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Quantum states resembling classical periodic trajectories in mesoscopic elliptic billiards

Jesús G. Riestra and Julio C. Gutiérrez-Vega *

Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849, Mexico

(Received 6 December 2023; accepted 23 February 2024; published 12 March 2024)

A quantum wave function with localization on classical periodic orbits in a mesoscopic elliptic billiard has
been achieved by appropriately superposing nearly degenerate eigenstates expressed as products of Mathieu
functions. We analyze and discuss the rotational and librational regimes of motion in the elliptic billiard.
Simplified line equations corresponding to the classical trajectories can be extracted from the quantum state
as an integral equation involving angular Mathieu functions. The phase factors appearing in the integrals are
connected to the classical initial positions and velocity components. We analyze the probability current density,
phase maps, and vortex distributions of the periodic orbit quantum states for both rotational and librational
motions; furthermore, they may represent traveling and standing trajectories inside the elliptic billiard.

DOI: 10.1103/PhysRevE.109.034205

I. INTRODUCTION

The problem of two-dimensional (2D) billiards consists of
a pointlike particle moving inside a planar closed domain,
bouncing elastically at its boundary [1]. The dynamics of
the particle can be studied in both classical and quantum
regimes [2]. Despite the apparent simplicity of the billiard sys-
tem, it provides a means of exploring a wide range of physical
phenomena that can be extrapolated to more complex sys-
tems. For instance, periodic stable trajectories, energy spectra,
chaoticity, optical-quantum analogies, quantum dots, quan-
tum confinement effects, and quantum-classical connections,
among other phenomena, can be investigated by studying
billiards [1–3]. The shape of the boundary highly determines
the billiard behavior. Symmetric boundaries, such as rect-
angular, circular, or elliptical, tend to be integrable systems
with two constants of motion, promoting separability [4–7].
Conversely, more irregular boundaries usually lead to nonin-
tegrable systems with varying levels of chaos, e.g., Sinai or
stadium billiards [2,3].

Under some favorable conditions, integrable billiards allow
finding analytically the characteristic equations to obtain clas-
sical periodic trajectories. To establish a quantum-classical
connection, these periodic orbits can be related to quantum
wave functions in analogy with ballistic transport in quan-
tum systems, ray light distributions in waveguides, intracavity
fields in optical resonators, etc. Actually, the connection be-
tween classical trajectories and quantum coherent states has
been studied recurrently over the years since the introduc-
tion of the coherent states of the harmonic oscillator by
Schrödinger [8]. The suitable superposition of degenerate
states of the 2D harmonic oscillator produces coherent states
with minimum uncertainty that resemble the expected classi-
cal trajectories of a particle moving under the action of the 2D
isotropic parabolic potential [9–12]. The SU(2) representation
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has also been used to construct stationary coherent states
localized on Lissajous figures in the 2D quantum harmonic
oscillator with commensurate frequencies [12–14].

Within the context of billiards, the classical-quantum con-
nection between classical periodic orbits and superpositions
of quantum states was recently studied for free particles
confined in square, equilateral triangular, and circular bil-
liards [15–18]. In these cases, the quantum state consists
of the superposition of nearly degenerate eigenstates where
the degeneracy condition is connected with the classical pa-
rameters. Due to the relatively simple analytical solutions
of these highly symmetric billiards, explicit equations of the
classical trajectories could be extracted from the quantum
eigenstates [19].

It is known that the elliptic billiard is an integrable nontriv-
ial system with two constants of motion [5,6,20–23], namely,
the energy E and the product of angular momenta about the
foci �. The particle has two regimes of motion depending
on the sign of the second constant of motion: rotational (R-
type) for positive �, and librational (L-type) for negative �.
Elliptic billiards have proven beneficial in creating models for
elliptical microcavity lasers [24]. These elliptical structures
are fabricated to break the rotational symmetry of circular res-
onators and, thus, manipulate the directionality of the output
radiation [25]. A more circular resonator produces whispering
gallery modes (R-type), while a more elliptic cavity emits ra-
diation mostly along its axes (L-type). Therefore, it is essential
to characterize the possible wave distributions within elliptic
cavities for applications.

In this paper, we determine the quantum states that closely
resemble classical periodic orbits of a free particle in an
elliptic billiard. Throughout the paper, these states will be
referred to as periodic-orbit quantum states (POQSs). They
are constructed with suitable superpositions of nearly degen-
erate eigenstates of the elliptic billiard with specific amplitude
and phase coefficients. The conditions for near degeneracy are
described in detail and involve a very accurate computation of
the radial Mathieu functions, their characteristic values, and
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parametric zeros. Although the even and odd eigenstates of the
quantum elliptic billiard are not degenerate, especially in the
case of the librational motion, we will show that an efficient
wave localization on the classical trajectories can be achieved.

Using the analytical expansion of the eigenstates in terms
of plane waves, we could extract the classical trajectory equa-
tions from the POQS in the form of integral line equations.
Our study reveals that the phase factors involved in the su-
perposition are related to the classical position and velocity.
Additionally, we characterize the POQS’s quantum probabil-
ity current. In the case of R-type trajectories, we found that
the probability current aligns with the classical velocities, and
a series of unit-charge vortices emerge along the interfocal
line. On the other hand, for the L-type trajectories, the vector
current has some discrepancies with the classical velocities,
which we will discuss in detail.

