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Chaos and localized phases in a two-body linear kicked rotor system

Anjali Nambudiripad ®,” J. Bharathi Kannan,” and M. S. Santhanam
Indian Institute of Science Education and Research, Pune 411 008, India

® (Received 24 April 2023; accepted 22 February 2024; published 13 March 2024)

Despite the periodic kicks, a linear kicked rotor (LKR) is an integrable and exactly solvable model in which
the kinetic energy term is linear in momentum. It was recently shown that spatially interacting LKRs are also

integrable, and results in dynamical localization in the corresponding quantum regime. Similar localized phases
exist in other nonintegrable models such as the coupled relativistic kicked rotors. This work, using a two-body
LKR, demonstrates two main results; first, it is shown that chaos can be induced in the integrable linear kicked
rotor through interactions between the momenta of rotors. An analytical estimate of its Lyapunov exponent is ob-
tained. Second, the quantum dynamics of this chaotic model, upon variation of kicking and interaction strengths,
is shown to exhibit a variety of phases: classically induced localization, dynamical localization, subdiffusive, and
diffusive phases. We point out the signatures of these phases from the perspective of entanglement production in
this system. By defining an effective Hilbert space dimension, the entanglement growth rate can be understood

using appropriate random matrix averages.
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I. INTRODUCTION

The kicked rotor is a paradigmatic model of Hamilto-
nian chaos and continues to remain relevant in the context
of current interest in the effects of interactions in chaotic
systems [1,2]. Physically, a single-kicked rotor system can
be thought of as a pendulum to which energy is externally
imparted through periodic § kicks. For sufficiently strong kick
strengths, the classical system displays chaotic dynamics and
results in unbounded diffusive growth of mean energy.

In the corresponding quantum regime, a different behav-
ior emerges: the initial diffusive growth of mean energy is
sustained only for a timescale of #, ~ O(1/4*). Beyond this
timescale, diffusive growth is strongly suppressed by destruc-
tive quantum interference effects resulting in localization of
wave function. In a seminal work, Fishman et al. showed that
the quantum kicked rotor (QKR), at large kick strengths, could
be mapped to an Anderson-type model with a quasidisordered
potential [3]. Unlike Anderson localization in disordered sys-
tems, dynamical localization is unrelated to genuine disorder
or intrinsic randomness and is a consequence of deterministic
but chaotic system dynamics.

In the last two decades, QKR has emerged as a pop-
ular model for understanding the physics of localization
through theory and experiments; see Ref. [2] for a recent
review of QKR and its variants. Dynamical localization in
QKR has been experimentally observed through cold atoms
periodically kicked by optical lattices formed by a counter-
propagating standing wave of light [4]. Quasiperiodic kicked
rotor models with three incommensurate frequencies have al-
lowed for precise observation of the metal-insulator Anderson
transition in d > 3 [5].
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Presently, there is significant interest in the interplay
between classical chaos and quantum localization in the
presence of interactions [6—10]. One of the questions being
vigorously investigated is the fate of dynamical localization
under the effect of interactions. Since localization is a delicate
quantum effect, it was generally believed that it might not
survive under the effect of many-body interactions. However,
it is now well appreciated that, as was argued first in the
case of weakly interacting electrons, many-body localization
could be preserved under suitable conditions [11-15]. It is
then reasonable to expect that many-body variants of dynam-
ical localization should also exist. When many QKRs interact
nonlinearly with one another, a localized phase is shown to
exist for a finite number of rotors [9,10], and in the interacting
kicked Lieb-Liniger system [16—19]. Apart from a localized
phase, a subdiffusive phase appears in the border between
the dynamically localized and delocalized phases [10], though
localization vanishes in the thermodynamic limit. However,
there exist some counterexamples in which dynamical local-
ization survives even in the thermodynamic limit.

One such counterexample is the linear kicked rotor (LKR)
system [Hamiltonian is linear in momentum, see Eq. (1)].
Introduced by Berry in 1984 [20], LKR is an integrable model.
Curiously, an interacting system of linear kicked rotors is
also integrable. Localization in momentum representation ex-
ists (for particular choice of parameters) and exact integrals
of motion were obtained [21]. This is a case of dynami-
cal many-body localization (DMBL). A related example is
the interacting relativistic kicked rotors (LKR appears in its
high-energy limit) [22], a nonintegrable but nonchaotic model
and displays dynamical localization. Although localization
emerges in these models, corresponding classical phase space
is either entirely regular (as in LKR) or a mixture of mostly
regular layer with a small chaotic component (as in the rel-
ativistic model). Hence, the observed quantum localization
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largely arises due to regular components in classical phase
space. This still leaves the question of whether DMBL can
survive and new dynamical phases can emerge if LKR is mod-
ified such that it displays predominantly chaotic dynamics.

This question assumes importance in the light of two re-
cent experimental results with periodically kicked interacting
cloud of atoms [6,7], in a setup that allows for tunable interac-
tions. They have demonstrated that even though interactions
did not sustain localization, a full-blown diffusive phase is
absent. Dynamical localization is replaced by a quantum sub-
diffusive (weakly diffusing) phase even when the underlying
classical dynamics remain chaotic. Thus, it is of interest to
study if LKR shows these novel emergent phases.

