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We study collective dynamics of networks of mutually coupled identical Lorenz oscillators near a subcritical
Hopf bifurcation. Such systems exhibit induced multistable behavior with interesting spatiotemporal dynamics
including synchronization, desynchronization, and chimera states. For analysis, we first consider a ring topology
with nearest-neighbor coupling and find that the system may exhibit intermittent behavior due to the complex
basin structures and dynamical frustration, where temporal dynamics of the oscillators in the ensemble switches
between different attractors. Consequently, different oscillators may show a dynamics that is intermittently
synchronized (or desynchronized), giving rise to intermittent chimera states. The behavior of the intermittent
laminar phases is characterized by the characteristic time spent in the synchronization manifold, which decays
as a power law. Such intermittent dynamics is quite general and is also observed in an ensemble of a large number
of oscillators arranged in variety of network topologies including nonlocal, scale-free, random, and small-world
networks.
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I. INTRODUCTION

For many decades now, the Lorenz equations [1],

ẋ = ρ(y − x), ẏ = γ x − y − xz, ż = xy − βz, (1)

used for describing convection rolls in the atmosphere, have
served as a paradigmatic model to study dynamical properties
of chaotic systems. Typical parameter values considered in
such studies [2], e.g., ρ = 10, γ = 28, and β = 8/3, ensure
asymptotic motion on a well-known Lorenz chaotic attractor.
This dynamically rich model has been used in a number
of studies as a standard prototype for exploring properties
of chaotic dynamics [2] and phenomena such as chaos syn-
chronization [3–6], amplitude death [7,8], chimera dynamics
[9–11], and intermittency [10,12].

The idea that chaotic systems can be driven to synchrony
was introduced by Pecora and Carroll [3]. Since then different
scenarios of synchronization have been extensively studied in
a wide range of periodic and chaotic systems with various
coupling strategies [13–16]. These include generalized syn-
chrony [17], complete [3,18], and phase and lag synchrony
[19]. The study of the phenomenon of synchronization, due to
its ubiquitous presence in wide range of real-world systems,
has found applications in various fields including physics,
biology, social sciences, and engineering [20].

A related phenomenon which is observed close to the
boundary of chaotic synchrony is intermittency. This interest-
ing dynamics refers to a situation where phase-synchronized
oscillations (laminar phases) are interrupted by nonsyn-
chronous behavior (phase slips) during persistent time in-
tervals. Intermittency is observed close to the threshold

parameter values for which the coupled system is synchro-
nized. Various studies have explored its origin and statistical
properties, and different types of intermittent behaviors have
been classified as type I, II [21,22], or on-off intermittency
[23,24]. These pretransitional intermittencies have been char-
acterized near lag [19,25,26], generalized [27], and phase
[28–31] synchronization regimes. Essentially, intermittency is
an irregular alternation of phases of apparently periodic and
chaotic dynamics (Pomeau-Manneville dynamics) or different
forms of chaotic dynamics (crisis-induced intermittency). The
classic type I, II, and III intermittencies (Pomeau and Man-
neville [32]) involve the motion alternating between laminar
and chaotic states characterized by the scaling exponents of
the duration spent in one (or the other) state when a parameter
is varied. Other forms of intermittencies include crisis-
induced [33], type V [34], on-off [23], in-out [35], etc. The
statistics of distributions of Lyapunov exponents has been ap-
plied to the case of intermittency [36,37]. Studies have shown
that switching of dynamics between two or more distinct
types of behavior reflects the distribution of largest Lyapunov
exponents (LLEs) [36].

An interesting spatiotemporal pattern called the chimera
state is another collective behavior observed in ensem-
bles of oscillators. In this state, the oscillator population
spontaneously splits into synchronized and desynchronized
populations, breaking its symmetry [38–40]. Recently, these
states have gained great interest due to their interesting
spatiotemporal nature with two dynamically distinct prop-
erties, namely, synchronized and desynchronized motions,
coexisting in a single population. These mixed states have
applications in understanding phenomena such as ventricular
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fibrillation, unihemispheric and REM (rapid eye movement)
sleep, power grid stability, and consensus formations in social
networks [40].

Chimera states are observed in several oscillator ensembles
from large oscillator networks where a thermodynamic limit
can be applied [38,39] to a network as small as a system of
three oscillators [41–49]. In general, chimera states in oscil-
lator ensembles are known to emerge when some degree of
nonuniformity is introduced in the system [40], for exam-
ple, in the form of nonlocal interactions [38,39], modularity
[50–53], parameter heterogeneities [54,55], time-delay cou-
plings [56], or amplitude fluctuations [57]. However, recent
studies suggest that even in the absence of such nonunifor-
mities, in a globally coupled ensemble of identical chaotic
oscillators, chimeric states can be generated [9,58] and con-
trolled [59,60] through induced multistability. In this case
interactions between the oscillators modify effective control
parameters of the system, thus shifting it towards a multistable
regime where attractors with contrasting synchronization
properties coexist. In this multistable regime, depending on
the initial conditions, the oscillators from the population can
settle into any of these coexisting attractors with dynamically
different properties. Since both synchronized and desynchro-
nized motions are possible on these attractors, the system
exhibits chimeric behavior. The basins of attraction in such
systems were found to be interwoven and riddled [58] with a
multiplicity of coexisting attractors [61].