This work extends and consolidates previous studies of the
connections between quantum states and classical periodic
trajectories in 2D integrable billiards [15–19]. Our analysis
contributes to the global understanding of the properties of
elliptical billiards and establishes a link between its classical
and quantum description that had not been studied before, as
far as we know.

II. CLASSICAL PERIODIC ORBITS AND QUANTUM
EIGENSTATES OF THE ELLIPTIC BILLIARD

We will briefly describe the classical trajectories and the
quantum eigenstates of a particle in the elliptic billiard to
establish notation and provide necessary formulas [5,21–23].

Consider a point particle of mass M moving inside an
elliptic boundary given by

x2/a2 + y2/b2 = 1, b � a, (1)

and whose foci are located at x± = ± f = ±(a2 − b2)1/2. The
eccentricity of the ellipse is ε = f /a ∈ [0, 1).

The dynamics of the particle is conveniently described in
elliptic coordinates r = (ξ, η) defined by

x = f cosh ξ cos η, y = f sinh ξ sin η, (2)

where ξ ∈ [0, ξ0] and η ∈ (−π, π ] are the radial and angu-
lar elliptic coordinates, respectively. The lower limit ξ = 0
corresponds to the interfocal line |x| � f , and the upper limit
ξ = ξ0 = arctanh(b/a) defines the boundary of the billiard.
The scaling factors of the elliptic coordinates are

h⊥ ≡ hξ = hη = f
√

(cosh 2ξ − cos 2η)/2. (3)

As it moves in the billiard, the particle has two constants
of motion [20]. The first one is the energy

E = p · p
2M

= p2
ξ + p2

η

2Mh2
⊥

, (4)

and the second one is the dot product of the angular momenta
about the foci of the ellipse

� = L1 · L2 = f 2

h2
⊥

(
p2

η sinh2 ξ − p2
ξ sin2 η

)
, (5)

where pξ and pη are the canonical momenta in elliptic coordi-
nates. Because there exist two constants of motion, the particle

(a)

(b)

FIG. 1. (a) R-type periodic classic orbits for several indices
(p, n) in an elliptic billiard with eccentricity ε = 0.5. Each trajec-
tory is tangent to an elliptic caustic displayed with a dash-dotted
red line. (b) L-type trajectories with γp,n < 0. All segments of the
trajectory cross the x axis through the interfocal line. Eccentricities
are ε = 0.924, ε = 0.714, and ε = 0.848. Dash-dotted red lines are
the hyperbolic caustics of the librational orbits.

is restricted to move in a specific trajectory in the phase space,
where E and � do not change.

For a given energy E , the parameter � lies within the
interval � ∈ [−2ME f 2, 2MEb2]. Thus, it is convenient to
define the nondimensional constant of motion [22]

γ ≡ �

2ME f 2
∈

[
−1,

b2

f 2

]
, (6)

whose range depends only on the geometric parameters of the
billiard.

A. Classical periodic trajectories

As illustrated in Fig. 1, the particle in the elliptic billiard
presents two kinds of motion:

(1) Rotational (R-type) when γ > 0. The particle rotates
around the interfocal line, crossing the x axis outside the
foci. All segments of the trajectory are tangent to a confocal
elliptic caustic given by ξC = arccosh(

√
1 + γ ), as shown in

Fig. 1(a). The radial coordinate ξ is restricted to the range
ξ ∈ [ξC, ξ0], and the angular one is unrestricted.

(2) Librational (L-type) when γ < 0. The particle
bounces alternately between the top and bottom of the el-
lipse, crossing the x axis through the interfocal line; see
Fig. 1(b). The particle is confined between two hyperbolic
caustics defined by η = ±ηC and η = ±(π − ηC ), where
ηC = arccos(

√
1 + γ ) ∈ (0, π/2).

The value γ = 0 corresponds to the separatrix between
rotational and librational motions. In this case, the path seg-
ments alternately pass through the foci of the ellipse and
tend to align with the x axis as they successively bounce off
the boundary. The minimum value γ = −1 corresponds to
the vertical motion along the y axis bouncing alternatively at
the covertex points of the ellipse at y = ±b. The maximum
value γ = b2/ f 2 corresponds to the limiting rotational path
that runs along the elliptic boundary. A periodic orbit (p, n)
in the billiard is a trajectory that closes after p periods of the
radial coordinate ξ and n periods of the angular coordinate
η [21].

For rotational R-type trajectories (γ > 0), the characteris-
tic equation for the values of γp,n to get periodic orbits (p, n)
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FIG. 2. Lower-order eigenstates in the elliptic billiard with eccentricity ε = 0.5. (a) |ψ e
r,m(ξ, η)|2 of even standing-wave states.

(b) |ψo
r,m(ξ, η)|2 of odd standing-wave states. (c) |ψ+

r,m(ξ, η)|2 of positive traveling-wave states. (d) Phase distribution arg ψ+
r,m(ξ, η) of positive

traveling-wave states.

is given by√
1 − f 2

b2
γp,n = sn

[
2n

p
K

(
ε2

C

)]
,

γp,n > 0,

p � 3,

n < p/2,

(7)

where K (κ ) = F (π/2, κ ) is the complete elliptic integral of
the first kind, sn(u) is the Jacobian elliptic sine function, and
εC = (1 + γp,n)−1/2 is the eccentricity of the elliptic caustic.
As shown in Fig. 1(a), p is the number of bounces at the
boundary, and n the number of turns around the interfocal line
in a complete cycle of the particle.

