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Tuning limit cycles with a noise: Survival and collapse
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We consider a general class of limit cycle oscillators driven by an additive Gaussian white noise. Based on
the separation of timescales, we construct the equation of motion for slow dynamics after appropriate averaging
over the fast motion. The equation for slow motion whose coefficients are modified by noise characteristics is
solved to obtain the analytic solution in the long time limit. We show that with increase of noise strength, the
loop area of the limit cycle decreases until a critical value is reached, beyond which the limit cycle collapses. We
determine the noise threshold from the condition for removal of secular divergence of the perturbation series and
work out two explicit examples of Van der Pol and Duffing-Van der Pol oscillators for corroboration between the
theory and numerics.
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I. INTRODUCTION

Interplay of nonlinearity and stochasticity has been an in-
teresting area of investigation in nonlinear dynamics over the
last couple decades. The observation of various noise-induced
phenomena in nonlinear systems under far-from-equilibrium
conditions demonstrates that noise can play a crucial role in
reorganizing a system or stabilize it, contrary to our expecta-
tions. The examples are abundant, ranging from noise-induced
transition [1,2], stochastic resonance [3,4], noise-induced
propagation of traveling wavefronts [5], and pattern formation
[6–14], etc., to name a few. A key issue in all these studies is
the understanding of the problem of instability of a dynamical
state acted upon by a noise in additive or multiplicative form.
The standard approach to this problem is the linear stability
analysis [15]. In the presence of noise, one is therefore re-
stricted to the linear stochastic differential equations within
the weak noise approximation [16–18] and the diffusion coef-
ficients are treated as constants. The scheme has found wide
applicability in quantum optics [16] and many related fields.

The nonlinear stochastic differential equations [19], on the
other hand, pose serious problems since it is difficult to obtain
a closed set of equations for moments unless one resorts to
mean-field approximations. More importantly, linearization
or mean-field approximations fail to capture the generic dy-
namical behavior of noisy limit cycle oscillators in the long
time limit. It is therefore worthwhile to explore how noise
affects the stability of a limit cycle and its long time behav-
ior. Because of their ubiquitous presence in living systems
[20–28] over a wide ranging timescale of biorhythms from a
circadian clock [20,21], Ca+2 oscillations [22,23], glycolytic
oscillations [24–26], and synchronization of fireflies [27], etc.,
limit cycles play a crucial role in nonlinear dynamics. Noisy
self-sustained oscillatory systems [28–33] therefore naturally
emerge as important candidates for many investigations. For
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example, the study [29] of linear response of a Van der Pol os-
cillator driven by noise, construction [30] of slow flow based
on averaging over the motion of a Van der Pol oscillator with
nonlinearity subjected to multiplicative noise, probing [31]
noise dependence of the time period and lifetime of a noisy
Van der Pol oscillator driven by both additive and multiplica-
tive noise may be mentioned in this regard. The mathematical
behavior of the solutions of stochastic and deterministic Van
der Pol–Duffing oscillators [32] as well as stochastic P bifur-
cations [32,33] has been examined. Keeping in mind these
developments, a direct method of the analytical solution of
noisy limit cycle oscillator and determining its stability is
worth pursuing. In what follows, we introduce an explicit
separation of timescales to construct the dynamics of slow
motion by averaging over the noise in the spirit of Blekhman
perturbation theory [34] used in vibrational mechanics [35]
and related areas [36–48]. The effect of fast motion is sub-
sumed into the slow dynamics in the form of renormalization
of the coefficients of the equation of motion. The slow motion
can be solved analytically by Lindstedt-Poincare perturbation
technique [49,50] or renormalization group methods [51–53].
An interesting offshoot of the present scheme is the estimate
of the threshold for collapse of the limit cycle against a critical
noise strength, which emerges from the condition for removal
of secular divergence of the perturbation series. We work out
two examples, namely, the Van der Pol and Duffing–Van der
Pol oscillators. Our theoretical analysis is verified by numeri-
cal simulations.

II. THE NOISY NONLINEAR DYNAMICAL SYSTEMS
HAVING LIMIT CYCLES—THE ANALYTIC SOLUTION

The outline of the present method is described as follows:
We consider a class of nonlinear Langevin equations with
additive, Gaussian, and white noise of the following form:

ẍ + ε(x2 − 1)ẋ + ω2
0x + c f (x) = βξ (t ), (2.1)
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where f (x), in general, is a nonlinear function of the system
coordinates x and the overdot represents differentiation with
respect to time. ξ (t ) is a Gaussian white noise with zero mean,
i.e.,

〈ξ (t )〉 = 0,

and the second moment, 〈ξ (t )ξ (0)〉 = 2Dδ(t ), (2.2)

where D is the noise strength. The physical quantities ω0 and
ε represent the natural frequency of the oscillator and the
damping parameter, respectively. ε has been chosen to be a
smallness parameter. The parameter β is a measure of the
strength of external noise in the system and considered to be
small, and c is a constant. If c becomes zero, Eq. (1) becomes
the standard Van der Pol oscillator, driven by a noise, whereas,
depending on the nonlinearity of the potential, a nonzero
value of c will produce some other nonlinear oscillators. For
example, f (x) = x3 corresponds to the Duffing–Van der Pol
oscillator, in the presence of a noise. Due to the existence
of limit cycles, the Van der Pol and the Duffing–Van der
Pol oscillators, have become important systems for studying
several aspects of modern day research in nonlinear dynamics
[28–33].