Following this discussion, several questions arise in the
context of LKR. Since an N-body interacting linear kicked
rotor is an integrable model (provided the interactions are
smooth functions), in some sense, it would lack the dynamical
richness of a nonintegrable system; there would neither be
mixed phase space nor chaos. Hence, first, how to induce
nonintegrability and chaos in this model. Second, if chaos
is induced in the interacting LKR model, does the localized
phase survive? Do any new dynamical phases appear in this
system.

To answer these questions about dynamical phases, we
consider an interacting (two-body) linear kicked rotor model
and demonstrate that (i) chaos can be induced in interact-
ing LKR if the momenta are coupled, and this leads to
qualitatively rich dynamical features, (ii) upon variation of
parameters, a variety of phases—classically induced local-
ization, dynamical localization, subdiffusive and diffusive
phases—exist in LKR. Interactions in kicked rotor models can
be introduced in several ways; usually by coupling the rotors
in position space and less commonly in momentum space
[23-29]. In this work, the momenta of the rotors are coupled
together, generating classical chaotic dynamics in LKR. Ana-
Iytic estimates of Lyapunov exponents are obtained to indicate
the presence of chaos. In contrast, coupling the position vari-
ables does not generate chaotic dynamics for any interaction
strength [21]. It might be pointed out that considerable amount
of work had focused on modeling interactions between rotors
using noise [30-37], dissipation [34,38-40], and nonlinearity
[41-48], though they do not study LKR system.

Section II briefly introduces the LKR model, followed by
a detailed discussion on the classical dynamics of momentum
coupled linear kicked rotor (m-LKR) in Sec. III. The quan-
tum dynamics and corresponding dynamical phases in the
parameter space of m-LKR are discussed in Sec. IV. This is
followed by the study on entanglement production in m-LKR
in Sec. V. Section VI presents a brief summary of the results
and conclusions.

II. LINEAR KICKED ROTOR

As pointed out earlier, Fishman et al. showed that the
Floquet operator of QKR can be mapped to the dynamics
of a single-particle tight-binding lattice with quasiperiodic
potential [3]. However, the lattice model does not have an
analytical solution. In order to solve the mapping analytically
and obtain an accurate description of the lattice model, a
modification to the KR model was introduced [3,20,49-51] in

the form of linear kicked rotor. As this name suggests, LKR
has a linear, instead of quadratic, dependence on the momenta.
The tight-binding lattice model corresponding to LKR is also
called the Maryland model [52,53].

The Hamiltonian of the single-particle linear kicked rotor
(LKR) model is given by

Hixr(t) = 2ap + K cos(x) Z st —nT), (1)

n=—00

where 0 < x < 27 and —o0 < p < 00, and the classical dy-
namics takes place on cylindrical phase space. Physically, it
can be thought of as a particle on a ring moving at constant
speed, completing o number of rotations in a time period
T of kicks. These periodic §-function kicks have a kicking
strength K. Due to the existence of a complete set of integrals
of motion (IOM), energy stays localized when « is irrational.
When the resonance condition is met, the IOMs break down
leading to delocalization in momentum space [20].

For Hikr(t) in Eq. (1) with cosine kicking potential, the
resonance condition is met when « € Z. Both rational and
irrational values of o give rise to IOMs in momentum space
leading to localization in the momentum variable. For « € Z,
these IOMs diverge leading to resonant (quadratic) mean en-
ergy evolution. On the other hand, if the kicking potential is
a smooth function that could be Fourier expanded in terms
of cos(x), then irrational values of « lead to IOMs and lo-
calization. Further, rational « satisfies the resonant condition
leading to ballistic transport in the system [20].

Throughout this work, « is chosen to be an irrational num-
ber since we are interested in the effect of interactions on
localization. It ensures the system is far from the resonance
conditions, even in the presence of interactions. The time
evolution of mean kinetic energy, rather than the total energy,
will be used as an indicator of dynamical localization [21,22].
The classical trajectories generated by Eq. (1) with irrational «
are regular finite loops around its cylindrical phase space, and
energy evolves periodically with time, implying that (p?) ~
const. Thus, the classical LKR model of Eq. (1) is devoid of
chaos at all times for any value of K. In this case, one observes
a clear correspondence between the classical and quantum
dynamics of the system.