For librational L-type trajectories (γ < 0), the characteris-
tic equation is√

b2

b2 − f 2γp,n
= sn

[
2n

p
K

(
1

ε2
C

)]
,

γp,n < 0,

p � 4,

n < p/2,

(8)

where p must be an even integer to have closed L-orbits.
Furthermore, in addition to Eq. (8), a L-orbit (p, n) can be
present in the billiard only if it satisfies the cutoff condition
sin(nπ/p) � b/a. In Fig. 1(b) we show some typical libra-
tional trajectories in the elliptic billiard.

Regardless of the ellipse’s eccentricity, rotational and libra-
tional trajectories are always possible in the billiard. However,
rotational trajectories are more likely to occur if the eccentric-
ity is low, i.e., when the ellipse is more circular. Conversely,
when the boundary is highly eccentric, librational trajectories
are favored. This is why, in Fig. 1, we have used more elon-
gated ellipses to show the librational trajectories.

B. Quantum eigenstates

Eigenstates ψ (ξ, η) of the particle confined in the ellip-
tic billiard are determined by solving the two-dimensional
time-independent Schrödinger equation in elliptic coordi-
nates, namely,[

∂2

∂ξ 2
+ ∂2

∂η2
+ M f 2E

h̄2 (cosh 2ξ − cos 2η)

]
ψ = 0, (9)

where E is the energy of the state ψ (ξ, η) and h̄ is the
reduced Planck constant. Applying the Dirichlet condition

ψ (ξ0, η) = 0 at the boundary, the even (e) and odd (o) eigen-
functions are given by

ψe
r,m(ξ, η) = N e

r,m Mc(1)
r

(
ξ, qe

r,m

)
cer

(
η, qe

r,m

)
, (10)

ψo
r,m(ξ, η) = N o

r,m Ms(1)
r

(
ξ, qo

r,m

)
ser

(
η, qo

r,m

)
, (11)

where Mc(1)
r (ξ, q) and Ms(1)

r (ξ, q) are the even and odd radial
Mathieu functions (RMFs) of the first kind with integer order
r and parameter q, cer (η, q) and ser (η, q) are the even and
odd angular Mathieu functions (AMFs) [26–28], and N e,o

r,m are
normalization constants such that〈

ψσ
r,m

∣∣ψσ ′
r′,m′

〉 = δr,r′δm,m′δσ,σ ′ , σ = {e, o}. (12)

Eigenstates (10) and (11) represent standing wave solutions of
the Schrödinger equation (9) and form a complete orthonor-
mal family of real solutions of the Schrödinger equation in an
elliptic domain subject to the Dirichlet condition ψ (ξ0, η) = 0
at the boundary.

Figure 2 shows the probability distribution |ψσ
r,m|2 of sev-

eral even and odd eigenstates in the elliptic billiard. The
pattern of the state ψσ

r,m has r hyperbolic nodal lines defined
by the roots of the AMFs, e.g., cer (η, qe

r,m) = 0, and m elliptic
nodal lines corresponding to the roots of the RMFs, e.g.,
Mc(1)

r (ξ, qe
r,m) = 0. Even and odd eigenstates are symmetrical

and antisymmetrical about the x axis.
The energies of the eigenstates ψσ

r,m(ξ, η) are

Eσ
r,m =

(
2h̄2

M f 2

)
qσ

r,m, (13)

where the (nondimensional) parameter qσ
r,m is the mth para-

metric zero of the rth-order RMF that satisfies the Dirichlet
conditions at the elliptic boundary,

Mc(1)
r

(
ξ0, qe

r,m

) = 0, Ms(1)
r

(
ξ0, qo

r,m

) = 0, (14)

depending on whether the state is even or odd. The term
parametric zero refers to the fact that we must calculate the
value of the parameter q that makes the function vanish for
the value of its variable ξ = ξ0. From Eq. (13), it is clear that
the parameter qσ

r,m is the energy of the eigenstate ψσ
r,m in units

of 2h̄2/M f 2.

The eigenstates ψe
r,m and ψo

r,m are not degenerate for the
same indices (r, m). As q decreases, eigenvalues of the even
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and odd eigenstates get closer to each other. They are equal
only in the limiting case when q = 0, i.e., when the elliptic
boundary reduces to a circle.

The eigenvalues of the second constant of motion � can
be obtained by substituting the momentum operators pξ =
−ih̄∂/∂ξ and pη = −ih̄∂/∂η in Eq. (5), we get

f 2h̄2

h2
⊥

(
sin2 η

∂2

∂ξ 2
− sinh2 ξ

∂2

∂η2

)
ψ = �ψ. (15)

Applying the equivalence between the eigenvalue problem for
� and the eigenvalue problem for the Hamiltonian Eq. (9), the
eigenvalues of the normalized constant of motion γ [Eq. (6)]
can be calculated with

γ σ
r,m = ασ

r,m − 2qσ
r,m

4qσ
r,m

, (16)

where ασ
r,m is the rth characteristic value of the angular

Mathieu function cer (η, qe
r,m) or ser (η, qo

r,m) depending on the
parity σ = {e, o} [26].

In analogy with the classical mechanics solution, pos-
itive values of γ σ

r,m are associated with rotational R-type
eigenstates, while negative values of γ σ

r,m are associated with
librational L-type eigenstates. The separatrix between both
kinds of motion is given by the straight line α = 2q on the
(α, q) plane. Librational states are always nondegenerate, but
R-type states become more degenerate as γ increases.

