 −
β2, β2) for i = 2, and 1/v is the characteristic time of this
evolution. In Eq. (4), we presuppose that β1 is modified so
as to enhance the consumer density C, and that the evolution
speed is proportional to the yielded gain in C.

The values of some parameters are kept the same as in
Ref. [30]: α12 = α21 = 0.065, m = 0.2, p = 3.0, b = 2.0 and
α11 = α22. For one consumer and one resource, where one
of the β ′s is zero, these values of p, m, and b produce limit
cycles, with a Hopf bifurcation at m = 0.5. For two resources,
the model is more complex. Below, we demonstrate that the
stationary outcome of Eqs. (1)–(4) do depend on the initial
conditions of the coefficients βi.

III. RESULTS

As demonstrated in Ref. [30], the numerical solutions of
Eqs. (1)–(4) for small v and asymptotically long times are
composed of two modes, following each other. One mode is
a variation of the four variables: C, R1, R2, and β1 approxi-
mately linear in time. Another mode is their oscillation with a
given frequency and amplitudes, which raise, next decrease.
This behavior can be seen as two subsequent supercritical
Hopf bifurcations in four-dimensional space. As the evolu-
tion is periodic in time, the solution can be identified as a
homoclinic orbit. A similar sequence of burstlike modes has

FIG. 1. (a) The time dependence of a squared distance be-
tween two initially close trajectories in the four-dimensional space
C, R1, R2, β1. (b) The time dependence of a squared distance between
two initially close trajectories; the time range is chosen to show the
approximately exponential increase in time. (Parameters: αii = 0.80,
v = 0.011300, β1 = 0.53).

been identified for the RMA model of a trithropic system of a
prey, a predator, and a superpredator [35]. There, both regular
and chaotic behavior have been allowed. Irregular variations
of trajectories with time are also observed here in the early
stage of the simulation. Then we made an attempt to check
the possible chaotic character of our solution.

First, we simulate the time dependence of a distance be-
tween two trajectories, initially close to each other. These
results are shown in Figs. 1(a) and 1(b) for one turn of the
homoclinic orbit. The apparent thickness of the plots comes
from the fact that both compared trajectories oscillate. Indeed,
there is some range of time where the plot on the logarithmic
scale of the vertical axis is approximately linear, as shown in
Fig. 1(b). The local slope, fitted within this range, is small yet
positive.

However, as was argued in Ref. [31], this positive slope
could just mean that the trajectory leaves some unstable region
of phase space. As an additional criterion of the transient
chaos, we measure the lifetime of the initial phase B when
the system starts near the boundary between phases B and G,
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(c)

(b)

(a)

FIG. 2. (a) Time to obtain phase G dependent on the initial value
of the consumer density, C(t = 0). (b) Here only the lowest band is
shown. The parameter v is slightly larger (by 0.022) than its criti-
cal value. (c) Fractal dimension (D = 0.88) of Fig. 2(b) calculated
using the box counting method. (Parameters: αii = 0.96, v = 0.16,
β1 = 0.53).

on the side where v > vcr. (Recall that, above vcr , the system
ends in phase G.) The lifetime is measured as dependent on
the initial conditions [31]; here we slightly change the initial

FIG. 3. Dependence of vcr on β1(t = 0) for various αii. For
v > vcr , phase G appears. Below this line the system ends in phase B.

value of the consumer density C. The results are shown in
Fig. 2. They indicate that the dependence is not a smooth
curve, and suggest a fine—possibly fractal—structure of re-
gions of phase space which lead to a given lifetime of phase
B. To clarify this issue, an evaluation of the box-counting
fractal dimension D of the data on the time of phase change,
as dependent on the initial value of the consumer density. We
note that these data show a characteristic time, related to the
periodic behavior of Ri [visible also in Fig. 4(a)]; the transition
to phase G where Ri = 0 occurs when Ri is of low value. This
periodicity appears after the (transient) chaotic stage ends, and
it produces the set of horizontal bands. Therefore, it makes
sense to calculate the fractal dimension for one such band,
shown in Fig. 2(b) The result is D = 0.88 (Fig. 2(c)), which
confirms the fractal character of the data. [For completeness,
we add that for the data shown in Fig. 2(a), the fractal dimen-
sion is found to be 0.68.]