The interplay between structural properties of a network
and the dynamics of the individual units is crucial in under-
standing its resulting behavior. In this work, we investigate
the robustness of multistability-induced chimera states for
different network topologies, specifically, when there is a frus-
tration effect in the network. These chimera states—observed
for mean field interactions (global coupling)—are sensitive to,
among other factors, the nature of the coupling and how far
the system is from the Hopf boundary: the effective coupling
should be such that it could bring the system into the mul-
tistable regime [9]. Here we keep the system near the Hopf
boundary where mutual coupling can induce multistability
(and as a result, robust chimera states). We focus on exam-
ining whether such states persist when the network structure
is modified, especially the case when the topology creates
dynamical frustration in the system. We first consider a ring
topology with local and nonlocal interactions (with global
coupling as a limiting case). For our multistable system with
complex intermingled basins, this network enables dynamical
frustration, and we study its effects on collective dynam-
ics. We then extend our study to larger network sizes and
also consider other complex network topologies, e.g., Watts-
Strogatz small-world networks, Erdős-Réyni random graphs,
and Barabási-Albert scale-free networks.

The spatial and temporal analysis of the oscillators in
such ensemble shows intermittent dynamics: the trajectories
of the oscillators may jump from one attractor to another,
leading the system to show intermittent chimeras. We find
that synchronization and desynchronization manifolds in the
system, due to its complex structure, may push or pull oscilla-
tors’ trajectories towards (or away from) a particular attractor,
resulting in such intermittent behavior. The intermittent dy-
namics observed here can be classified as spatiotemporal

intermittency since the coupled ensembles alter their dynam-
ical states with respect to the time and the oscillatory units
present in the network. We characterize this intermittent dy-
namics through local divergence plots [62,63]. Additionally,
we numerically observe that the time interval of laminar
phases scales as a power law. These results are verified for
networks of different sizes, N = 4, 7, 10, and 300. We fur-
ther consider various other complex network topologies, e.g.,
Watts-Strogatz small-world networks, Erdős-Réyni random
graphs, and Barabási-Albert scale-free networks, and study
the effects of network structure on chimera states. In all these
networks, we observe spatiotemporal intermittent behavior
due to the dynamical frustration in the networks with het-
erogeneous interactions (no mean-field-type interaction). This
phenomenon becomes more prominent at relatively higher
coupling strengths.

We would like to point out that similar intermittent be-
havior has been observed [10] in systems far from the Hopf
bifurcation and interacting with symmetry breaking coupling
(in x, y variables). Such a configuration leads to the observa-
tion of stable focus points, along with the solitary waves and
metastable chimera states, which disappear for long evolution
time. In contrast, since we are purposefully near the Hopf
boundary, we do not observe stable focus points or solitary
waves. Here robust chimera states observed in a globally
coupled system become intermittent due to the dynamical
frustration introduced through various nonmeanfield topolo-
gies. Further, we have used coupling through the z variable,
which preserves the symmetry in x and y variables, and en-
sures that the observed dynamics do not appear due to the
breaking of this symmetry. Our study also reaffirms the result
that chaotic Lorenz attractor may actually exhibit chimera
states [10], which was previously presumed not possible in
the Lorenz system with quasihyperbolic attractors.

The organization of the paper is as follows. In the next
Sec. II we consider Lorenz oscillators on a ring topology. We
show multiple attractors observed in an example system of
three oscillators when multistability is induced in such ensem-
bles through the coupling. We discuss the dynamical scenarios
that are observed on these attractors and how this may lead
to an intermittent behavior including the occurrence of “in-
termittent chimera states.” This phenomenon is examined by
looking at the time evolution of the system and finite-time
Lyapunov exponent. We analyze intermittent dynamics using
local exponential divergence plots and interleaved time inter-
vals. We also verify and discuss the generality of these results
for different larger size networks. In Sec. III we further extend
our study to networks of nonlocally coupled oscillator, and in
Sec. IV for small-world, random graph, scale-free networks as
well. This is followed by a summary and discussion in Sec. V.

II. LORENZ OSCILLATORS ON A RING

We consider a ring of N = 3 coupled Lorenz oscillators
described mathematically by the following equations:

ẋi = ρ(yi − xi ),

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε�zi, (2)
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FIG. 1. Multistable attractors A−, A+, A0 observed in a coupled
Lorenz oscillators [Eq. (2)] on a ring at coupling strength ε = 0.02.

where �zi = zi−1 − 2zi + zi+1, the index i = 1, 2, . . . , N , and
i is taken as module N . Oscillators are connected through
zi variables. Here ε represents the coupling strength, which
is introduced in such a way that each node is connected to
the left and to the right with equal strength. Since a Lorenz
system is invariant under the transformation (−xi,−yi, zi ) →
(xi, yi, zi ), coupling through zi variables preserves the sym-
metry of the system in the xi, yi planes [58]. The Lorenz
system has three steady states: S0 = (x∗