Alternatively, traveling-wave complex eigenstates of the
elliptic billiard can be constructed by the linear superposition
of the even and odd standing-wave states

ψ±
r,m(ξ, η) = 1√

2

[
ψe

r,m(ξ, η) ± iψo
r,m(ξ, η)

]
. (17)

As shown in Fig. 2(c), the probability density pattern |ψ+
r,m|2

of the traveling states has an elliptic ringed structure. The
corresponding phase distributions arg ψ+

r,m are illustrated in
Fig. 2(d). For the traveling states with r = 1, the phase ex-
hibits a single vortex at the origin. For r � 2, the phase
patterns have r in-line vortices, each with unitary topological
charge such that the total charge (along a closed trajectory
enclosing all the vortices) is r. The branch cuts lie upon con-
focal hyperbolas, implying that, on time evolution, a point in
the phase distribution travels along an elliptic path of constant
ξ . Note that the quantum probability current J ∝ Im(ψ∗∇ψ )
rotates around the interfocal line of the billiard. Since ψ+

r,m and
ψ−

r,m are symmetrical in spatial structure, only the case of ψ+
r,m

is shown.
When the elliptic billiard becomes a circular billiard, the

traveling-wave solutions ψ±
r,m(ξ, η) reduce to the known solu-

tions Jr (κr,mρ)e±irθ in circular polar coordinates (ρ, θ ). In this
case, the r in-line vortices of the elliptic solution degenerate
into a single high-order vortex at the origin with charge r.

III. QUANTUM STATES LOCALIZED
ON THE CLASSICAL PERIODIC ORBITS

A. Quantum-classical connection

It is clear that if the potential energy is zero inside the
billiard, the form of a classical periodic trajectory is not af-
fected by a change in the (kinetic) energy E of the particle.

TABLE I. Exact values of qsc, qnm, γp,n and γr0,m0 from Fig. 3. It
can be seen that qr0,m0 ≈ qsc and γp,n ≈ γr0,m0 . The high value of the
case L(6,1) comes from considering a different ellipse geometry.

(p, n) qsc qr0,m0 γp,n γr0,m0

R(3,1) 4002.23 3991.42 0.4667 0.4641
R(8,3) 7819.11 7819.16 0.1714 0.1714
L(6,1) 39 577.28 39 645.37 −0.2786 −0.2790

Thus, regardless of its energy, a periodic classical trajectory
(p, n) is characterized entirely by the value of the parameter
γp.n that satisfies one of the characteristic equations (7) or (8)
depending on whether the trajectory is R-type or L-type.
On the other hand, in the quantum description, an eigenstate
ψσ

r,m(ξ, η) has associated a specific eigenenergy Eσ
r,m and a

parameter γ σ
r,m. The values of these two conserved quantities

are not independent but are related by Eqs. (13) and (16).
A quantum-classical connection in the elliptic billiard can

be established using Eq. (16) by substituting the parameter
γp,n corresponding to the classical periodic orbit (p, n). Solv-
ing for q, we introduce the following semiclassical parameter:

qsc(p, n, r0, m0) = αe
r0,m0

2 + 4γp,n
, (18)

where (r0, m0) are the indices of the central eigenstate
ψ±

r0,m0
(ξ, η) around which we will build the superposition of

nearly degenerate eigenstates.
Constructing POQS related to classical periodic orbits is

notationally facilitated by the traveling-wave representation
Eq. (17). Every eigenstate in the billiard is characterized by
a set of quantum numbers (r, m), a parameter qr,m, a charac-
teristic value αr,m, and a parameter γr,m. By giving a central
order r0 and a classical parameter γp,n, we can find m0 that
makes qsc and qr0,m0 as equal as possible. This is equivalent to
finding m0 that makes γp,n and γr0,m0 as similar to each other
as possible. Both scenarios are achieved at the same m0. The
energies and the parameters γr,m, qr,m are slightly different
in the even and odd states for the same quantum numbers,
especially in the L-type motion [21]. Thus, we adopted the
eigenvalues of the real part of the traveling waves ψ+

r0,m0
to

accomplish qr0,m0 ≈ qsc or γp,n ≈ γr0,m0 .
In Fig. 3 we plot the values of qe

r,m for different quantum
numbers (r, m) associated with the periodic orbits R(3, 1),
R(8, 3), and L(6, 1). Each marker represents a particular
number m. The horizontal lines correspond to the value of
qsc for each classic orbits (p, n) and different central or-
ders (r0, m0). In Table I we include the explicit values of
qsc, qr0,m0 , γp,n, γr0,m0 for each of the classic periodic orbits
considered in Fig. 3. Values closer to the horizontal lines are
used to build the nearly degenerate states. Empirically, the
quantum numbers (r, m) of the superposing eigenstates can
be found with

r(s) = r0 ± sp, m(s) = m0 ∓ sn, (19)

where s = 0, 1, 2, . . . , S. The maximum value S is deter-
mined by specifying a maximum tolerance for the difference
|qsc − qr,m|.
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FIG. 3. Characteristic values of qe
r,m in function of the order r

for a billiard with eccentricity (a), (b) ε = 0.5, and (c) ε = 0.924.