In general, the classical or quantum transport in the kicked
rotor systems can be conveniently quantified based on the typ-
ical time dependence of the mean squared angular momenta
given by

(p*) ~ 1P, 2)

where § is the exponent. If quantum dynamics is consid-
ered, then (.) represents the usual expectation value over the
time-evolving state. In the classical regime, (.) represents an
average taken over an ensemble of initial conditions. If the
dynamics is localized in momentum space, then § = 0. If 0 <
B < 1, it corresponds to subdiffusion, and 8 = 1 corresponds
to linear diffusion. When 1 < 8 < 2, we will have anomalous
diffusion, while the particular case of 8 = 2 corresponds to
ballistic transport. Ballistic transport is observed in LKR when
the resonance condition is met [21].
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A. Spatially coupled LKR

To construct an interacting model with N rotors, a straight-
forward choice is to couple the position variables of the rotors.
One possibility is to generate a system with the Hamiltonian
given by

N
H(t) =2n Z%’Pi + ZHint(xi —Xj)
i i#]j

+KY V) Y 8@ —nT), 3)

n=—oo

where V(x;) is the potential of ith rotor and Hin(x; — x;)
represents rotor-rotor interactions that are some function of
x; — xj. If V(x;) and Hiy (x; — x;) are chosen to be any smooth
functions of position coordinates that can be expanded in
a Fourier representation, then it was shown [21] that IOMs
will always exist for any K and irrational ¢;. Consequently,
it would not display chaotic dynamics. In the corresponding
quantum regime, we anticipate that localization would be
preserved as the absence of classical nonintegrability has a
strong influence [21,22]. This type of dynamical many-body
localization (DMBL) arises due to the presence of additional
IOMs bounded in momentum space [21]. The noninteracting
LKR and the spatially interacting model in Eq. (3) are both
integrable, and hence a correspondence between the classical
and quantum regimes can be expected to exist.

III. MOMENTUM-COUPLED LINEAR KICKED ROTOR

The previous works on spatially interacting LKR [21,22]
argued that the emergence of additional IOMs and the DMBL
are universal and would survive even if the model was made
nonintegrable through some generalization. In this work,
the validity of this claim is tested by introducing interac-
tions, which couple momenta of the linear kicked rotors.
A prime motivation for introducing coupling in momen-
tum variable is to induce and probe chaotic dynamics in an
otherwise regular system. Recall that any smooth coupling
through position variables will not induce chaotic dynamics.
Then, the Hamiltonian for the N-particle momentum coupled
LKR (m-LKR) is

H = Hy(p) + Hiu(P) + V(x) Y 8(t —nT), (4

n=—0o0

where Hy(p) = 2x Zi a;p; is the unperturbed part, which
has a linear dependence on momenta, Hi, (p) is a nonlinear
perturbation that encodes the interaction in momenta between
the particles, and V (x) is the potential modulated by a series
of kicks. In this paper, m-LKR is studied for the case of two
rotors (N = 2), but the formalism implemented is general and
can be extended to any N. For N = 2, explicit forms for the
terms in the Hamiltonian of Eq. (4) is

Hy(p1, p2) =2mai1p1 + 2monps,

Hiw(p1, p2) =k, p1 po,
V(x1, x2) = K[cos(x1) + cos(x2)], @)

where a; # o are irrational numbers and k,, is the interaction
strength. The kicking potential V (x|, x,) of strength K acts
on the rotors only at integer times, i.e., with a periodicity of
T = 1. Though the form of interaction H;,; was specifically
chosen for ease of computation, it can be generalized with
the provision that it needs to be a smooth function to make
physical sense.

A. Classical dynamics of the m-LKR

The classical dynamics of m-LKR is studied by simulating
the stroboscopic map [from just after 7th kick to just before
(t + 1)th kick] and is given by

p’1+1 = p| + K sin (x’l),

p5T = ph + K sin (x}),

M= () + 2wy + kppht!) mod 27,

X = () + 2wy + kpp) mod 27 (6)

In this, the superscript ¢ or t 4 1 represents the integer times
at which kicks are imparted to the system, and the num-
bering of rotors is given in the subscripts. If k, = 0, then
the system is integrable for any K > 0. As we will show
below, for a fixed K and k, > 1, the system becomes non-
integrable and eventually nearly fully chaotic. Further, if we
multiply the first two equations by k,, and denote scaled
momenta as

Pf+1 — pp11+1
then the nature of classical dynamics is determined by a single
scaled parameter K; = k,K. The average classical energy of
the rotors (averaged over an ensemble of initial conditions)
is (E). = (p% + p%}. In the chaotic limit, this can be easily
estimated within the quasilinear approximation to be (E), =
Dot, where Dy = K? is the diffusion coefficient. It must be
noted that k, should be sufficiently large for chaos to set in.
However, once this limit is reached, diffusion rate Dy (within
the quasilinear approximation) does not depend on k.

and Py =k,pit, (7)