0, y∗
0, z∗

0 ) = (0, 0, 0)
and S± = (x∗

±, y∗
±, z∗

±) = (±√
β(γ − 1),±√

β(γ − 1), γ −
1). For γ < 1, only one real stable equilibrium point S0 exists
and is stable. At γ = 1, the origin loses its stability, and
the other two stable fixed points S± originate in the system.
For parameter values γ > 1, all three equilibrium points ex-
ist. Note that S± remain stable for 1 < γ < γc, where γc =
ρ(ρ+β+3)

ρ−β−1 ≈ 24.74 is the critical parameter. At γ = γc, the
fixed points S± collide with an unstable limit cycle (which ex-
ist between 13.926 < γ < γc) and become unstable through a
subcritical Hopf bifurcation. The system exhibits a very rich
and interesting dynamics including reverse period-doubling
bifurcations, periodic windows, transient chaos, and chaos
[2,64]. In this work, the parameter values are ρ = 10, β =
8/3, and γ = 24.76 = γc + 0.02 (just above the Hopf bifur-
cation point γc), taken such that the fixed points of the isolated
oscillators S± [2,64] are unstable and the dynamics of each of
the uncoupled oscillator is chaotic.

In the absence of coupling, the oscillators in this ensemble
settle into the well-known Lorenz chaotic attractor A0. In the
coupled system, however, one observes two new symmetric-
stable attractors denoted by A+ and A− along with the typical
attractor A0 (see Fig. 1). It is observed that the oscillators
settling into attractors A+ and A− show synchronized behavior
while the motion on A0 is desynchronized [9]. These distinct
synchronization properties of the attractors give rise to in-
duced chimera states through mutistability. In the system of
N oscillators, the dynamics can take place in three possible
manifolds. A fully desynchronized motion on A0 takes place
in a 3N-dimensional desynchronized manifold Md , whereas,
when synchronization is established in the system, the con-
dition xi = x j, yi = y j, zi = z j , for all i, j is satisfied. These
(3N − 3) constraints on the motion reduce the dimension
of the system, with the dynamics taking place on a three-
dimensional subspace, the synchronization manifold, Ms.
Similarly, fulfillment of the antisynchronization condition,

FIG. 2. Different dynamical behavior observed in the system.
At ε = 0.05, the biased motion is shown in (a) and (b), where the
trajectory remains in one of the lobes while moving on attractor
A0, denoted by A0+ and A0−. For higher coupling (ε = 0.10), the
trajectories on an attractor can also jump to another attractor as
shown in (c) and (d), denoted by trajectories Ti+ and Ti−.

xi = −x j, yi = −y j, zi = z j represents a motion on antisyn-
chronization manifold Ma. Dimensions of these subspaces
depend upon the number of constraints, i.e., the number of
synchronized and antisynchronized oscillators. Coexistence
of a desynchronized manifold with either one or both of these
other manifolds implies the existence of chimeric states.

The typical attractors observed in the system of a coupled
Lorenz system are shown in Fig. 1. Depending on the initial
condition, the oscillators in the ensemble can end up in any
of these attractors. As mentioned before, these coexisting
attractors are responsible for a system’s chimeric behavior due
to their distinct synchronization properties: oscillators settling
into attractor A0 show desynchronized behavior, but the ones
which asymptote to A+ and A− show synchrony while being
in antisynchrony with each other. Besides these attractors,
additional dynamical motions which we observe on a ring of
coupled Lorenz oscillators are shown in Fig. 2. For example,
a biased motion in shown in Figs. 2(a) and 2(b), where the
trajectory spends more time in one of the wings of the chaotic
Lorenz attractor A0. Further, we observe that oscillators may
not be contained within one attractor and can jump from
one attractor to another as shown in Figs. 2(c) and 2(d),
where the trajectory jumps between attractors, represented by
trajectories Ti.

Coupled Lorenz oscillators with multistable behavior have
complex basin structures [6,61], giving rise to the chimera
states [9] in such systems. Similar to globally coupled
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FIG. 3. Basin of attraction of the system of three coupled Lorenz
oscillators on a ring at coupling strengths ε = 0.028. Basins are cal-
culated for initial conditions in x3 and y3 variables, i.e., x03, y03 space
in the interval [−20, 20]. Initial values of x1, y1, z1, x2, y2, z2, z3 are
fixed, i.e., x01 = x02 = y01 = y02 = z01 = z02 = z03 = 1. The initial
conditions evolving towards different dynamics are represented by
white, blue (dark gray), red (light gray), and black regions (see text
for details).

oscillators, the basin of attraction of this system also shows
riddled behavior: trajectories starting with infinitesimally
close initial conditions have a nonzero probability of end-
ing up into different attractors. The complexity of the basin
implies that the manifolds containing oscillator trajectories
are also very complex. In Fig. 3 we plot the basin of attrac-
tion of the system of three coupled oscillators at ε = 0.028.
Here white regions are where all the oscillators evolve to the
A0 attractor, and the dynamical state can be represented as
(A0, A0, A0). Red (light gray) and blue (dark gray) regions cor-
respond to the collective states (A0, A±, A±) and (A0, A0, A±),
respectively. The black region indicates a collective state Ti±
where at least one oscillator has intermittent dynamics and the
other oscillators may evolve to any of the coexisting attractors.