In each subplot, the horizontal solid line corresponds to the value of
qsc(p, n, r0, m0 ) and each marker defines a particular m. The values
qe

r,m closest to the horizontal line correspond to the degenerate states.

Similar expressions to Eqs. (19) were obtained for the
circular billiard with eigenstates Jr (κr,mρ)e±irθ [17,18]. But in
this case, the energy depends on the square of the parameter
κr,m, which represents a zero of the Bessel function Jr , while in
the elliptic billiard, the energy is proportional to q [Eq. (13)].
For this reason, in the elliptic case, we deal with higher values
of the zeros of the RMFs. This could imply that the value of S
may be higher than in the case of the circular billiard. As we
will see later, we found that a value of S = 2 seems sufficient
for assembling POQS localizing classical periodic orbits in
the elliptic billiard.

B. Numerical aspects

It is worth commenting on the numerical aspects involved
in computing the radial Mathieu functions Mc(1)

r (ξ, q) and
Ms(1)

r (ξ, q) and their parametric zeros. Several algorithms are
available for computing the RMFs [29–33], but we found that
they provide acceptable accuracy only for moderate values
of q, typically less than 300, and low orders, i.e., r < 100.

However, to establish a good connection between the clas-
sical trajectories and quantum states, we need to evaluate
RMFs with higher orders (r > 150) and very large q, i.e.,
(q > 10 000), as illustrated in the axes of Fig. 3.

To achieve these requirements, we developed our own
computational routines to evaluate the RMFs and accurately
calculate their parametric zeros. First, to compute the charac-
teristic values α of the Mathieu functions, we implemented an
efficient matrix method that guarantees a precision of about
10−12 for the orders r and values q required in this work.
Once the characteristic values were calculated, we computed
the RMFs by evaluating their expansions in terms of prod-
ucts of modified Bessel functions [27,28] using an adaptive
method [34].

We tested our algorithms by assessing the analytical Wron-
skians of the RMFs and the plane wave expansions in terms
of Mathieu waves [26,35], giving an accuracy of about 10−10.
Once we developed reliable routines to evaluate the RMFs in
terms of its order r, the argument z, and the parameter q, we
applied an iterative Newton-Raphson method to compute the
parametric zeros qr,m of the even and odd Mathieu functions
to satisfy the Dirichlet boundary conditions (14).

C. Construction of the periodic-orbit quantum states

After applying the degenerate condition (19), the wave
function associated with the classical periodic orbit (p, n) in
the elliptic billiard is given by the superposition of nearly
degenerate traveling states ψ+

r,m(ξ, η), namely,

�
p,n
S,r0,m0

(ξ, η; φ0) = 1

2S

S∑
s=−S

(
2S

S + s

)1/2

× e±isφ0ψ+
r0+sp,m0−sn(ξ, η), (20)

where the expansion coefficients have an amplitude binomial
factor and an exponential phase factor e±isφ0 .

The binomial amplitude factor was derived originally from
expanding generalized coherent modes in terms of the angular
momentum states of the harmonic oscillator, as shown by
Wodkiewicz and Eberly [9], among others [10–12]. Later, the
same amplitude factor was applied successfully in the expan-
sion of generalized states in square, triangular, and circular
billiards [15–17]. Since the elliptical billiard is a generaliza-
tion of the circular one, we chose this factor as it can also
be applied in the limiting case. As we will show below, this
selection was appropriate. The overall factor 2−S ensures that
the function �

p,n
S,r0,m0

is normalized, provided that the con-
stituent wave functions ψ+

r,m(ξ, η) are normalized, as is indeed
the case.

The phase factor e±isφ0 controls the relative phase between
the constituent eigenstates. As verified numerically, this factor
is related to the initial conditions of the associated classical
periodic orbit and plays an important role in the quantum-
classical connection, which has also been confirmed in the
studies of the harmonic oscillator [9–12]. The positive and
negative signs in the phase factor represent a clockwise or
counterclockwise rotation of the associated classical trajec-
tory. An independent classical state can be constructed by
superposing the wave functions with negative helicity, i.e.,
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(a)

(b)

FIG. 4. POQS with localization on the classical periodic or-
bits shown in Fig. 1 for some combinations of the parameters
(p, n, φ0, S) using r0 = 50 for R(3, 1, 3π/2, 3), r0 = 120 for
R(5, 2, 3π/2, 3), R(7, 2, π/2, 1), R(8, 3, π, 2) and r0 = 130 for
L(6, 1, 0, 2), L(6, 2, π, 2), L(10, 3, 0, 2), and L(14, 3, 0, 2).

ψ−
r,m(ξ, η), but the final effect is only changing the sign of

the imaginary part of �
p,n
S,r0,m0

.
In Fig. 4 we show the probability density of the POQS

|� p,n
S,r0,m0

|2 corresponding to the R-type and L-type classical
trajectories depicted in Fig. 1. The similarity between the
localized POQS and the classical orbits is evident. The values
of the parameters used in the superposition are included in
the figure caption. In regions near the boundary where the
trajectories bounce, the incident wave superposes with the
reflected one, resulting in interference fringes of probability.
This phenomenon can also be observed where the trajecto-
ries self-intersect within the billiard. The triangular trajectory
(3,1) in Fig. 4(a) contains two diagonal segments that exhibit
the focusing of the probability density. When we examine only
one of these segments, the probability density resembles the
Gaussian intensity distribution between two spherical mirrors
in a laser cavity. We will revisit this effect when we discuss
phases and probability current later.