To explore the influence of β1(t = 0) in its range wider
than in Ref. [30], calculations of the boundary vc between
phases B and G are performed for the initial values of β1

below 0.49. As we show in Fig. 3, there the dependence of
vc on β1(t = 0) is quite strong, namely, once the chaotic stage
ends, either the system remains in phase B, where permanent
oscillations are present, or the system tends to phase G, where
one of the resources disappears. The latter transformation
can appear either directly from the chaotic stage or from the
periodic phase. Phase G is absorbing, which means that the
transition to this phase is irreversible. In summary, one can
distinguish four scenarios:

(i) the system remains in phase B, where the variables
oscillate,

(ii) the system switches to phase G right from the chaotic
phase,

(iii) the system switches to phase G from the periodic
phase, and

(iv) the system starts from phase G.
Case (i) appears if the parameter v is smaller than its criti-

cal value. The following numbers apply to the case αii = 0.95.
Case (ii) appears if 0.475 < β1(t = 0) < 0.525. The critical
value vc of the parameter v is moderate, around 10−3. Case
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FIG. 4. Dependence of R1 on (a) time and (b) β1: 12 last turns
before switching to phase G. Inset. During the last turn the amplitude
of the variation of β1 is larger and the resource R1 drops to zero.
(Parameters: αii = 0.80, v = 0.011100, β1 = 0.53).

(iii) appears if 0.46 < β1(t = 0) < 0.475 or 0.525 < β1(t =
0) < 0.54. There, phase B is much more stable: vc is about
0.1. Case (iv) appears if |β1(t = 0) − 0.5| > 0.04. As seen in
Fig. 3, for αii lower than 0.95 the behavior is qualitatively the
same; it is only that the range of β1(t = 0) where case (iii)
applies is narrower. In the inset of Fig. 3, a diagram is shown
where cases (i)–(iv) have their counterparts as colored areas
in the plane [β1(t = 0), v].

It is remarkable that a small variation of β1 can lead to a
huge change in the critical value vc. To elucidate this point, we
show in Figs. 4 and 5 examples of two modes of the transition.
In Fig. 4, a part of the periodic trajectory R2(t ) is shown,
accompanied by projection to the plane (β1, R2), just before
its collision with the absorbing subspace R2 = 0. This should
be compared with Fig. 5, where the analogous trajectory is
shown just before its collision with R2 = 0 right from the
chaotic stage. It is clear that the appearance of this collision
strongly depends on the distance between the trajectory and
its target R2 = 0. Hence, a small change in the parameters can
produce a large variation in the critical value of vc. Accord-
ingly, the large drop in vc above β1(t = 0) = 0.47 is due to
the fact that in this range the transition to phase G appears
directly from the transient stage (Fig. 5), while below this

(a)

(b)

FIG. 5. Dependence of R2 on (a) time and (b) β1 at the transition
to phase G, where R2 = 0. (Parameters: αii = 0.90, v = 0.000865,
β1 = 0.49).

range the transition is from the periodic stage of phase B, as
shown in Fig. 4. The mechanism of the strong dependence of
vc on β1(t = 0) emerges as follows: either the crossover to
phase G occurs earlier than the end of the transient chaotic
behavior or not. In the former case, the time dependence of R2
is more volatile, and the transition is easier. Otherwise, once
the periodic (nonchaotic) behavior is achieved, the transition
to phase G demands a much larger value of the parameter v.