The intermittent dynamics of the oscillators observed for
the coupled system at ε = 0.03 is shown in Fig. 4. The first
oscillator spends a large amount of time in a A0-type state,
but then jumps to A+ attractor as shown in Figs. 4(a) and
4(b). Dynamics of the second oscillator is initially on A−
followed by A0 and jumps to an A+-type attractor. This is
shown in Figs. 4(c) and 4(d). As shown in Figs. 4(e) and
4(f), the dynamics of the third oscillator is on the A− attractor
before jumping to A0. For all these cases system may again
jump to another attractors when it is evolved further. Time
series plots of the x variable are plotted in Fig. 5 to show more
prominent intermittent dynamics at higher coupling strengths.
The hopping between different dynamical states becomes fast
as the value of coupling strength is increased [33] as shown in
Figs. 5(b)–5(d).

This complex intermittent behavior can be verified by plot-
ting the distribution of finite-time Lyapunov exponents λ.
With increasing strength of coupling, we examine finite-time
Lyapunov exponents calculated for relatively small time-
intervals taken from a long trajectory, and plot its probability
distribution function (PDF) with coupling strength in Fig. 6.
Finite-time Lyapunov exponents provide information about
average convergence or divergence rate of two nearby tra-
jectories within the attractor for a given time window. Since

FIG. 4. Plots for intermittent dynamics (left panel) and their cor-
responding time series (right panel). In (a) an oscillator spends large
amount of time in the A0 attractor but jumps to A+. (b) Representation
of their corresponding time series. In (c) and (d), we observe two
jumps from initial attractor A− to A0 and then to A+. A jump from
smaller attractor A− to bigger attractor A0 is shown in (e) and (f).

here the trajectories may switch between different attractors,
two peaks are observed due to the different convergence (or
divergence) rate on those attractors. In Ref. [36] it was shown
that in case of intermittency, the PDF of the local LE is a
combination of a normal density and a stretch exponential
tail. For the case of an uncoupled map, authors have shown
that for intermittency, the local LE has a Gaussian distribution
centered at different values and a stretched exponential tail
that interpolates between the two. The distribution of the
exponents indicates that the trajectories in some time win-
dows can fall apart or can come close while moving within
an attractor. Two peaks in the PDF correspond to the states
between which the intermittent dynamics takes place. In the
present case, the PDFs of the local LE are plotted in Fig. 6(a)
for different values of ε. As shown, the PDF consists of two
peaks P1 and P2, which clearly indicates the presence of two
distinct behaviors. To understand the interpolation between
the two peaks (P1 and P2) [36], we plot the PDF in Fig. 6(b) for
two values of ε and observe that it is a straight line indicative
of an exponential behavior.

We characterize these intermittent states by using local
exponential divergence plots proposed by Gao et al. [62,63]
as follows. These plots are used to characterize complex
motions and can be applied directly to the experimental
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FIG. 5. Effect on intermittent behavior for different coupling
strength values. Time series of variable x is plotted to see inter-
mittent dynamics at (a) ε = 0.08, (b) ε = 0.09, (c) ε = 0.11, and
(d) ε = 0.12.

time series. Here we outline the procedure to calculate this
exponent for the time series given by x(1), x(2), . . . , x(N )
normalized to the unit interval [0,1]. We then make use of
time-delay-embedding [65,66] procedure to construct vectors
of the form Xi = [x(i), x(i + L), . . . , x(i + (m − 1)L)], where
m is the embedding dimension and L is the delay time to be
chosen such that the optimization criteria are satisfied. The
time-dependent exponent �(k) is defined as

�(k) =
〈
ln

( ||Xi+k − Xj+k||
||Xi − Xj ||

)〉
, (3)

where d � ||Xi − Xj || � d + �d , with d and �d being small
distances and ||.|| denotes the Euclidean norm. Angular brack-
ets denote the ensemble average over all possible pairs (Xi, Xj )
and k is the evolution time. Computation is carried out for
a series of shells (d, d + �d ). For a purely chaotic signal,
the �(k) curve first increases linearly and then flattens. The
linear regime for different shells collapses to form a common
envelope. As shown in Fig. 7, we plot the �(k) versus k
curve for the intermittent dynamics at ε = 0.09, and we note
that the common envelope is well defined, indicating that the
dynamics is chaotic.

We observe that for the coupling range 0.011 < ε < 0.17
trajectories display intermittent synchronization or intermit-
tent antisynchronization. To avoid the effects of numerical
artifacts on properties of intermittency [67], we have per-
formed simulations with double precision. Figure 8(a) shows
spatiotemporal intermittency consisting with intermittent syn-
chrony (antisynchronized) and incoherent dynamics, i.e., the
intermittent chimera states. Here intermittent synchrony (or
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FIG. 6. Distributions (PDFs) of finite-time Lyapunov exponents
λ are plotted with coupling strength ε. Two visible peaks correspond
to two different attractors and indicate that the trajectory may switch
between two dynamical behaviors in time. In (b) we plot the log-
arithm of the PDF showing that the two peaks can be interpolated
through a straight line in the semilog graph. These exponents are cal-
culated along a very long trajectory which is divided into segments of
equal finite-time lengths t = 10. The finite-time Lyapunov exponent
is then calculated for each segment.