Single eigenstates ψσ
r,m of the elliptic billiard do not re-

semble the classical periodic orbits, even considering large
quantum numbers (r, m). However, even if only three nearly
degenerate eigenstates (S = 1) are properly superimposed, the
resulting POQS could localize the classical periodic orbit very
accurately.

For an R-type POQS [Fig. 4(a)], the effect of the phase
factor φ0 is to displace the position of the impact points of
the localized trajectories on the elliptic boundary. This result
was confirmed numerically, and it is illustrated in Fig. 5,
where we plot the wave patterns of the rotational trajectories
R(8, 3, φ0, 2) and R(3, 1, φ0, 3) for different values of φ0.
By adjusting the value of φ0, we can start the trajectory at
a specific point on the boundary, making the classic trajectory
symmetric or asymmetric with respect to the Cartesian axes.
The continuous variation of φ0 would correspond to a kind of
rotation of the localized classical trajectory within the billiard.
Because the elliptic boundary does not have rotational sym-
metry about the origin, starting the orbit at a different point
on the boundary leads the trajectory (p, n) to have different
shapes. However, regardless of the φ0 value, all the displaced
orbits share the same conserved quantities. This effect has also
been observed in the triangular and square billiards [16,36].
In the case of the circular billiard, because of the angular

(a)

(b)

FIG. 5. Effect of the phase factor φ0 in the R-type POQS.
(a) State R(8, 3, φ0, 2). (b) State R(3, 1, φ0, 3). Central quantum
numbers (r0, m0 ) are the same as Fig. 4 for the corresponding
trajectories.

symmetry of the boundary, changing the phase factor φ0

only produces a trivial rotation of the same pattern about the
origin [17].

For an L-type POQS [Fig. 4(b)], the variation of φ0 also
shifts the bouncing points of the orbits on the boundary, as
occurs in R-type trajectories. However, the phenomenology
of librational L-type states is more complex than R-type ones.
In particular, there is the possibility that, for specific values
of φ0, the periodic closed trajectories split into two or more
primitive trajectories, as shown in Fig. 6, where we plot the
same states as in Fig. 4(b) but with different phase factors φ0.
In the cases shown, the pairs of primitive orbits are symmetric
about the y axis. Note that each primitive trajectory in Fig. 6
may seem to have a starting and an ending point, but actually,
the particle is bouncing perpendicularly off the boundary and
returning along the same path. This process is happening
repeatedly, and the superposition of quantum states naturally
reconstructs both degenerate primitive trajectories. It is ex-
pected that for noncoprime indices (r, n), the wave function
of the POQS would be localized on multiple periodic orbits,

(a)

(b)

FIG. 6. Effect of the phase factor φ0 in the L-type POQS.
(a) States L(6, 1, π, 2), L(6, 2, 0, 2), and L(10, 3, π, 2). (b) Decom-
position in primitive periodic orbits.

034205-6



QUANTUM STATES RESEMBLING CLASSICAL PERIODIC … PHYSICAL REVIEW E 109, 034205 (2024)

(a)

(b)

FIG. 7. (a) L-type POQS with a phase shift of π . (b) Classical
symmetric trajectories associated with quantum states plotted in (a).

as was shown in previous studies of the harmonic oscillator
and the triangular and circular billiards [13,14,18]. But in the
case of the L-type states in the elliptic billiard, the POQS is
naturally composed of multiple periodic orbits.

To further confirm that the L-type POQS are composed
of two symmetric independent classical trajectories, Fig. 7
shows the POQS L(6, 1, π/2, 2) and L(6, 1,−π/2, 2) and
their corresponding classical orbits. It seems that both POQS
are different, although symmetrical. However, upon closer
inspection, we notice the existence of regions where the state’s
amplitude is very low, but it still exists. With this in mind, we
can conclude that both POQS are constructed using the same
symmetrical trajectories.

Finally, the case of noncoprime indices (p, n) is shown
in Fig. 8. It can be seen that the R-type state R(6, 2, 0, 3)
splits into two independent primitive trajectories R(3, 1) with
different initial conditions. These POQS are composed of two
individual states with a phase difference φ0 of 2π/ j where j is
the common factor between the indices (p, n), and therefore,
j also gives the number of independent trajectories that com-
pose the R-type POQS. In this way, the state R(8, 2, 0, 1)
splits into two R(4, 1) states. In the case of L-type trajec-
tories, because the POQS is composed of two independent
trajectories, the POQS with j = 2 [see L(12, 2, 0, 2) and
L(12, 4, 0, 2) in Fig. 8] has four independent trajectories,

FIG. 8. Rotational and librational POQSs with noncoprime
indices (p, n).

(a) (b)

(c)

FIG. 9. (a) Quantum probability current for the POQS
R(3, 1,−π/2, 3) with r0 = 50. (b) Phase distribution. (c) Zoom of
the phase around the interfocal line.

given by L(6, 1, 0, 2), L(6, 1, π, 2) for L(12, 2, 0, 2) and
L(6, 2, 0, 2), L(6, 2, π, 2) for L(12, 2, 0, 2). Thus, for the
L-type state with noncoprime indices (p, n), the number of in-
dependent classical trajectories are 2 j, and they are composed
of j individual constituent states with a phase difference of
2π/ j between them as occurred for the R-type states with
noncoprime indices (p, n).