To trace how the initial value of β1 influences the system
formed after the transient stage, two further calculations are
performed. First, the Fourier spectrum of R2(t ) is found for the
stationary periodic state for phase B (v below vc). As we show
in Fig. 6, this spectrum is the same for all the investigated
values of β1(t = 0). In other words, the initial value of β1 does
not influence the frequencies of R2(t ). Second, we compare
the trajectories of β1(t ), C(t ), R1(t ), and R2(t ), starting from
the same initial values of C, R1, and R2. Only β1(t = 0) was
different: 0.47 for one trajectory and 0.48 for another. In
Figs. 7 and 8, the differences are shown: �β1(t ) and �R2(t ) in
the stationary state. The parameter v is taken as 0.001240, that
is, just below its critical value 0.001245 for β1(t = 0) = 0.48.
As we see, the differences between the two trajectories are
visible and never vanish in the stationary state for both �β1(t )
and �R2(t ). Additionally, the same effect is shown in Fig. 9.
As we can see there, the time variation of �R2(t ) depends
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FIG. 6. Power spectrum of R2 for various β1. Besides the original
frequency f , the spectrum contains frequencies 2 f , 3 f , 4 f , etc.
(Parameters: αii = 0.95, v = 0.001220).

FIG. 7. Evolution of �β for two initial values of β1 = 0.47 and
β1 = 0.48, αii = 0.95, v = 0.001240.

FIG. 8. Evolution of �R2 for two initial values of β1 = 0.47 and
β1 = 0.48, αii = 0.95, v = 0.001240.

FIG. 9. Evolution of �R2 for two initial values of β1 = 0.464
and β1 = 0.48, αii = 0.95, v = 0.001240.

on the initial value of β1(t = 0), namely, a slight phase shift
of the oscillations is observed between the two compared tra-
jectories. Concluding, since the information about the initial
values of the rates βi appears to be preserved during the time
evolution, we can speak about a memory effect.

We would like to add a note on the dependence of the
boundary vc between phases B and G on the coefficient αii,
as reported in Ref. [30]. This boundary has been found to
increase approximately linearly with αii to about αii = 0.96,
with an additional enhancement above this value. This result
has been obtained for the initial values of the rates βi equal to
0.49 and 0.5. The shape of the boundary vc in the phase dia-
gram can be qualitatively interpreted based on the analytical
solution of Eqs. (1)–(3), for v = 0. Phase B stability analysis
has been performed in Ref. [30]. It has been shown in Fig. 3
that there are two stable regions in the phase space, around
β1 = 0.47 and β1 = 0.53. When analyzing the stability of
phase G (for v = 0, β1 < 0.5, and R2 = 0), we get R1 =
m/((p − mb)β1) and C = (1 − α11R1)/((p − mb)β1). There,
two Jacobian eigenvalues are always negative and the third
eigenvalue is equal to 1 − α21R1 − pCβ2/(1 + bβ1R1). This
eigenvalue changes signs at some β∗

1 ; it is negative for β1 <

β∗
1 , which means that phase G is stable there. The value of

β∗
1 slowly decreases with α11 from 0.467 for α11 = 0.8 to

0.457 for α11 = 0.99. In other words, when α11 increases, the
boundary of the stability area of phase G moves away from
the boundary of the stability area of phase B (β1 about 0.47
[30]). When these boundaries are more apart, phase B is more
stable and vc increases.

IV. DISCUSSION

From an experimental point of view, our results indicate
a partial resilience of the system with respect to the opti-
mization of consumer rates βi. However, once the incentive
(represented here as v) to change the phase is sufficiently
strong, the system is converted to a different phase of lower
diversity. These results add to a general belief in instabilities
of ecological systems, a classic theme since the papers of
Holling in the 70’s [36], and provide an example of such a
phase transition.
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The main innovation of the original RMA model presented
in Ref. [30] and here is that the consumption rates are con-
trolled by the consumer to enhance its own density C. For
this purpose, the rates βi can evolve over time. Our model
results indicate that once one of two resources happens to be
exploited more clearly than another, this exploited resource is
going to extinct. In contrast to the stochastic version of the
so-called paradox of enrichment [12,37], otherwise similar,
this extinction is deterministic, i.e., it will happen for sure in
some definite subspace of the values of the parameters. (See
also the discussion of the so-called atto-fox effect in Ref. [2]).
At the end, that is, in the stationary state of phase G, C is
indeed the largest. Simultaneously, the rate of consumption of
the remaining resource is stabilized at a moderate value. On
the other hand, the diversity of resources is lost. The litera-
ture on vanishing and endangered species is abundant [38],
with overfishing as a particularly well-described phenomenon
[39]. Our considerations here are limited to the model results;
however, analogies impose easily.