B. Chaotic dynamics of the m-LKR

The classical mean energy (E). and stroboscopic map are
obtained by numerically simulating Eq. (6), starting from an
ensemble of initial conditions. The (E). is averaged over
10* initial conditions randomly chosen from x € [0, 27] and
p = 0.0. This choice corresponds to an initial wave func-
tion (a 6 function in momentum space at p = 0.0) used to
simulate quantum dynamics. Throughout this paper, though
only the (xi, p;) section is shown, its counterpart, namely
(x2, p2) section, shows qualitatively similar dynamics as the
former. This system has four degrees of freedom and therefore
no easy means of visualisation exist. Thus, the stroboscopic
plots in Figs. 1(a), 1(c) 1(g), 1(e), 1(i) display a projection
of the dynamics on the (xj, p;) plane. Then, we expect to
see trajectories crossing one another which is an artifact of
projection. Despite this drawback, it is still useful to broadly
distinguish chaos from predominantly regular dynamics, and
it might not be useful in the mixed dynamics regimes. Fig-
ure 1(a) shows the stroboscopic plot for K = 0.2 and k, =1
such that K; = 0.2 < 1. For this choice, we expect the system
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FIG. 1. Left column shows the (x;, p;) projection of the strobo-
scopic section for a selection of parameters (K, k). The right column
shows the time evolution of mean classical energy (E). = (p? + p3)
(corresponding quantum energy growth is shown in Fig. 3). The
numerically computed Lyapunov exponent A is also shown. Other pa-
rameters are o, = ﬁ, oy = /5. The system is evolved for t = 10*
kicks, and the classical energy is averaged over 10* initial conditions.
The red curve is the analytical estimate of classical energy growth
obtained through quasi-linear approximation.

to be in a perturbative regime. As evident from the presence
of invariant curves in Fig. 1(a), the dynamics is mostly regular
and large stochastic layers are absent. Then (E)., shown in
Fig. 1(b), tends to a constant (barring small fluctuations). The
numerical estimate of the Lyapunov exponent further supports

this observation: A =~ 0.00. As K; — 0, the coupled system
does not exhibit chaotic dynamics.

In contrast, Fig. 1(c) shows chaotic dynamics in the
section for K, = 1.2 (K = 0.6 and k, = 2) and no regular
structures are visible to the resolution of our simulations.
Consistent with chaos, (E). has a linear evolution with time,
and Dy =~ 0.29 (estimated from simulations) is reasonably
close to the quasilinear estimate of K> = 0.36. In this case,
as we might anticipate, the largest Lyapunov exponent is a
small positive number and gives A = 0.38. As K; increases
further, the sections shown in Figs. 1(e), 1(g), 1(i) display
chaotic dynamics for Ky =4 (K =2,k, =2),K; =6 (3, 2),
and K; = 153.6 (0.6, 256) respectively. The different colors
in the sections correspond to different initial conditions. Since
chaos has already ensued, the largest Lyapunov exponents
(computed from simulations) are large positive numbers,
namely A = 1.06, 1.37, and 4.24, respectively, for K; = 4, 6,
and 153.6. For these parameters, the mean energy displayed in
Figs. 1(f), 1(h), 1(j) are all linear in time, and the values of Dy
(obtained from simulations), respectively, are 4, 9, and 0.36.
These values have an excellent agreement with the quasilinear
estimate of Dy ~ K2.

Further, we obtain an approximate analytical estimate for
the largest Lyapunov exponent in the limit of K; > 1. To do
this, note that the period-1 fixed points of the scaled version
of the map in Eq. (6) is given by

(1 =247, xp=2bw, P = 2nay, b, = 2ma;), (8)

where [, [, € Z. By linearizing the map about this fixed point
or any other arbitrary point 8 = (x1, x», P, P») in phase space
[54], we obtain the Jacobian matrix to be

1 K,cosx, 0 1
K cos x 1 1 0

J0) = K, cos x 0 1 0 ©)
0 Kscosxy, 0 1

Note that, due to linear dependence on momentum in the
Hamiltonian [see Eqs. (4) and (7)], the linearized dynamics
is independent of P; and P,. Then, the Lyapunov exponent
evaluated at 6 can be obtained, after ¢ kicks, from the eigen-
values of [J(0)T] [J(A)]'. Let o%(0,t) represent its largest
eigenvalue. Then, the largest Lyapunov exponent iS Amax =
(lim;—, »(1/t)logo (0, t)), where averaging is performed over
all possible 6. If A,,x > 0, then it indicates chaotic dynamics.
We obtain an approximate expression for Ay, as a function
of K, by computing the eigenvalues of [J(0)T]' [J(9)]'. This
can be done as follows: if the operation [J(8)T] [J(8)] is
performed analytically, and the limit K; — oo is taken, then
after ¢ kicks, we obtain the dominant contribution to be

a 0 0 O

. Ty t 2t a 0 0
K}linoo[J(@) ') xK; 0 0 0 0 (10)

0 0O 0 O

In this approximation, at tth kick, the highest power of
K, is 2¢, and all the lower powers of K; have been ignored,
and 0 < ay, a; < 1 are constants (independent of Kj) that arise
from averaging over 6. Using this, the dependence of the
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FIG. 2. Largest Lyapunov exponent A, shown as a function of
K, in semilog axis. Red symbols are computed from the map (6),
and the black line is obtained by evolving using the Jacobian in
Eq. (9). For K; > 1, a good agreement is seen between the largest
Lyapunov exponent computed by both methods. The dashed (blue)
line has slope 1 and is a guide to the eye. Each value of the Lyapunov
exponent is averaged with respect to 6.

largest eigenvalue on K becomes
o? ~ K. (11)

From this, we can infer that A,,x & In(Kj). This was checked
against a direct computation of Ay,x by evolving the tangent
vectors of the map in Eq. (6). Figure 2 shows Ap,x as a
function of In(Kj) obtained using these two different methods.
The red symbols represent An.x directly obtained from the
map, and the black line indicates that obtained by evolving
[J(O)TT [J(8)] for t = 8000 kicks. The slope being unity in
the semilog plot suggests that Aax ~ In(K). We also observe
a good agreement between these two curves especially for
K, > 1. This approximation breaks down for K; &~ 1 and in
fact overestimates the dependence since we ignored the lower-
order terms in Eq. (10). We might note that the logarithmic
dependence of Apax On Kj is reminiscent of similar log depen-
dence, at large chaos parameters, in the case of other popular
classical kicked systems, namely, kicked rotor [2] and the
kicked top [55].