D. Probability current density and phase distribution

For a wave function in the billiard � = |�| exp(iβ ), the
probability current density J is given by

J(ξ, η; φ0) = h̄

M
Im(�∗∇�) = h̄

M
|�|2 ∇β, (21)

where β = β(ξ, η) is the phase distribution of the wave func-
tion whose gradient determines the direction of the probability
flow on the surface of the billiard.

Figure 9 shows the probability current and the phase distri-
bution of the localized trajectory R(3, 1) depicted in Fig. 4(a).
The probability flows counterclockwise inside the billiard,
reflecting on the walls, creating a closed periodic orbit. The
direction of the probability flow can be reversed by simply
conjugating �. The size of the probability vectors is larger in
regions with higher probability density.

The phase distribution exhibits a complicated structure of
vortices throughout the area enclosed by the elliptic wall. A
vortex appears at a zero-probability point where the real and
the imaginary parts of the complex function � vanish, and
thus, the phase there is not defined. All vortices have a topo-
logical charge equal to one. Note that the probability current
vector circulates the vortices. The line of vortices that appears
along the x axis at the interfocal line is particularly interesting.
To better appreciate it, in Fig. 9(c), we show a zoom of that
region. The number of interfocal vortices is proportional to
the order r0 of the central eigenstate of the superposition. This
result is predictable since the angular Mathieu function of
order r has r/2 zeros in the interval [0, π ] [26], which is a
necessary condition for the state to vanish at those points.
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(a) (b)

(c)

FIG. 10. (a) Quantum probability current for the POQS
R(8, 3, π, 2) with r0 = 70. (b) Phase distribution. (c) Zoom of the
phase around the interfocal line.

Observing the phase wavefronts in Fig. 9(b) also provides
valuable insights. If we focus our attention on the region
through which one of the diagonal segments of the trajectory
passes, we observe that the wavefronts resemble the typical
converging and diverging spherical wavefronts of a Gaussian
beam in a cavity composed of two spherical mirrors. The
plane of maximum beam focusing (in our case, maximum
probability) corresponds to the plane wavefront with zero
curvature. These results show the close analogy between wave
propagation in optical cavities and quantum distributions in
mesoscopic billiards.

In Fig. 10 we show the probability current and phase
distribution of the localized trajectory R(8, 3) depicted in
Fig. 4(a). We include this example to illustrate the case of
self-intersecting trajectories, which occur when n > 1. For the
R-type orbits, the vector current coincides with the classical
velocities throughout the closed orbit. We can follow the di-
rection of the vectors along the entire closed trajectory in the
same way as we would with the classical trajectory R(8, 3)
shown in Fig. 1(a).

Figure 11 shows the case of an L(6, 1) librational trajec-
tory. In contrast to the rotational case, the phase of L-type
orbits does not display a well-defined series of vortices along
the interfocal line. This is because librational trajectories al-
ways cross the x axis within the foci of the boundary. If

FIG. 11. (a) Quantum probability current for the POQS
L(6, 1, 0, 2) with r0 = 70. (b) Phase distribution.

we follow the probability vectors along the entire closed tra-
jectory, we see that their direction in the vertical segments
appears reversed compared to the direction expected in the ve-
locity vector of a classical orbit. We attribute this discrepancy
to the fact that L-type can be divided into primitive trajecto-
ries, and a sign change is introduced in the superposition.

IV. INTEGRAL LINE EQUATIONS
EXTRACTED FROM THE POQS

Let us now show how the classical periodic trajectories can
be extracted from the POQS �

p,n
S,r0,m0

(ξ, η; φ0) in the elliptic
billiard. In Eq. (20) the amplitude factor could be written as
Ae±iφ0 , but, according to Ref. [37], when the amplitude A is
equal to unity, it is reached the minimum uncertainty for the
superposed state. In view of this, we first modify Eq. (20)
by setting the weight for each eigenstate to be unity and
multiplying by p to the phase factor; we get

�̃
p,n
S,r0,m0

(ξ, η; φ0) = 1√
2S + 1

S∑
s=−S

eispφ0ψ+
r0+sp,m0−sn(ξ, η),

(22)

where the tilde means that �̃ is an approximation of � in
Eq. (20).

The plane wave expansions of the even [Eq. (10)] and odd
[Eq. (11)] eigenstates in the elliptic billiard are [26]

ψe
2n,m(ξ, η) = N e

2n,m

(−1)n

2π

∫ π

−π

ce2n
(
φ, qe

2n,m

)
P e dφ, (23a)

ψe
2n+1,m(ξ, η) = N e

2n+1,m

i(−1)n+1

2π

∫ π

−π

ce2n+1
(
φ, qe

2n+1,m

)
P e dφ, (23b)

ψo
2n+2,m(ξ, η) = N o

2n+2,m

(−1)n+1

2π

∫ π

−π

se2n+2
(
φ, qo

2n+2,m

)
P o dφ, (23c)

ψo
2n+1,m(ξ, η) = N o

2n+1,m

i(−1)n+1

2π

∫ π

−π

se2n+1
(
φ, qo

2n+1,m

)
P o dφ, (23d)
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where the AMFs cer (φ, q) and ser (φ, q) are the angular spec-
tra, and

P σ ≡ exp [ikσ ρ cos(φ − θ )], σ = {e, o} (24)

is a plane wave with wavenumber kσ = 2(qσ )1/2/ f traveling
into the φ direction, and (ρ, θ ) are the polar coordinates,
(x, y) = (ρ cos θ, ρ sin θ ).