For convenience, we discuss these two cases separately in
detail. Firstly, in sub-section A, we analyze the c = 0 case, i.e.,
the standard Van der Pol oscillator in its stochastic version.
And in the next sub-section B, we consider the dynamics of a
noisy Duffing-Van der Pol oscillator. Our method is based on
separation of timescales as carried out in vibrational mechan-
ics where the noise is replaced by a high frequency field. All
we need to do is to set up the appropriate equations for slow
and fast motion. The fast motion is governed by a Langevin
equation, a stochastic process in which the inertial term is
balanced by the external noise. The effect of the fast motion is
subsumed into the slow dynamics which is solved by standard
Lindstedt-Poincare perturbation technique.

A. Standard Van der Pol oscillator: Stochastic dynamics

As mentioned earlier, the dynamical equation for this case
becomes

ẍ + ε(x2 − 1)ẋ + ω2
0x = βξ (t ). (2.3)

To proceed with our mathematical analysis, we first identify,
in the spirit of vibrational mechanics [34,35], two timescales
of the dynamics and write x in the form

x = X (t, ω0t ) + ψ (t,�t ), (2.4)

where � is the inverse of the correlation time τc of the
noise ξ (t ) and � � ω0. For white noise, τc tends to zero.
Here, X (t, ω0t ) and ψ (t,�t ) correspond to the slow and
fast components, respectively. By construction, ψ has zero
mean as 〈ψ (t, η)〉 = limT →∞ 1

T

∫ T
0 ψ (t, η)dη = 0, where

η = �t refers to the fast timescale and T is the time over
which the averaging on ψ (t, η) is done. However, we must
note that 〈ψ (t, η)2〉 �= 0. The variable X (t ) therefore refers
to the slow one with a natural timescale of the system and
ψ (t ), the fast variable with a timescale of the noise. We
next make use of the decomposition [Eq. (2.4)] in Eq. (2.3)

to write

Ẍ + ψ̈ + ε[(X + ψ )2 − 1](Ẋ + ψ̇ ) + ω2
0(X + ψ ) = βξ (t ).

(2.4a)

Adding and subtracting 〈ψ〉 and 〈ψ2〉, we may rewrite the
above equation as

Ẍ + ψ̈ + ε[X 2 + 〈ψ2〉 + 2X 〈ψ〉 − 1 + 2X (ψ − 〈ψ〉)

+ (ψ2 − 〈ψ2〉)](Ẋ + ψ̇ ) + ω2
0(X + ψ ) = βξ (t ). (2.4b)

We now split Eq. (2.4b) as follows:

Ẍ + ε[X 2 + 〈ψ2〉 + 2X 〈ψ〉 − 1]Ẋ + ω2
0X = 0 (2.4c)

and

ψ̈ + ε[(ψ2 − 〈ψ2〉) + 2X (ψ − 〈ψ〉)]Ẋ

+ ε[X 2 + ψ2 + 2Xψ − 1]ψ̇ + ω2
0ψ = βξ (t ). (2.4d)

Noting that 〈ψ〉 = 0, the above two equations can be put into
the following form:

Ẍ + ε[X 2 + 〈ψ2〉 − 1]Ẋ + ω2
0X = 0 (2.5)

and

ψ̈ + ε[X 2 + 〈ψ2〉 − 1]ψ̇ + ω2
0ψ + ε[2X (ψ − 〈ψ〉)

+ (ψ2 − 〈ψ2〉)](Ẋ + ψ̇ ) = βξ (t ), (2.6)

respectively. Here, Eq. (2.5) refers to the slow motion and
Eq. (2.6) describes the fast motion. The slow motion is the
result of averaging over the noise in Eq. (2.3).

It is easy to verify that the addition of Eqs. (2.5) and (2.6)
gives back Eq. (2.3). Equation (2.6) is a nonlinear stochas-
tic differential equation which cannot be solved analytically.
To proceed, we note that ψ , being a rapidly changing field,
may be assumed further, ψ̈ � ψ̇, ψ,ψ2, since ψ̈ = �2 d2ψ

dη2

and ψ̇ = �
dψ

dη
and � � ω0. Therefore, we neglect all terms

except the stochastic one on the right-hand side. This is done
in vibrational mechanics, where the noise is replaced by a high
frequency field. We then arrive at the following equation:

ψ̈ = βξ (t ). (2.7)

This stochastic equation is formally similar [19] to that for the
motion of a charged particle in one dimension and has been
used earlier in the heating of a plasma in a random electric
field [54–56]. Solving this equation, we find (see Appendix)

〈ψ〉 = 0

and 〈ψ2〉 = 1
6β2DT 3, (2.8)

where T is the time period of oscillation in the deterministic
limit, i.e., T = 2π/ω0. Now we substitute 〈ψ2〉 in the slow
dynamics and write the slow dynamics as

Ẍ + ε(X 2 − α2)Ẋ + ω2
0X = 0, (2.9)

where α2 = (1 − 〈ψ2〉). Now we are in a position to solve
Eq. (2.9) with the help of standard Lindstedt-Poincare
method. First, we introduce a new timescale τ as τ = ωt ,
where ω is the new frequency to be determined. Thus, the
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derivatives of the variable become scaled and we obtain the
modified slow dynamics as

ω2X ′′ + εω(X 2 − α2)X ′ + ω2
0X = 0. (2.10)

Here the prime represents differentiation with respect to the
new scaled time τ . Now, let us expand the variables X and the

new frequency ω in powers of ε as

X = X0 + εX1 + ε2X2 + · · ·
and ω = ω0 + εω1 + ε2ω2 + · · · .