C. Quantum dynamics of m-LKR

The quantum dynamics of interacting systems, whose clas-
sical limits possess integrable to chaotic transitions, continues
to attract attention. However, most of the studies deal with
individual subsystems that are chaotic, but in the case of
m-LKR, there is no classical chaos in the subsystems in the
absence of interactions. In fact, as discussed in Sec. IIT A,
the entire system becomes chaotic only if the rotors interact
through their momenta. The Floquet operator for m-LKR in
Eq. (4) can be written down as

F = exp(—iV) expl—i(Hy + Hin)(p)]
= exp(—iV) exp[—iHo(p)] expl—iHm(p).  (12)

The last form arises because the interaction term satisfies the
commutation relation [Hy, Hj,¢] = 0. As in the classical case,
the parameters o) and o, are chosen to be irrational numbers.
In the quantum model, by scaling the momenta as P; = o p;

and P, = aypy, the relevant scaled parameters become E,, =
kp/oion, K= K/T and scaled Planck’s constant /i, = i/T.
Throughout this work, the Planck’s constant is fixed at 7 = 1.
As before, we also fix ¢ = «/§, o) = \/3, and T = 1.

In the numerical simulations, the initial state |Wo(p)) is
taken to be a momentum eigenstate, which, in the momentum
basis, is simply a § function placed at (p;, p2) = (0, 0). The
state of the system after the rth kick is given by [W,(p)) =
F'|Wy(p)). The Floquet operator is applied using a split-
evolution technique [56], which requires an application of one
Fourier and one inverse Fourier transform in each kick cycle.
The evolution of quantum mean energy (E), is estimated as

(E)g = (W|P] + D3 1W), (13)

whose time evolution is shown in Fig. 3 for the same values
of K and k, used in Fig. 1.

IV. LOCALIZATION IN m-LKR

Now, we focus on the quantum evolution of an initially
localized wave packet. Figure 3(a) shows a case for K = 0.2
and k, = 1 for which the corresponding classical phase space
[Fig. 1(a)] is regular. The quantum mean energy does not
increase with time (8 ~ 0.00) but fluctuates about a mean
value. This strongly correlates with the time-evolved wave
function profile [Fig. 3(b)], which remains strongly localized
even after 10* kicks had been applied. This type of localiza-
tion is similar to that expected in the uncoupled (integrable)
system with k, = 0 (or in spatially coupled LKR) where the
quantum localization is strongly influenced by the absence
of classical ergodicity, dominated by the presence of regular
trajectories in the phase space. This is to be anticipated based
on the semiclassical eigenfunction hypothesis [57,58], which
posits that a wave function (in Wigner representation) would
be predominantly localized in regions visited by a typical
classical trajectory for infinite times.

Figure 3(c) shows the energy dynamics for K = 0.6
and k, = 2.0. The quantum mean energy, though initially
shown to increase with time, displays bounded oscillations.
Asymptotically, on average, mean energy does not grow, i.e.,
(E)q ~1tP, with B ~ 0.00. As evident in Fig. 3(d), the width
of the quantum wave function profile is much smaller than
for the corresponding classical momentum distribution. This
must be compared with the diffusive classical mean energy
shown in Fig. 1(d). Despite the chaotic classical dynamics,
the corresponding quantum system remains localized. This
behavior for the two-body m-LKR corresponds to the regime
of dynamical localization. It is markedly different from the
spatially coupled LKR since the observed dynamical local-
ization is not just a manifestation of the underlying classical
dynamics but rather a truly emergent quantum property simi-
lar to that observed in the single-particle quantum kicked rotor
[2].

In Fig. 3(e), for K = k, = 2.0, quantum dynamics is sub-
diffusive with B = 0.48. The corresponding wave function
profile in Fig. 3(f) reflects the fact that quantum diffusion
is slower than the classical normal diffusion. For this choice
of parameters, although dynamical localization is lost, a full-
blown diffusive evolution is also absent. This is in contrast
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FIG. 3. (Left panel) The evolution of quantum mean energy (E),.
(Right panel) shows the corresponding classical (black dashed line)
and quantum momentum distribution (blue line) f(p,) after 10*
kicks. The parameters (K, k,) (shown on top of each figure) corre-
spond to that shown in Fig. 1 for classical dynamics. Since the energy
growth follows (E), ~ t#, the numerically estimated 8 is also shown
in left panel. The other parameters are «; = \/§, oy = V5, h=1.