By replacing these expansions into Eq. (22) and doing the
change of variable ϕ = φ − φ0, we get

�̃
p,n
S,r0,m0

(ξ, η; φ0)

= C

[∫ π

−π

cer0

(
ϕ + φ0, qe

r0,m0

)
P e

φ0
D(pϕ) dϕ

+ i
∫ π

−π

ser0

(
ϕ + φ0, qo

r0,m0

)
P o

φ0
D(pϕ) dϕ

]
, (25)

where C is an overall normalization constant,

P σ
φ0

≡ exp
[
ikσ

r0,m0
ρ cos(ϕ + φ0 − θ )

]
, (26)

and

D(pϕ) = 1

2S + 1

S∑
s=−S

e−ispϕ (27)

is the normalized Dirichlet kernel [38]. It turns out that D(pϕ)
is a periodic pulse function with period 2π/p, so the integrals
in Eq. (25) can be split into p segments with the integration
interval from −π/p to π/p. Also, for (2S + 1)p � 1, D(pϕ)
has a narrow peak in a small region −� � ϕ � � with � =
π/p(2S + 1) and we can approximate D(pϕ) to unity in the
interval [−�,�] and zero elsewhere. Finally, the integrals in
Eq. (25) can be expressed as

�̃
p,n
S,r0,m0

(ξ, η; φ0)

= C
p∑

l=1

[∫ �

−�

cer0

(
ϕ + φ0 + v(l ), qe

r0,m0

)
P e

l dϕ

+ i
∫ �

−�

ser0

(
ϕ + φ0 + v(l ), qo

r0,m0

)
P o

l dϕ

]
, (28)

where

P σ
l ≡ exp

{
ikσ

r0,m0
ρ cos[ϕ + φ0 − θ + v(l )]

}
, (29)

and v(l ) is directly related to the classical velocity by

v(l ) = arctan(pyl /pxl ), (30)

with pyl and pxl being the momentum components for each
line segment l = {1, 2, . . . , p} belonging to the corresponding
classical trajectory.

The field given by Eq. (28) localizes sharply a classical
periodic trajectory with p bounces. Each integral represents a
line segment whose slope is controlled by the phase factor φ0

and v(l ). In Fig. 12 we plot |� p,n
S,r(0),m(0)|2 given by Eq. (28)

for some periodic orbits plotted in Figs. 1 and 4. The classical
velocity components for v(l ) were obtained with the corre-
sponding classical orbit. The positions of the segment lines
defined by Eq. (28) are dependent on the parameter qr0,m0 and
the central state (r0, m0). The quantum-classical connection
implies that the value of γr0,m0 must be very similar to the
classical parameter γp,n. The fulfillment of these conditions

FIG. 12. POQS calculated with the approximated Eq. (28) and
the corresponding classical velocity components v(l ) for some clas-
sical periodic orbits (p, n). Orbit R(3, 1) with r0 = 300 and S = 5.
Orbit R(8, 3) with r0 = 300 and S = 2. Orbit L(6, 1) with r0 = 300
and S = 6. Orbit L(10, 3) with r0 = 700 and S = 5.

ensures the lines intersect the boundary at the correct bounce
points.

The value of S has to be large enough to approximate the
Dirichlet kernel to unity; this implies that � is as small as
possible. Since � depends on the index p, for the orbit like
R(8, 3) setting S = 2 was acceptable. On the other hand, a
higher order r0 has the effect of sharpening the trajectories
because, at the higher the order, the more similar the values
of the classical parameter γp,n and the eigenvalue γr0,m0 of the
central traveling state are. This is why we used a higher order
(r0 = 700) for the trajectory L(10, 3) to improve its sharpness
and visibility. Evaluating the zeros of the RMFs for such high
values of r0 becomes a computational task as it was necessary
to calculate up to 100 zeros. We conclude by mentioning that
the integral equation (28) and the normalization constant were
calculated numerically.

V. CONCLUSIONS

This work shows that a suitable superposition [20] of
nearly degenerate traveling states ψ+

r,m(ξ, η) of the elliptic
billiard can be localized in classical periodic trajectories of
the rotational and librational type. The superposition requires
the precise evaluation of the parametric zeros of the radial
Mathieu functions for very high orders and values of the
parameter q. For this, we developed routines for calculating
the RMFs based on different series of products of modified
Bessel functions [26,27]. We got accuracies of the order of
10−10 in evaluating RMFs for orders above 700. The current
density vector field J(ξ, η; φ0) emulates the velocity flow of
a particle in the classical regime; thus, classical trajectories
can be visualized following the probability density flow. The
phase distribution arg J of the POQS shows the appearance
of vortices of unit charge distributed throughout the billiard
surface. In the case of rotational orbits, a set of in-line vortices
occurs along the interfocal line. Their number depends on
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the order r0 of the central eigenstate of the superposition.
The interfocal vortex chain does not appear in the case of
librational trajectories. By applying the plane wave expansion
of the eigenstates (23), it was possible to simplify the general
superposition of the POQS (28). The simplified expression

clearly depicts the straight segments of the classical trajec-
tories. A sinc function gives the variation perpendicular to
each segment of the trajectory. Line segments with higher
sharpness could be obtained by adjusting the expression
parameters.
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