Substituting in Eq. (2.10), we find

ω2
0(X ′′

0 + X0) + ε
[
ω2

0(X ′′
1 + X1) + 2ω0ω1X ′′

0 + ω0X ′
0

(
X 2

0 − α2
)] + ε2

[
ω2

0(X ′′
2 + X2)

+ 2ω0ω1X ′′
1 + (

ω2
1 + 2ω0ω2

)
X ′′

0 + (ω0X ′
1 + ω1X ′

0)
(
X 2

0 − α2
) + 2ω0X0X1X ′

0

] + · · · = 0. (2.11)

Now we compare the coefficients of various powers of ε on
both sides. For the zeroth order, we write

(X ′′
0 + X0) = 0. (2.12a)

Similarly, for the first order of ε,

ω2
0(X ′′

1 + X1) = −2ω0ω1X ′′
0 − ω0X ′

0

(
X 2

0 − α2
)
, (2.12b)

and for the second order in ε:

ω2
0(X ′′

2 + X2) = −2ω0ω1X ′′
1 − (

ω2
1 + 2ω0ω2

)
X ′′

0

− (ω0X ′
1 + ω1X ′

0)
(
X 2

0 − α2
) − 2ω0X0X1X ′

0.

(2.12c)

From Eq. (2.12a), we can write the zeroth order solution as

X0 = A cos τ + B sin τ, (2.13)

where A and B are two arbitrary constants. We use the follow-
ing initial conditions: at t = 0, x(0) = a, ẋ(0) = 0 so we can
write with respect to the new timescale τ that, at τ = 0, we
have X = a and X ′ = 0. It follows that at τ = 0, X0(0) = a;
X ′

0(0) = 0. Also, Xi(0) = 0 and X ′
i (0) = 0, i �= 0. Thus, we

obtain the zeroth order solution:

X0 = a cos τ. (2.14)

Substituting the value of the zeroth order solution in
Eq. (2.12b), we find

ω2
0(X ′′

1 + X1) = 2ω0ω1a cos τ + ω0a

(
a2

4
− α2

)
sin τ

+ ω0a3

4
sin 3τ. (2.15)

The coefficients of cos τ and sin τ in Eq. (2.15) must vanish
for removing the singularity, as they correspond to secular or
diverging terms. Hence, we must set ω1 = 0 and

ω0a

(
a2

4
− α2

)
= 0. (2.16a)

This leads to a = ±2α. Let us choose a = 2α. This quantifies
the radius of the limit cycle. In the deterministic case, i.e., in
the absence of noise, α becomes 1 and, hence, the radius of
the limit cycle equals exactly 2. However, in the stochastic
domain, α < 1 and, hence, the radius of the limit cycle be-
comes less than 2. Therefore, the complete solution for the
zeroth order,

X0 = 2α cos τ, (2.16b)

Eq. (2.15) then reduces to

(X ′′
1 + X1) = 2α3

ω0
sin 3τ. (2.17a)

Its general solution

X1 = α3

ω0
sin3 τ, (2.17b)

where we have used the initial condition that, at τ = 0, X1 = 0
and Ẋ1 = 0. Thus, the solution X1 gives us the first or leading
order correction to the solution for the slow dynamics X .

Another important observation is that, since we have ob-
tained ω1 = 0, there is no correction in frequency, in the first
order, and therefore we need to analyze the higher orders to
get a nonzero correction to the frequency, up to a leading
order. With this in mind, we proceed to find the solution
for the second order as follows: Substituting X0 and X1 from
Eqs. (2.16b) and (2.17b) in Eq. (2.12c), we obtain

ω2
0(X ′′

2 + X2) = (
4ω0ω2 + 1

4α5
)

cos τ

− 3
2α5 cos 3τ + 5

4α5 cos 5τ. (2.18a)

The coefficients of the secular or diverging term must be a
vanishing one. Therefore,

ω2 = − α5

16ω0
. (2.18b)

Thus, we obtain the corrected frequency up to second order as

ω = ω0 + εω1 + ε2ω2 + · · ·

or ω = ω0 − ε2α5

16ω0
. (2.18c)