with the classical diffusive dynamics. If k, is kept constant,
and K increases further, quantum dynamics is delocalized and
approaches near-linear quantum diffusion. This is the case
illustrated in Figs. 3(g) and 3(h) for K = 3 and k, = 2. The
energy growth is subdiffusive with 8 = 0.88, and the wave
function acquires a Gaussian profile [Fig. 3(h)]. For the same

2 o
(3.0,20) -08
-0.7
0 0.6
—
0.5
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0.4
o
S 0.3
0.2
5 0.1
i [ |
— Lo Lo (e}
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FIG. 4. Image map of exponent S is plotted as a function of
k, and K. The other parameters are oy = «/g, oy = \/5 and 7 = 1.
This plot is obtained by evolving an initial wave packet for r =
10* kicks. The observed quantum mean energy growth is regressed
against (E), o t# to numerically estimate S. The four highlighted
points correspond to the parameters chosen for illustration in Figs. 1
and 3. Classical dynamics in region I is regular, and is chaotic in re-
gions II-IV. See text for a detailed explanation of quantum dynamics
in regions I-IV. The dashed lines demarcating regions II, III, and IV
are approximate indicators of boundaries.

set of parameters, classical dynamics displays linear diffusion
[Fig. 1(f)].

Finally, Figs. 3(i) and 3(j) shows for k, > 1 a case that
would classically correspond to the limit K; = Kk, > 1 and
therefore display classical chaotic diffusion. However, for suf-
ficiently small K, we observe that the quantum energy growth
saturates (B ~ 0.00). The wave function displays an exponen-
tial profile [Fig. 3(j)] whose width is far smaller compared to
its classical counterpart. This is also quantum-induced two-
body dynamical localization regime, similar to the case of
K = 0.6 and k, = 2.0 in Figs. 3(c) and 3(d). It must be noted
that dynamical localization can be sustained even if k, > 1
as long as K remains sufficiently small. This implies the
existence of a threshold value of K below which the quantum
dynamics is always localized (notwithstanding the classical
normal diffusion) for all values of k,,. Above this threshold, for
larger K, localization is broken as k, increases and ultimately
gives way to either quantum subdiffusion or diffusion.

Thus, in this interacting quantum system, as seen in Fig. 3,
we are able to observe rich dynamical features ranging from
localization to linear diffusion upon varying parameters. In the
next section, we discuss a global perspective of these features.

A. Dynamical phases in parameter space

For the quantum evolution, a global picture of the dynami-
cal behaviours can be obtained from the image map displayed
in Fig. 4. Based on Eq. (2), the exponent 8 corresponding to
the growth of (E), is (numerically) determined as a function
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of K and k, and is shown as a image map. Several broad
quantum dynamical regimes are also marked on this image
map. Note that m-LKR is integrable if k, = 0 or K = 0. From
Eq. (11), itis clear that classical chaos dominates for Kk, > 1.
Thus, the (solid) blue line in Fig. 4 is the relation K = 1/k,,.
It demarcates classically chaotic and regular regimes, where
region I is regular, while regions II-IV are chaotic.

In Fig. 4, region I correspond to classical regularity and
B ~ 0. In this regime, the quantum localization results from
wave packet evolution trapped within the confines of non-
ergodic classical trajectories. This type of localization is
realized in the limit of K — 0 or k, — 0 both of which
correspond to the semiclassical limit. Hence, despite strongly
localized wave packets, this should not be regarded as the
regime of localization arising from purely quantum effects.

Regions II-1V fall in the classically chaotic regime. The
quantum evolution in region II displays localization with
B = 0.00. This is the two-body dynamical localization regime
arising from purely quantum interference effects provided
k, > 0. The parameter choices shown in Figs. 3(d) and 3(j)
fall in regime II with K, k, > 0. Their wave function profiles
are exponential, while the corresponding classical momen-
tum distributions are Gaussian. Indeed, as in the case of the
quantum kicked rotor problem, in this regime quantum dy-
namics ignores the underlying classical features. Consistent
with Fig. 4, we find numerical indications that the two-body
dynamical localized phase persists even for small values of
the kicking strength K provided k, > 1.

In contrast to localization regimes described above, in re-
gion III quantum wave-packet evolution is subdiffusive with
B lying in the range 0.2-0.8. It might be recalled that recent
experiments [6,7] in a different interacting system resulted in
subdiffusive dynamics rather than normal diffusion. This im-
plies that localization is broken but, contrary to expectations, a
full diffusive regime is not restored by interactions. Region I1I
falls in this class because breaking integrability did not restore
normal quantum diffusion. Finally, region IV is the regime of
(nearly) quantum normal diffusion with § = 0.8-1.0. This en-
ergy growth correlates with similar qualitative dynamics in the
classical regime [compare Figs. 3(g) and 1(g)]. Physically, in a
coupled system such as the m-LKR, quantum diffusive regime
occurs due to one subsystem acting as a source of environment
for the other in the chaotic regime [59]. Thus, the noisy inputs
from the other rotor breaks any localizing mechanism based
on quantum coherence. If K and k,, are increased even further,
we observe an almost exact correspondence between classical
and quantum energy growth as evident from Fig. 5. We em-
phasize that both these boundaries, between region II-III and
III-TV, are not sharp, and the dashed lines are only indicative,
and should not be regarded as representing any kind of critical
transition.