antisynchrony) refers to the case when two or more oscillators
are synchronized (or antisynchronized) for some interval of
their evolution time, and for the remaining interval, the oscil-
lators are not in synchrony. As shown in Fig. 8(a) at ε = 0.11,
oscillator 1 shows intermittent synchrony with oscillator 2,
for which the time series is plotted in Fig. 8(b). Intermittent
synchrony is evident from the time series of the difference of
their x variables, namely, x1 − x2 in Fig. 8(d). Similarly, an-
tisynchronization is observed between oscillators 1 and 3 for
which the time series is plotted in Fig. 8(c). The sum of these
variables, x1 + x3 is plotted in Fig. 8(e), which shows intervals
of antisynchrony and desynchrony. We explore the nature of

FIG. 7. �(k) curve for the time series of an intermittent attractor
obtained at ε = 0.09. The numbers 1 to 4 correspond to shells defined
by (2−(i+1)/2, 2−i/2) with i = 9 to 12.

034208-5



KHATUN, MUTHANNA, PUNETHA, AND JAFRI PHYSICAL REVIEW E 109, 034208 (2024)

FIG. 8. Spatiotemporal intermittent dynamics consisting of inter-
mittent synchrony (or antisynchrony) and incoherent states i.e., an
intermittent chimera shown for the system of N = 3 coupled Lorenz
oscillators [Eq. (2)] on a ring with coupling strength ε = 0.11. The
space-time plot with variable x for all oscillators is shown in (a).
Time series of the oscillators are compared by plotting variables
x1, x2 and x1, x3 in (b) and (c), respectively. In subplots (d) and (e)
we plot the difference x1 − x2 and sum x1 + x3, respectively to show
synchronization and antisynchronization between the oscillators.

intermittent synchronization and desynchronization following
the procedure by Baker et al. [67]. We store the interleaved
intervals of synchronized (antisynchronized) dynamics and
sort them according to the duration τ of the individual seg-
ments. The distribution of τ turns out to be a power law
with an exponent ζ = −2.23 (see Fig. 9) as expected for
the case of intermittent dynamics [27]. Further, we applied
Kolomogorov–Samirnov (KS) test on our data to calculate the
p value after performing a statistical t test. Using SPSS and
Python simulation, we observed a p value = 0.4999, and since
the p value is greater than the critical parameter (p > 0.1), this
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P(
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Data
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Statistical Analysis ζ =-2.23

FIG. 9. Power-law behavior of the distribution of interleaved
intervals τ at ε = 0.12.

FIG. 10. Spatiotemporal intermittent dynamics in the coupled
Lorenz oscillator for different network sizes. The results for N = 4
(a, b), 7 (c, d), and 10(e, f) are plotted in each row at coupling strength
ε = 0.12. The space-time plots and difference variables indicating
synchronization are plotted on the left and right panel, respectively.
The results confirm the existence of intermittent chimera states for
larger networks.

confirms power-law behavior of the distribution of interleaved
intervals in our system [68].

We also observed such intermittent behavior for different
network sizes. The results for N = 4, 7, 10 oscillators on a
ring are shown in Fig. 10. The left panel of the figure shows
the space-time plot. The time series of the difference variable
xi − x j are plotted in the right panel. These results verify
the existence of intermittent synchrony and antisynchrony
in larger systems. The intermittent behavior of the oscillator
appears due to the frustration introduced by neighboring oscil-
lators with different dynamical properties: we found that such
intermittent synchrony and antisynchrony is not observed for
globally coupled oscillators. An oscillator in one attractor
hops between different attractors depending upon the forcing
from its neighbors.

The emergence of intermittent chimera states observed in
our system can be explained as follows. In a ring topol-
ogy considered here, the dynamics of an oscillators depends
on the signals received from its left and right neighbors. When
the neighboring oscillators asymptote to different attractors,
the oscillator may show frustrated dynamics and be pulled
towards another manifold. We find, due to such frustration and
the complex manifold structures, that oscillators’ trajectories
may show biased motion and may not even be contained
within one attractor. For example, the oscillators on one attrac-
tor may stay in the vicinity of another attractor for a relatively
longer time, resulting in a biased motion shown in Figs. 2(a)
and 2(b). Further, the trajectories may also jump from one to
another attractor [see Figs. 2(c) and 2(d)]. With increasing
coupling strength, the frustration get stronger, making these
jumps more frequent (see Fig. 5). This gives rise to inter-
mittent dynamics observed in the system. Such intermittent
jumps between different attractors also change the synchro-
nized property of the system, resulting in the system showing
intermittent chimera states.
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FIG. 11. Time evolution of space variables xi for a system of
N = 300 locally coupled oscillators [Eq. (4)] at different coupling
strengths (ε = 0.05, 0.06, 0.07, and 0.08). We observe intermittent
behavior, with the jumps becoming more frequent with increasing
coupling strength.