Thus, the solution for X and hence 〈x〉 in the unscaled time,

〈x〉 = X (t ) = 2α cos ωt + εα3

ω0
sin3 ωt, (2.19)

where the corrected frequency ω used in Eq. (2.19) has been
obtained from Eq. (2.18c). The effect of noise is reflected
in the expression α2 = (1 − 〈ψ2〉). Thus, Eq. (2.19) along
with the modified frequency as indicated in Eq. (2.18c) de-
scribes the complete temporal profile of the Van der Pol
oscillator, in the presence of a Gaussian white noise. Our main
interest is to examine the existence of a limit cycle for such
an oscillator. To this end, the phase plots ( ˙〈x〉 vs 〈x〉) for the
dynamics are examined in Fig. 1. It is clear that the limit
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FIG. 1. (a) The phase space plots (i.e., 〈ẋ〉 vs 〈x〉 plot) of the Van der Pol oscillator for D = 0 in the deterministic limit. The purple color
loop (limit cycle) is obtained from our theoretical analysis whereas, the green one is from numerical solution. Both graphs have been plotted
with the following parameter sets: ω0 = 1.0, ε = 0.1, β = 0.1 with the initial conditions x(0) = 1, ẋ(0) = 0. In the numerical simulations,
averaging has been done over 103 trajectories and the step size used is 0.001 (units arbitrary). (b) The phase space plots (i.e., 〈ẋ〉 vs 〈x〉 plot) of
the Van der Pol oscillator for D = 0.5. The limit cycle persists, but with a reduced size, having radius 2α. The purple colored loop is obtained
from our theoretical analysis whereas the green one is obtained by solving Eq. (2.3) numerically. Both graphs have been plotted with the
following parameter sets: ω0 = 1.0, ε = 0.1, β = 0.1 with the initial conditions x(0) = 1, ẋ(0) = 0. In the numerical simulations averaging
has been done over 103 trajectories and the step size used is 0.001 (units arbitrary). (c) Same as in (b) but for D = 1.0. The size of the limit
cycle is further reduced. (d) Same as in (b) but for D = 1.5. The size of the limit cycle becomes smaller. (e) Same as in (b) but for D = 2.0.

cycle still persists with a reduced radius 2α, depending on
the noise strength, as shown in Figs. 1(b)–1(e). Furthermore,
our analysis predicts that the radius of the limit cycle tends
to zero as D approaches the critical value Dcr for which the
limit cycle should collapse to a point at α = 0 or 〈ψ2〉 = 1.
For this, the critical value of D is given as Dcr = 3ω3

0/4π3β2.
This is shown in Fig. 2 by a continuous line.

B. The noisy dynamics for the Duffing–Van der Pol oscillator

The workability of the present scheme can also be tested
for the case of Duffing–Van der Pol oscillators where non-
linearity, in addition to the dissipative term, exists in the
potential term and, for this, the leading order correction to
the frequency must be calculated up to the second order. Let
us begin with the following dynamical equation, driven by a

034209-4



TUNING LIMIT CYCLES WITH A NOISE: SURVIVAL … PHYSICAL REVIEW E 109, 034209 (2024)

FIG. 2. The phase space plot as obtained from our theoretical
analysis (also shown in the inset) at the critical value of D = Dcr =
2.43. The other parameters and initial conditions are the same as in
Fig. 1(b). At this value of D, the noise effect is so large that the limit
cycle virtually collapses to a point as the size of the limit cycle is
vanishingly small (units arbitrary).

Gaussian white noise as follows:

ẍ + ε(x2 − 1)ẋ + ω2
01x + εω01x3 = βξ (t ), (2.20)

where ω01 is the natural frequency of the oscillator and the
other symbols are the same as mentioned previously. To pro-
ceed, let us split, as before, the variable x into a slow and
a fast part and substitute in Eq. (2.20) to separate out the
fast and slow dynamics. We write the equation for the fast

motion as

ψ̈ + ε(X 2 + 〈ψ2〉 − 1)ψ̇ + ω2
01ψ + ε[2X (ψ − 〈ψ〉)

+ (ψ2 − 〈ψ2〉)](Ẋ + ψ̇ ) + εω01[3X 2(ψ − 〈ψ〉)

+ 3X (ψ2 − 〈ψ2〉) + ψ3] = βξ (t ). (2.21a)

We approximate the fast dynamics as before:

ψ̈ = βξ (t ). (2.21b)

The relevant solution and the averages have been obtained
earlier in Eq. (2.8). Also, we obtain the slow dynamics as

Ẍ + ε(X 2 − α2)Ẋ + ω2
0X + εω01X 3 = 0, (2.22a)

where α2 = (1 − 〈ψ2〉) and ω2
0 = (ω2

01 + 3εω01〈ψ2〉) or,
ω01 	 ω0 − 3ε〈ψ2〉/2. With a little bit of algebraic manipu-
lation, we rewrite the above equation as

Ẍ + ε(X 2 − α2)Ẋ + ω2
0X + εω0X 3 = 0. (2.22b)

By introducing the new timescale τ = ωt , we express
Eq. (2.22b) as follows:

ω2X ′′ + εω(X 2 − α2)X ′ + ω2
0X + εω0X 3 = 0. (2.22c)

In the next step, we expand X and ω in powers of ε as

X = X0 + εX1 + ε2X2 + · · ·
and ω = ω0 + εω1 + ε2ω2 + · · ·

and substitute in Eq. (2.22c) to obtain

ω2
0(X ′′

0 + X0) + ε
[
ω2

0(X ′′
1 + X1) + 2ω0ω1X ′′

0 + ω0X ′
0

(
X 2

0 − α2
) + ω0X 3

0

] + ε2
[
ω2

0(X ′′
2 + X2)