V. ENTANGLEMENT PRODUCTION IN m-LKR

How does entanglement evolve in m-LKR? In this section,
we report the entanglement dynamics using von Neumann
entropy to characterize localized and thermal phases in this
two-body quantum system [60,61]. Entanglement dynamics
is well studied in interacting systems with finite Hilbert space
dimension, much less is known for the systems in infinite

 K=15k=15 10-24— B=15k=1.5
L 2500009 et e 1
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FIG. 5. (a) Diffusive mean energy growth for classical and quan-
tum model. Both display similar growth ~t#, with 8 ~ 1.0. (b) The
classical (black dashed line) and quantum (blue line) momentum
distributions (at# = 5000) have a Gaussian profile. Other parameters

are o =\/§,a2=\f5,h=1.

dimensional Hilbert spaces such as the two-body m-LKR.
Main object of interest is the von Neumann entropy given by

S(1) = —Try [p1(t)log p1(1)] (14)

to characterize the entanglement between the subsystems,
with each LKR representing a subsystem. In this, p(t) =
Tr, p(t) is the reduced density matrix obtained by tracing out
the second subsystem, and p(¢) = |W(7))(W(¢)| is the total
density matrix of the time-evolved state |\V(¢)). Let Ny and N,
represent subsystem dimensions such that N; > N, (a conse-
quence of &) # ;). In the quantum chaotic regime, random
matrix theory (RMT) estimates the average entanglement to
be Srmt & In(y (Q)N)) [62], where y (Q) depends on the ratio
0 = N, /Ny.

To compare the numerically estimated S for m-LKR with
RMT based prediction, an effective Hilbert space dimension
Neft = Nf’fszeff must be identified. As the system evolves,
Neff changes with time. Hence, the actual dimension (which
is infinite) is replaced with N°(¢) at time ¢. The effective
dimension of jth subsystem, representing the occupation of
states in Hilbert space indexed by m, is

. 1 1
NiT (1) ~ = . (15)

! ZP;‘ ( Zpk |\p[’|,[72 ([)|2)2 pr[f(pj’ t)]2

where (j, k) = (1,2) or (2,1), ¥, ,,(t) is the time-evolved
wave function, while f(p;,t) denotes the corresponding
marginal probability density.

With this information, the RMT average of entanglement
can be expressed as

Srmr (1) ~ In [y (Q) N{™" ()], (16)

where y (Q) is a time-dependent quantity. If the Hilbert space
is finite, then ¥ (Q) is a constant for given N; and N, [63]; in
particular, if N; = N,, then y =~ 0.6.

Figure 6 displays entanglement entropy as a function of
time for three cases. Figure 6(a), for K =0.6,k, =2, a
quantum steady state in the form of localization emerges,
and entanglement saturates though it fluctuates about an
average value. Entropy production is effectively stops. Con-
sistent with Figs. 3(c) and 3(d) this is another indicator of
emergent dynamical localization. Figure 6(b), for K = 2,
k, =2, in Figs. 3(e) and 3(f) and for 7 >> 1, the S(¢) has
logarithmic dependence on time. The RMT estimate ob-
tained using Egs. (15) and (16), shown as the dashed line,
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FIG. 6. Numerically computed entanglement S(¢) for m-LKR
(solid blue line). (a) (K, k,) = (0.6, 2.0) corresponds to dynamical
two-body localized phase and saturated entanglement, (b) (2.0,2.0)
corresponds to quantum subdiffusive energy growth regime and
logarithmic entanglement production, (c) (7.5,7.5) corresponds to
quantum diffusive energy growth regime and logarithmic entangle-
ment production. The black dashed line is an analytical estimate
Srmr(t) obtained by using Eq. (15) in Eq. (16). The other parameters
of m-LKR are o = ﬁ, oy = ﬁ, h=1.

deviates from the numerically computed entanglement. How-
ever, it provides a reasonable estimate of the entanglement
growth rate. Let us recall that K = 2, k, = 2 corresponds to
quantum subdiffusion, and the evolving wave function has
an (approximately) exponential profile as seen in Fig. 3(f).
This cannot be regarded as a random state in the sense
of RMT. This observation raises interesting questions and
suggests that the RMT average in Eq. (16) is useful even
when the system is not consistent with RMT-type assump-
tions. Figure 6(c), for K = k, = 7.5, the quantum diffusive
behavior manifests in logarithmic growth of entanglement.
As in the case of Fig. 6(b), our RMT estimate is consistent
with the numerically computed entanglement production rate
(blue line).