III. INTERMITTENCY IN A NETWORK OF NONLOCALLY
COUPLED OSCILLATORS

To substantiate our findings for smaller values of N , we
consider an ensemble of nonlocally coupled oscillators for
which the dynamical equations are given by

ẋi = ρ(yi − xi ),

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε

2p

(i+p)∑
j=(i−p)

(z j − zi ). (4)

Each oscillator in the network is connected symmetrically
with 2p nearest neighbors (p to its left and p to its right)
with coupling strength ε. The coupling radius of the network
is r = p/N [39]. For p = 1, oscillators are coupled only to
one of its nearest neighbor on both sides (ring topology),
and the coupling scenario is referred to as the local with
coupling radius r = 1/N . For global coupling, all the oscil-
lators are connected to each other, i.e., p = (N − 1)/2 or
≈ N/2 and coupling radius r = (N − 1)/2N ≈ 0.5 depending
on whether N is odd or even. The value of r between these
limits refers to nonlocally coupled scenarios [69,70].

Dynamics for the locally coupled oscillators (p = 1) is
shown in Fig. 11 at different coupling strengths. Here we plot
time evolution of the space variables xi for a system of N =
300 oscillators and observe intermittent chimera states in the
system. This dynamics gets more prominent as the coupling
strength ε is increased (see Fig. 11). However, the intermittent
behavior disappears for very strong coupling strengths, and
we observe synchronized cluster states where the dynamics
evolves towards either the A+ or A− attractor.

The results for nonlocal coupling scenarios with dif-
ferent coupling radii r = 0.1, 0.2, and 0.3 is plotted in
different columns of Figs. 12(a)–12(i). The limiting case of
a global coupling scenario (r = 0.5, p = 150) is shown in

FIG. 12. Time evolution of space variables xi for a system of N =
300 coupled oscillators [Eq. (4)] at different coupling strengths and
coupling radii. The results for nonlocal coupling with coupling radii
r = 0.1 (p = 30), r = 0.2 (p = 60), and r = 0.3 (p = 90) are shown
in the first, second, and third columns, respectively. The last (fourth)
column shows the results for global coupling with r = 0.5 (p =
150). The top (ε = 0.12), middle ε = 0.35, and last ε = 0.55 rows
show behavior for different coupling values. Intermittent behavior
is observed for nonlocal coupling scenarios where the intermittent
jumps become more frequent with increasing coupling strength. For
globally coupled oscillators shown in last column, this intermittent
behavior is not observed.

the last column [Figs. 12(j)–12(l)]. For each r, we plot the
time evolution of the variable x at different coupling strengths.
For such nonlocal coupling scenarios, we again observed in-
termittent chimera states. We note that at smaller values of
coupling strengths, an oscillator in the network spends a rela-
tively longer time on a given attractor; i.e., hopping between
attractors is rare. Further, as the value of a coupling parameter
is increased, hopping between the attractors becomes very
frequent. We also note that when coupling radius is increased
to an optimal value, i.e., for global coupling (r = 0.5, p =
150), such intermittent behavior is not observed, as shown
in Figs. 12(j)–12(l). In this case, system dynamics evolves
towards the A0-type attractor, and their collective states are
either synchronized or antiphase synchronized as shown in
Fig. 13. This indicates that the intermittent behavior emerges
as a result of frustration introduced by local and nonlocal
coupling scenarios.

IV. DYNAMICS ON OTHER COMPLEX NETWORKS

In this section we extend our analysis to the small-world,
random, and scale-free networks to see if the intermittent dy-
namics can be observed in more general and complex settings.
The equations governing the dynamics of the oscillators in
these networks are given by

ẋi = ρ(yi − xi ),

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε

N∑
j=1

Ai j (z j − zi ), (5)
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FIG. 13. (a) Zoomed-in behavior for global coupling scenario
[Figs. 12(j)–12(l)]. Two randomly selected attractors from synchro-
nized groups are plotted in (b) and (d), along with the corresponding
time series in (c) and (e), respectively. Panel (f) shows the attractors
from the antisynchronized group with the corresponding time series
shown in (g).

where A = {Ai j} is the adjacency matrix that describes the
connection topology of the network. The matrix elements
Ai j = Aji = 1 if there is a link from i to j and 0 otherwise.
In the following subsections, we consider various complex
networks, obtain corresponding adjacency matrices A using
briefly described standard algorithms for generating such
topologies, and investigate the emergence of the intermittent
chimeric dynamics in these networks.

A. Intermittent behavior in small-world networks

The matrix elements {Ai j} in Eq. (5) for generating small-
world networks is given by the Watts-Strogatz (WS) algorithm
[71]. This model is parameterized by a “rewiring probabil-
ity” denoted by δ and describes networks that simultaneously
account for both clustering and small-world properties. For
δ = 0 (no rewiring), this model gives a regular ring lattice
with each node coupled to its 2p nearest neighbors, and
for δ = 1 (all connections randomly rewired), it provides a
random graph.