+ 2ω0ω1X ′′
1 + (ω2

1 + 2ω0ω2)X ′′
0 + (ω0X ′

1 + ω1X ′
0)

(
X 2

0 − α2
) + 2ω0X0X1X ′

0 + 3ω0X 2
0 X1

] + · · · = 0. (2.23)

We have the zeroth order equation as

(X ′′
0 + X0) = 0; (2.24a)

for the first order of ε,

ω2
0(X ′′

1 + X1) = −2ω0ω1X ′′
0 − ω0X ′

0

(
X 2

0 − α2) − ω0X 3
0 ;

(2.24b)

and for the second order,

ω2
0(X ′′

2 + X2) = −2ω0ω1X ′′
1 − (

ω2
1 + 2ω0ω2

)
X ′′

0

− (ω0X ′
1 + ω1X ′

0)
(
X 2

0 − α2
)

− 2ω0X0X1X ′
0 − 3ω0X 2

0 X1. (2.24c)

With the zeroth order solution, we obtain

ω2
0(X ′′

1 + X1)

= ω0a

[
2ω1 − 3a2

4

]
cos τ + ω0a

[
a2

4
− α2

]
sin τ

+ ω0a3

4
[sin 3τ − cos 3τ ]. (2.25)

The conditions for vanishing secular terms lead us to obtain
the following relationships:

a = 2α

and ω1 = 3a2

8
.

While the first one gives us the radius of the limit cycle as
in the previous case, the second one reveals the frequency
correction at the first order, which is clearly nonzero unlike
the previous case. Thus, the frequency corrected up to first
order (since nonvanishing contribution) is

ω = ω0 + ε

(
3α2

2

)
. (2.26a)

The solution for 〈x(t )〉 or X in unscaled variable is given by

〈x(t )〉 = X = X0 + εX1 = 2α cos ωt + ε

[
α3

ω0
sin3(ωt )

+ α3

4ω0
(cos 3ωt − cos ωt )

]
, (2.26b)

where the frequency ω is given in Eq. (2.26a). We note that
this frequency ω is a result of twofold modification of the
natural frequency ω01. First, due to timescale separation, it
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FIG. 3. (a) The phase space plots (i.e., 〈ẋ〉 vs 〈x〉 plot) of the Duffing–Van der Pol oscillator for D = 0 in the deterministic limit. The
purple color loop (limit cycle) is obtained from our theoretical analysis whereas the green one is from the numerical solution. Both graphs have
been plotted with the following parameter sets: ω01 = 1.5, ε = 0.1, β = 0.1 with the initial conditions x(0) = 1, ẋ(0) = 0. In the numerical
simulations, averaging has been done over 103 trajectories and the step size used is 0.001 (units arbitrary). (b) The phase space plots (i.e., 〈ẋ〉
vs 〈x〉 plot) of the Duffing–Van der Pol oscillator for D = 2.0. The limit cycle persists, but with a reduced size, having radius 2α. The purple
colored loop is obtained from our theoretical analysis whereas, the green one is obtained by solving Eq. (2.20) numerically. Both graphs have
been plotted with the following parameter sets: ω01 = 1.5, ε = 0.1, β = 0.1 with the initial conditions x(0) = 1, ẋ(0) = 0. In the numerical
simulations, averaging has been done over 103 trajectories and the step size used is 0.001 (units arbitrary). (c) Same as in (b) but for D = 4.0.
The loop size is further reduced. (d) Same as in (b) but for D = 6.0. (e) Same as in (b) but for D = 8.0.

is modified as ω0, incorporating the effect of noise. The
next modification in frequency appears after applying the
Lindstedt-Poincare method on the modified slow dynamics.

Up to this point, we have found the frequency correction
up to first order. To find the second-order corrections to the
frequency, we substitute X0 and X1 in Eq. (2.24c) and obtain

ω2
0(X ′′

2 + X2) =
[

7ω1a3

16
− α5

16
− α2

(
ω1 − a2

32

)
a

]
sin τ +

[(
ω2

1 + 2ω0ω2
)
a + a5

32
− ω1a3

16
+ 3α2a3

32

]
cos τ

−
[

5ω1a3

16
+ 3a5

64

]
sin 3τ +

[
9ω1a3

16
− 3α2a3

32

]
cos 3τ +

[
a5

16

]
sin 5τ +

[
a5

128

]
cos 5τ. (2.27)
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FIG. 4. The phase space plot for the Duffing–Van der Pol oscilla-
tor as obtained from our theoretical analysis (also shown in the inset)
at the critical value of D = Dcr = 8.17. The other parameters and
initial conditions are same as in Fig. 3(b). At this value of D, the noise
effect is so large that the limit cycle virtually collapses to a point as
the size of the limit cycle is vanishingly small (units arbitrary).

For finite results, the secular terms must vanish and hence we
obtain ω2 = −11α4/8. Thus, the frequency corrected up to
second order is

ω = ω0 + ε

(
3α2

2

)
+ ε2

(
−11α4

8

)
, (2.28)

and the solution for 〈x(t )〉 or X remains the same as in
Eq. (2.26b).