In both the subdiffusive and diffusive cases [Figs. 6(b) and
6(c)], logarithmic entanglement growth arises almost entirely
from N;(¢), while the ratio Q = N,(¢)/N;(t) is approximately
a constant for our choice of parameters. However, the growth
is faster for K = k, = 7.5 compared to that of K =2, k, = 2.
This is not entirely surprising since the former corresponds
to a larger Lyapunov exponent than the latter, and as noted in
many earlier studies, this classical property leaves its footprint
in the short-time asymptotics of entanglement as well [64].
This particular regime can be linked to classical behavior,
where one of the rotors functions as a sort of noisy environ-
ment for the other [29].

The asymptotic entanglement saturation is well under-
stood in finite quantum systems. Figure 6 shows that, in

unbounded Hilbert spaces, entanglement growth is linear only
for very short timescales, and does not saturate as t — oo
[Figs. 6(b) and 6(c)], except when a localized phase emerges
[Fig. 6(a)]. In the former cases, absence of entanglement
saturation is a direct consequence of the unbounded Hilbert
space. Remarkably, even if the entanglement growth rate
does not vanish, our work demonstrates that its instanta-
neous growth rate coincides with that of Sgymr(f) estimated
using effective Hilbert space dimension in Eq. (15). This
highlights the distinct behavior of entanglement dynamics in
infinite-dimensional Hilbert spaces from that of finite quan-
tum systems.

VI. CONCLUSIONS

The main motivation behind this work is to induce nonin-
tegrability and chaos in interacting linear kicked rotor model
and study the quantized version to explore the emergence
and sustainability of dynamical localization and other phases.
We address this question by studying an interacting two-body
linear kicked rotor, and hence our results strictly pertain to this
two-body system. Recently, it was shown that many-body lin-
ear kicked rotors interacting through spatial variables, under
some mild conditions on the parameters, would always have
integrals of motion and would not display chaotic regimes.
In the quantum regime, this system displays many-body lo-
calization arising from the presence of integrals of motion.
In order to probe localization in the chaotic limit, first, we
create a version of a two-body linear kicked rotor that can
display chaos. Since chaos is ruled out if spatial variables
are coupled, we show that the momentum-coupled two-body
linear kicked rotor (m-LKR) becomes chaotic. We confirm
this by analytically estimating the largest Lyapunov exponent
Amax> Which turns out to be in good agreement with that
computed through simulations. In particular, An.x & In(Kj),
where K; is the scaled chaos parameter. Further, the nature of
classical dynamics (regular or chaotic) is also consistent with
the temporal evolution of classical mean energy as a function
of time. In the chaotic regime, mean energy growth is diffusive
in nature.

The quantum dynamics of m-LKR provide evidence for
the existence of four different regimes, including two-body
localized regimes. We briefly summarize them here: (i) If
the parameters are chosen to be in the near-integrable regime
(K; < 1), then localizationlike behavior is observed, arising
due to the strong influence of the regular classical dynam-
ical features. This is effectively a semiclassical localization
effect and is not a purely quantum effect. For values of K;
greater than unity, while the classical dynamics is chaotic,
the quantum dynamics displays three different dynamical
regimes. (ii) First is the regime of two-body dynamical lo-
calization in which the wave function has an exponential
profile. For the quantum mean energy, (E), ~ t#, here =0
showing dynamical localization. This regime persists for in-
teraction strength k, > 1 where K; = Kk, > 1, and so is
in the classically chaotic regime displaying classical lin-
ear diffusion, so long as kicking strength K is sufficiently
small. (iii) Beyond these two types of localized phases,
we observe two other parametric regimes in which clas-
sical dynamics is chaotic, but the quantum localization is
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not sustained. First, one of them corresponds to quantum
subdiffusion with mean energy (E), ~ t#, where 0 < B <1,
though the classical energy growth is diffusive. (iv) Fi-
nally, quantum diffusive regime occurs with (E), ~ t# and
B =1. In this case, the classical energy growth is also
diffusive. Quantum energy growth closely follows classical
energy growth.

We have also shown that the instantaneous entanglement
production rate can be estimated using random matrix
average and an effective Hilbert space dimension at any
arbitrary time. In the localized phases, the entanglement
production saturates, while in the quantum (sub)diffusive
phases the entropy production has a logarithmic dependence
on time. Thus, in summary, the modified momentum
coupled model introduced in this work displays a variety
of transport properties ranging from localization and
quantum subdiffusion to diffusion, depending on the choice
of parameters. While we have demonstrated this for ease and
convenience of visualization (especially the Poincaré maps)
using a two-body system, we expect these features to exist in
the many-body version of the linear kicked rotor as well.

The results presented here will have significant implica-
tions for studies being carried out on many-body systems for

which it is not straightforward to explore their classical limit.
Popular examples of such systems would be the interacting
spin chains. In such models, it is important to distinguish
between dynamical localization and localizationlike effects
induced by underlying classical dynamical structures. Further,
even in the presence of nearly complete chaos, interactions
can sustain dynamical localization, or they can display quan-
tum diffusion. In a future study, it would be interesting to
explore the general conditions under which each of these
regimes can be realized. If an experimental realization [21]
of m-LKR becomes possible, then it would lead to the veri-
fication of transport and localization features reported in this

paper.
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