The collective behavior for such a WS network with N =
300 and p = 30 at different rewiring probabilities δ is depicted
in Fig. 14. For each selected configuration (δ value), we
analyze the collective behavior of the oscillators at different
coupling values. As expected, similar to previous observa-
tions, spatiotemporal intermittency increases in the network
as a function of coupling strength ε (different rows in Fig. 14).
Furthermore, we note that there are no significant changes
in the intermittent dynamics as rewiring probability δ is in-
creased; see the first row in Fig. 14. Note that, by increasing
δ, we are not adding new connections in the network but
rewiring the existing ones only. This rewiring doesn’t seem
to cause much change in the overall frustration an oscillator
experiences in the network. As a result, we observe only
minor changes in the intermittent dynamics as the rewiring
probability is increased (first three columns). However, when
rewiring probability is one (corresponding to an entirely ran-
dom network), we do not observe strong intermittent behavior

FIG. 14. For small-world networks with N = 300 and p = 30
(p denotes node degree of the initial regular graph), we show the
time evolution of space variables xi at different rewiring probabilities
δ and coupling strengths ε. Results for δ = 0.1, 0.2, 0.3, and 1.0
are shown in first, second, third, and fourth columns, respectively.
Note that the fourth column represents limiting case with completely
rewired connections, i.e., a random network. Plots for different cou-
plings ε = 0.005, 0.01, and 0.03 are shown in the top, middle, and
bottom rows.

even at higher coupling strengths; see the fourth column for
δ = 1.0 in Fig. 14. This observation can be attributed to the
fact that the networks with more random configurations and
high node degree are topologically less heterogeneous: the
majority of the oscillators are subjected to similar random
interactions. For most of the oscillators, this makes one of the
attractors a more likely asymptotic state reducing the frustra-
tion effects in the network, especially at lower couplings. We
can clearly verify this effect with the system showing weak
intermittency even for higher coupling strengths (see Fig. 14,
last column).

As mentioned, here we create small world (WS) networks
by rewiring a fraction of the connections δ (0 < δ < 1) of a
regular graph with p nearest-neighbor coupling. In Fig. 15
we analyze system dynamics of WS networks by rewiring
different initial regular graphs with different node degrees,
i.e., different p values: we plot the time evolution of xi

variables for different initial configurations p = 10, 20, 40,
and 100 at a fixed rewiring probability δ = 0.4. Again, we
clearly see that the intermittent behavior is more prominent
for higher coupling strengths. Note that for larger p values,
the network configuration tends towards global (all-to-all)
type interactions. Then one can safely argue that the nodes in
such networks are subjected to averaged-out influence of large
number of other nodes. This scenario results in less frustration
and correspondingly less frequent hopping between different
dynamical states. At very large p and ε values [for example,
see Figs. 15(i), 15(k), and 15(l)], the frustration effects disap-
pear, and therefore, so does the intermittent behavior. For this
case, we observe that the network shows either synchronized
or antisynchronized behavior (similar to behavior shown in
Fig. 13).
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FIG. 15. For small-world networks with N = 300 and rewiring
probability δ = 0.4, we show the time evolution of space variables xi

for different coupling strengths ε and different initial networks (reg-
ular graphs) with p-nearest-neighbor coupling. Results for p = 10,
p = 20, p = 40, and p = 100 are shown in first, second, third, and
fourth columns, respectively. Plots for different coupling strength
ε = 0.01, ε = 0.02 and ε = 0.03 are shown in first, second, and third
rows. More frequent intermittent jumps are observed with higher
couplings. However, intermittent jumps get suppressed for highly
connected networks (higher p values), especially at higher coupling
strengths.

B. Intermittent behavior in random and scale-free networks

In this subsection we present the results for a random and
a scale-free graphs with N = 300 nodes. The random network
is generated using the Erdős and Rényi (ER) graph model
[72]. Every edge in this network has a fixed equal probability
η ∈ [0, 1] of being in the graph. As the value of η increases
from 0 to 1 the probability of including more edges in the
graph also increases. Here the probability that a given node
has a degree k is given by the binomial distribution P(k) =(N

k

)
ηk (1 − η)N−1−k , which, for large N and small η, can be ap-

proximated by the Poisson distribution P(k) = 〈K〉eke−〈K〉
k! with

〈K〉 = η(N − 1).
We also analyze scale-free networks here, for which we use

the Barabási-Albert (BA) model [73]: we grow the network by
sequentially adding new nodes with preferential attachments
rule. A new node with m open edges is added to the existing
network at each time step with preferential attachment, i.e.,
the probability ηi of a new node getting connected to the
existing node i is proportional to its degree ki, ηi = ki∑

j k j
.

The results for such random and scale-free networks
are shown in Figs. 16 and 17, respectively. In both cases
we observe spatiotemporal intermittency. As expected, the
dynamics becomes more prominent for higher coupling
strengths. Also, a moderate increase in average degree 〈K〉
and coupling strength ε leads to more frequent jumps between
the states [Figs. 16(a)–16(f)]. However, for large couplings,
and when the structure is modified to be more like globally
interacting configurations (large average degree), the intermit-
tent dynamics gets suppressed as seen in Fig. 16(i). Similar
results are observed for scale-free networks shown in Fig. 17,

FIG. 16. Time evolution of space variables xi for a random net-
work of N = 300 oscillators [Eq. (5)]. The results for different
average degree 〈K〉 = 18, 〈K〉 = 30, and 〈K〉 = 90, respectively, are
shown in different columns. Different rows represent results for
different coupling strength ε = 0.005, ε = 0.01, and ε = 0.04, re-
spectively. The system exhibits spatiotemporal intermittent behavior
in (a)–(h), and synchronized and antisynchronized dynamics (see
Fig. 13) for higher 〈K〉 and ε values in (i).

where we generate different scale-free networks by sequen-
tially adding new nodes with different open connections m =
3, 5, 10, and 15. These networks have a few highly connected
nodes, and the average connectivity increases with increasing
m values. Similar effects on intermittent behavior are observed
as a function of coupling strength and m in this case as well.