III. NUMERICAL RESULTS

To corroborate the analytical results, we now carry out full
numerical simulation of the stochastic differential Eqs. (2.3)
and (2.20) for noisy Van der Pol and Duffing–Van der Pol
oscillators, respectively. For this purpose, we have used a
stochastic algorithm [57] with a step size h = 0.001. Unless
otherwise stated, the initial conditions are set at x(0) = 1,
ẋ(0) = 0 and the stochastic averaging is done over 1000 tra-
jectories for each case. For all numerical simulations, we have
further used the parameter set ε = 0.1, β = 0.1, and ω0 = 1.0
(for Van der Pol) and ω01 = 1.5 (for Duffing–Van der Pol).
The representative numerical phase space plots (〈ẋ〉 vs 〈x〉)
shown by the green color are depicted in Figs. 1–4 and com-
pared with those obtained from our corresponding theoretical
analysis in the last section shown by purple color for various
values of D. For the Van der Pol oscillator, the phase space
plots for D = 0, D = 0.5, D = 1.0, D = 1.5, and D = 2.0
are displayed in Figs. [1(a)–1(e)], respectively. The results
clearly demonstrate that as the noise strength D is increased,
the limit cycle loop decreases in size till a critical value of D is
reached beyond which the limit cycle collapses. The collapse
at Dcr = 2.43 is shown in Fig. 2, where the loop does not
close in the asymptomatic limit. The corresponding analytical
result shows that the limit cycle reduces almost to a point at
Dcr = 2.43. The agreement between the theory and numerics
is therefore quite satisfactory. The numerical results for the
Duffing–Van der Pol oscillator are shown in Figs. 3(a)–3(e)
and 4. For this case, the calculated value of the critical noise
strength is Dcr = 8.17. We observe that with increase of noise

strength D, the loop area decreases till the critical value of D,
i.e., Dcr is reached beyond which the limit cycle ceases to ex-
ist. The phase space plots for D = 0, D = 2.0, D = 4.0, D =
6.0, and D = 8.0 are shown in Figs. 3(a)–3(e), respectively.
The collapse of the loop is shown in Fig. 4 for Dcr = 8.17 and
compared with the analytical result. The theoretical and nu-
merical trends of the loop area reduction and the closeness of
the analytically predicted and numerically calculated thresh-
old values of noise strength for the collapse of limit cycle
strengthen our claim for applicability of the present analytical
scheme for the treatment of the noisy limit cycle oscillators.

IV. CONCLUSION

A noisy self-sustained oscillator is described by a nonlinear
stochastic differential equation. Since the limit cycles arise out
of a delicate balance between the damping and self-excitation,
resulting in isolated closed asymptotic trajectories in phase
space, linearization is not an appropriate option for its long
time solution. In this paper, we have presented a scheme for
analytic treatment of the problem by extending the Blekhman
perturbation theory used in deterministic vibrational mechan-
ics to the realm of stochastic dynamics.

By making use of two distinct timescales, we derived the
equation of slow motion by stochastic averaging over the
fast motion. The equation for the fast motion has a simple
generic form that balances the inertial force with the noise
force. The effect of fast motion was incorporated into the
slow dynamics through renormalization of the coefficients.
The equation for slow motion was solved by the Lindstedt-
Poincare perturbation technique. We have shown how noise
affects the frequency and reduces the amplitude of limit cy-
cle oscillation till the noise strength reaches a critical value
beyond which the cycle is destabilized. The analytic noise
threshold for this collapse was determined from the condition
for removal of secular divergence. Two examples, Van der
Pol and Duffing–Van der Pol oscillators have been explored.
Our theoretical scheme is in good agreement with numerical
simulations.

We now make the following concluding remarks. A closer
look at the present scheme reveals that the slow motion even
after averaging retains the nonlinear nature of the dynamics,
whereas the fast motion is described by a linear stochastic
equation analogous to an equation governing the heating of
plasma in an electric field. The slow dynamics can be ana-
lyzed by the methods of nonlinear dynamics. The fast motion,
on the other hand, is purely stochastic with no deterministic
component and generic in form for a wide class of limit
cycle oscillators so long as the noise is additive in form. The
analysis carried out here concerns the single limit cycle and
white noise. The extension of treatment to nonlinear systems
with multiple limit cycles and to noise processes with finite
correlation time may open interesting issues in the realm of
dynamical interplay of nonlinearity and stochasticity.
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APPENDIX: CALCULATION OF 〈ψ2(t )〉
As described in Eq. (2.7), the dynamics of the fast motion

is

ψ̈ = βξ (t ), (A1)

with the noise characteristics as defined earlier. With ψ̇ = v,
we rewrite (A1) as

v̇ = βξ (t ), (A2)

On integration, we obtain

v(t ) =
∫ t1

0
ds1v̇(s1) (A3)

and find 〈v2(t )〉 as

〈v2(t )〉 =
〈 ∫ t

0
ds2

∫ t

0
ds1v̇(s2)v̇(s1)

〉
. (A4)

Now,

d

dt
〈v2(t )〉 = 2

∫ t

0
ds〈v̇(t )v̇(s)〉

= 2
∫ t

0
ds〈v̇(t − s)v̇(0)〉 = 2β2D. (A5)

Hence,

〈v2(t )〉t = 2β2Dt . (A6)