It is tempting to consider the system of Eqs. (1)–(4) as an
example of slow-fast model [40], with the dynamics of β ′s
slower than the dynamics of C, R1, R2. In such considerations,
the velocity v could play the role of a small parameter. How-
ever, the frequency of oscillations during the bursts is the same
for all four variables, which makes the analogy doubtful. On
the other hand, the case of v = 0 allows for qualitative insight
into the observed phenomena observed numerically for v > 0.
It is worthwhile to note that the strong effect of extinction
of one resource is a consequence of a collision of boundaries
of areas of stability of two phases, with only tiny motion of
these boundaries. This aspect of our results brings attention to
nonlinear answers of the environment to small changes of the
imposed conditions.

The results add to several concepts related to theoretical
ecology, making their definitions slightly wider. In Ref. [41],
a kind of memory effect in the RMA model has been imple-
mented with fractional derivatives. There, the time evolution
of a function depends on its shape in the past. In contrast, here
an actual phase related to a point (αii, v) in the phase diagram
appears to depend on the initial values of βi. Once phase B or
G is given, the consumer density C has a well-defined value.

Another related concept is predator interference. As de-
fined in Ref. [42], it is “a decline in the per predator
consumption rate as predator density increases.” While other
definitions [43,44] refer to more than one predator, the sen-
tence above [42] suggests its applicability to our case. And,
indeed, here the density of consumers is larger in phase G
than in phase B, while the consumption rate βi related to
the nonvanishing resource Ri is clearly lower than the other
β3−i = 1 − βi.

There is also some correspondence between the concept
of control in the RMA model described in Ref. [45], and a

possible application of such control in our case. In Ref. [45]
and references therein, a discrete-time scheme has been
proposed for one consumer and one resource. To preserve
nonzero values of the related variables, the so-called threshold
policy with hysteresis has been applied, i.e., appropriate terms
have been added to the model equations. It is straightforward
to imagine a similar supplement of our equations of motion,
which could maintain the evolution of the rates βi in the range
around 0.5. Such a supplement would be a direct generaliza-
tion of the approach in Ref. [45] to the case of one consumer
and two resources, which is worked out here.

The qualitative aspects of our results can be summarized
as follows. First, the time evolution in the stationary state
preserves information on the initial values of the rates βi of
consumption. Second, this information persists despite the
(transient) chaotic episode at the beginning of the evolution.
Third, the dependence of the critical velocity vc on the initial
value of rate β1 is practically composed of three plateaus of
clearly different values. These qualitative aspects of our re-
sults make the RMA system attractive for modeling economic
and social systems. There, several approaches [46–48] are
still based on the Lotka-Volterra model, despite its obvious
shortcomings: the unbounded increase of preys in the absence
of predators, and the constant of motion of periodic orbits,
which leads to the atto-fox effect [2]. These shortcomings
are removed when the so-called Verhulst term [49] is added;
yet the RMA model allows us to also include the Holling
functional response of type II, with a clear interpretation of
overfeeding. There and in other papers [46–48], applications
of the RMA model could be a step forward.

Abstracting from the details, our results indicate that after
some transient chaotic stage, the system of a consumer and re-
sources either oscillates in a predictable way or gets to a state
where one of the resources is irreversibly extinct. Actually,
research on a system of one consumer and two resources can
only give some notions about complex trophic levels and food
chains. Yet, transient chaos is also known to appear for larger
systems [50]. From our considerations, two such notions can
be drawn. The first is that complex networks of consumer-
resource relations can persist if their evolutions in time are
coherent, i.e., their oscillations in time self-organize to some
common frequencies. This result is consistent with the discus-
sion in Ref. [51]. Such oscillations, if not too large, can even
stabilize the whole system [52]. The second is that a larger
modification of a single variable can lead to a destabilization
of a large part of the system, with the biological diversity re-
duced. This result adds to the general conclusions of Ref. [53].
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