These results indicate that intermittent dynamics can be
observed due to the dynamical frustrations arising in variety
of networks including ring, nonlocal, small-world, random,
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FIG. 17. Time evolution of the variable xi is plotted for a scale-
free network with N = 300 oscillators [Eq. (5)]. Different open
connections m and coupling parameters are shown in columns and
rows, respectively. The results for m = 3, m = 5, m = 10, and m =
15 are shown in different columns. In the rows, respectively, indi-
cate coupling values ε = 0.01, ε = 0.05, and ε = 0.1. The network
exhibits spatiotemporal intermittent nature, which is suppressed at
strong coupling in network with highly connected clusters (i) m = 15
and ε = 0.1.
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and scale-free configurations. This behavior becomes more
prominent with higher coupling strengths and gets suppressed
if the network configuration supports mean-field-type interac-
tion, for example, for strongly interacting highly connected
networks.

V. SUMMARY

In the present work, we study collective behavior of cou-
pled Lorenz oscillators near the Hopf boundary. This system
shows multistable behavior where the coexisting attractors
have different dynamical properties. Due to such multistabil-
ity, such systems are known to exhibit chimeric behavior in a
globally coupled setting. Here our motivation is to understand
the effect of topology on such chimeric behavior—specifically
the effect of frustration, which is introduced in the system
using ring topology with 2p-nearest-neighbors interactions
and small-world, random, and scale-free network topologies.
We find that due to the introduction of frustration in this
multistable system, the dynamics becomes intermittent. As a
result of this intermittent behavior, the oscillators hop between
synchronized and desynchronized motions, and we observe
intermittent chimera states in the system. We also observe
that this intermittent dynamics becomes more prominent as
the coupling strength is increased and when the network is
topologically heterogeneous and supports frustration effects.
This suggests that the hopping of the oscillators depends on
the interactions with its neighbors, generating strong frustra-
tions responsible for such behavior.

Using an example of N = 3 oscillators on a ring, we show
how the dynamics may exhibit biased behavior, namely, when
the trajectory remains in the vicinity of another attractor for
a longer time or exhibit intermittent jumps to other attrac-
tors. This intermittent behavior makes resulting dynamics of
larger ensembles even richer where multiple oscillators may
hop intermittently between different attractors. In such an
oscillator ensemble, the trajectories of the oscillators lie in a
complex subspaces, namely, synchronized, antisynchronized,
and desynchronized manifolds. The oscillators from the net-
work may split or merge from the synchronized subpopulation
depending on the synchronization property of the attractor
towards which it intermittently goes. As a result of such hop-
ing, oscillators may switch manifolds, and the phenomenon
of intermittent chimeras is observed in the system. The com-
plexity of the coexisting attractors can be further explored
by plotting the local exponential divergence plots, which can
be applied directly to the time series data. It is evident from
the divergence plots that the coexisting intermittent attractors
are chaotic in nature. These attractors are responsible for the
occurrence of intermittent synchronization and antisynchro-
nization for which the locking times show a power-law decay.

Note that the chimera state is a spatiotemporal phe-
nomenon where spatially distributed oscillators show two
distinct temporal dynamics: coherent and incoherent motion.

The phenomenon of intermittency refers to the temporal al-
teration (slippage) between different dynamical states. In our
system, we find both: first, the different oscillators of the
ensemble may asymptote towards different attractors in phase
space leading to the chimeric behavior, and second, there can
be intermittent jumps between synchronized and incoherent
attractors modifying a system’s chimeric properties. These
jumps result in the emergence of intermittent chimeras where
we find coexistence of intermittent-synchrony and incoherent
states.

The intermittent dynamics we observe here is due to the
frustration created by its neighbors. This happens when the
trajectories of neighboring oscillators lie in different man-
ifolds, i.e., they are moving on different attractors. The
connected oscillator is entrained towards both of these mo-
tions creating the frustration, which consequently leads to
the hopping between different manifolds and therefore inter-
mittent dynamics shown by the oscillator. This condition is
readily fulfilled in the ring topology, especially for regular
ones (local and nonlocal coupling strategies). However, for
the globally coupled oscillators such intermittent behavior is
not observed since all oscillators feel an averaged mean field
effect due to all-to-all coupling. In highly connected networks
where the oscillators are subjected to less frustration, such
intermittent dynamics gets suppressed. These results are ver-
ified for Watts-Strogatz small-world networks, Erdős-Réyni
random graphs, and Barabási-Albert scale-free networks. This
indicates that such behavior is quite general and can be used
to understand collective dynamics of various other network
topologies as well.

Intermittent chimera states have been observed in exper-
imental systems with or without multistable dynamics, for
example, waveguide resonators [74], electrochemical sys-
tems [75], and mechanical rotators [76]. In addition to these
time-continuous systems, the existence of such states was
recently reported in discrete-time systems of coupled map
lattices [77]. It is an open question whether such states can
be observed in cellular automata as well. Chimera states have
already been observed in various experimental setups includ-
ing Josephson junction arrays and coupled lasers. Therefore,
it would be interesting to explore the intermittent behavior of
multistability-induced chimera states in such systems.
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