Again, from Eq. (A1), we can write

ψψ̈ = βψ (t )ξ (t ) (A7)

and take the ensemble average. Some algebraic manipulations
yield

1
2 〈ψ̈2〉t − 〈v2(t )〉t = β〈ψ (t )ξ (t )〉. (A8)

The right-hand side of the above equation is zero. Thus,

〈ψ̈2〉t = 2〈v2(t )〉t = 4β2Dt . (A9)

Integrating once with respect to time:

〈ψ̇2〉t = 2β2Dt2. (A10)

Performing one more integration, we have

〈ψ2〉t = 2
3β2Dt3. (A11)

Finally, averaging over the time period of the limit cycle, we
arrive at

〈ψ2〉 = 1

T

∫ T

0
〈ψ2〉t dt = 1

6
β2DT 3, (A12)

[1] W. Horsthemke and R. Lefever, Noise-Induced Transitions:
Theory and Applications in Physics, Chemistry, and Biology,
Springer Series in Synergetics Vol. 15 (Springer, Berlin, 1984).

[2] W. Horsthemke and M. Malek-Mansour, Z. Phys. B 24, 307
(1976).

[3] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A: Math. Gen. 14,
L453 (1981).

[4] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.
Mod. Phys. 70, 223 (1998).

[5] M. G. Zimmermann, R. Toral, O. Piro, and M. San Miguel,
Phys. Rev. Lett. 85, 3612 (2000).

[6] J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended
Systems, 3rd ed. (Springer, New York, 1999).

[7] R. Müller, K. Lippert, A. Kühnel, and U. Behn, Phys. Rev. E
56, 2658 (1997).

[8] J. García-Ojalvo, A. Hernández-Machado, and J. M. Sancho,
Phys. Rev. Lett. 71, 1542 (1993).

[9] A. Becker and L. Kramer, Phys. Rev. Lett. 73, 955 (1994).
[10] J. M. R. Parrondo, C. van den Broeck, J. Buceta, and F. J. de la

Rubia, Physica A 224, 153 (1996).
[11] A. A. Zaikin and L. Schimansky-Geier, Phys. Rev. E 58, 4355

(1998).
[12] S. Dutta, S. S. Riaz, and D. S. Ray, Phys. Rev. E 71, 036216

(2005).
[13] S. S. Riaz, S. Dutta, S. Kar, and D. S. Ray, Eur. Phys. J. B 47,

255 (2005).
[14] D. Das and D. S. Ray, Phys. Rev. E 87, 062924 (2013).
[15] S. Strogatz, Nonlinear Dynamics and Chaos: With Applica-

tions to Physics, Biology, Chemistry, and Engineering, 2nd ed.
(CRC Press, New York, 2018).

[16] W. H. Louisell, Quantum Statistical Properties of Radiation
(John Wiley and Sons, New York, 1973).

[17] G. Jumarie, J. Franklin Inst. 332, 761 (1995).
[18] L. Socha and T. T. Soong, Appl. Mech. Rev. 44, 399 (1991).
[19] N. G. Van Kampen, Phys. Rep. 24, 171 (1976).
[20] J. C. Leloup and A. Goldbeter, J. Theor. Biol. 230, 541 (2004).
[21] D. Gonze, Cent. Eur. J. Biol. 6, 699 (2011).
[22] N. Woods, K. Cuthbertson, and P. Cobbold, Nature (London)

319, 600 (1986).
[23] M. Berridge and R. Irvine, Nature (London) 341, 197 (1989).
[24] E. Sel’kov, Eur. J. Biochem. 4, 79 (1968).
[25] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms.

The Molecular Bases of Periodic and Chaotic Behaviour Roles
for Noise in Genetic Circuits (Cambridge University Press,
Cambridge, 1984).

[26] S. Kar and D. S. Ray, Phys. Rev. Lett. 90, 238102 (2003).
[27] R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math. 50, 1645

(1990).
[28] S. Saha, G. Gangopadhyay, and D. S. Ray, J. Biosci. 47, 16

(2022).
[29] R. Belousov, F. Berger, and A. J. Hudspeth, Phys. Rev. E 102,

032209 (2020).
[30] G. Grammel, Nonlinearity 13, 1343 (2000).
[31] H. K. Leung, Physica A 221, 340 (1995).
[32] Y. Li, Z. Wu, F. Wang, G. Zhang, and Y. Wang, J. Low Freq.

Noise, Vibra. Act. Cont. 40, 91 (2021).
[33] K. R. Schenk-Hoppé, Z. Angew. Math. Phys. 47, 740 (1996).
[34] I. Blekhman, Vibrational Mechanics Nonlinear Dynamic Ef-

fects, General Approach, Applications, 2nd ed. (World Scien-
tific, River Edge, NJ, 2000).

[35] I. Blekhman, Selected Topics in Vibrational Mechanics, 2nd ed.
(World Scientific, River Edge, NJ, 2004).

[36] P. S. Landa and P. V. E. McClintock, J. Phys. A: Math. Gen. 33,
L433 (2000).

034209-8

https://doi.org/10.1007/BF01360902
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/PhysRevLett.85.3612
https://doi.org/10.1103/PhysRevE.56.2658
https://doi.org/10.1103/PhysRevLett.71.1542
https://doi.org/10.1103/PhysRevLett.73.955
https://doi.org/10.1016/0378-4371(95)00350-9
https://doi.org/10.1103/PhysRevE.58.4355
https://doi.org/10.1103/PhysRevE.71.036216
https://doi.org/10.1140/epjb/e2005-00314-1
https://doi.org/10.1103/PhysRevE.87.062924
https://doi.org/10.1016/0016-0032(95)00074-7
https://doi.org/10.1115/1.3119486
https://doi.org/10.1016/0370-1573(76)90029-6
https://doi.org/10.1016/j.jtbi.2004.04.040
https://doi.org/10.2478/s11535-011-0061-5
https://doi.org/10.1038/319600a0
https://doi.org/10.1038/341197a0
https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
https://doi.org/10.1103/PhysRevLett.90.238102
https://doi.org/10.1137/0150098
https://doi.org/10.1007/s12038-021-00249-0
https://doi.org/10.1103/PhysRevE.102.032209
https://doi.org/10.1088/0951-7715/13/4/320
https://doi.org/10.1016/0378-4371(95)00251-2
https://doi.org/10.1177/1461348419878534
https://doi.org/10.1007/BF00915273
https://doi.org/10.1088/0305-4470/33/45/103


TUNING LIMIT CYCLES WITH A NOISE: SURVIVAL … PHYSICAL REVIEW E 109, 034209 (2024)

[37] I. Blekhman and P. S. Landa, Int. J. Non-Linear Mech. 39, 421
(2004).

[38] A. A. Zaikin, L. López, J. P. Baltanás, J. Kurths, and M. A. F.
Sanjuán, Phys. Rev. E 66, 011106 (2002).

[39] V. N. Chizhevsky, E. Smeu, and G. Giacomelli, Phys. Rev. Lett.
91, 220602 (2003).

[40] J. P. Baltanás, L. López, I. I. Blechman, P. S. Landa, A. Zaikin,
J. Kurths, and M. A. F. Sanjuán, Phys. Rev. E 67, 066119
(2003).

[41] M. Borromeo and F. Marchesoni, Phys. Rev. Lett. 99, 150605
(2007).

[42] M. Borromeo and F. Marchesoni, Phys. Rev. E 73, 016142
(2006).

[43] S. Ghosh and D. S. Ray, Phys. Rev. E 88, 042904 (2013).
[44] P. Sarkar and D. S. Ray, Phys. Rev. E 99, 052221 (2019).
[45] S. Paul and D. S. Ray, Philos. Trans. R. Soc. A 379, 20200231

(2021).
[46] U. E. Vincent, P. V. E. McClintock, I. A. Khovanov, and

S. Rajasekar, Philos. Trans. R. Soc. A 379, 20210003
(2021).

[47] U. E. Vincent, P. V. E. McClintock, I. A. Khovanov, and S.
Rajasekar, Philos. Trans. R. Soc. A 379, 20200226 (2021).

[48] P. Sarkar, D. Banerjee, S. Paul, and D. S. Ray, Phys. Rev. E 106,
024203 (2022).

[49] D. Jordan and P. Smith, Nonlinear Ordinary Differential Equa-
tions: An Introduction for Scientists and Engineers, 10th ed.
(Oxford University Press, New York, 2007).

[50] R. H. Rand, Lecture Notes on Nonlinear Vibrations (Cornell
University, Ithaca, NY, 2012), Version 53, http://www.math.
cornell.edu/rand/randdocs/.

[51] N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Phys. Rev. Lett.
64, 1361 (1990).

[52] A. Sarkar, J. K. Bhattacharjee, S. Chakraborty, and D. B.
Banerjee, Eur. Phys. J. D 64, 479 (2011).

[53] E. Kirkinis, SIAM Rev. 54, 374 (2012).
[54] P. A. Sturrock, Phys. Rev. 141, 186 (1966).
[55] D. E. Hall and P. A. Sturrock, Phys. Fluids 10, 2620 (1967).
[56] M. B. Silevitch and K. I. Golden, J. Stat. Phys. 7, 65 (1973).
[57] R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A

38, 5938 (1988).

034209-9

https://doi.org/10.1016/S0020-7462(02)00201-9
https://doi.org/10.1103/PhysRevE.66.011106
https://doi.org/10.1103/PhysRevLett.91.220602
https://doi.org/10.1103/PhysRevE.67.066119
https://doi.org/10.1103/PhysRevLett.99.150605
https://doi.org/10.1103/PhysRevE.73.016142
https://doi.org/10.1103/PhysRevE.88.042904
https://doi.org/10.1103/PhysRevE.99.052221
https://doi.org/10.1098/rsta.2020.0231
https://doi.org/10.1098/rsta.2021.0003
https://doi.org/10.1098/rsta.2020.0226
https://doi.org/10.1103/PhysRevE.106.024203
http://www.math.cornell.edu/rand/randdocs/
https://doi.org/10.1103/PhysRevLett.64.1361
https://doi.org/10.1140/epjd/e2011-20060-1
https://doi.org/10.1137/080731967
https://doi.org/10.1103/PhysRev.141.186
https://doi.org/10.1063/1.1762084
https://doi.org/10.1007/BF01406132
https://doi.org/10.1103/PhysRevA.38.5938

