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Near-integrable dynamics of the Fermi-Pasta-Ulam-Tsingou problem
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It is well known that the classic Fermi-Pasta-Ulam-Tsingou (FPUT) study of a chain of nonlinear oscillators
is closely related to a number of completely integrable systems, including the Toda lattice. Here, we present a
method that captures the departure of nonintegrable FPUT dynamics from those of a nearby integrable Toda
lattice. Using initial long-wave data, we find that the former depart rather sharply from the latter near the
predicted shock time of an asymptotic partial differential equation approximation, at which point energy cascades
into higher lattice modes. Our method provides an appropriate frame of reference for one to distinguish the
short-term dynamics of the two systems, whose macroscopic trajectories diverge noticeably only on a much
longer timescale, when the FPUT dynamics thermalize.
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I. INTRODUCTION

The Fermi-Pasta-Ulam-Tsingou (FPUT) problem [1,2] of
the 1950s has a well-documented legacy, leading to a num-
ber of major discoveries in the field of nonlinear science
[3–5]. The aim of the original FPUT experiment was to sim-
ulate a one-dimensional Hamiltonian chain of oscillators with
nearest-neighbor interactions, including a weakly anharmonic
potential. After fixing the boundaries and considering low-
mode sinusoidal initial data, the expectation was that the weak
anharmonicity would eventually lead to a statistical equiparti-
tion of energy among all possible lattice modes. Surprisingly,
the FPUT simulation results appeared to directly contra-
dict this hypothesis. For the computationally manageable
timescales considered, the FPUT experiment never reached
equipartition and instead revealed a quasirecurrent sharing of
energy among a small subset of lattice modes concentrated
around the one initially excited. More recently, experiments
have been performed, particularly in fiber optics, in which the
quasirecurrent mode sharing simulated in the FPUT lattice,
and its eventual long-term route to thermalization [6], can be
physically observed [7–9]. There has also been renewed inter-
est in the study of coherent structures on dimerized FPUT-like
lattices [10,11], motivated by recent advances in the study of
topological phenomena in engineered condensed matter and
photonic systems.

Coincidentally, the FPUT dynamical system, with the ini-
tial data considered in Ref. [1], is quite close to a number
of completely integrable approximations [12]. Indeed, one of
the first explanations of the FPUT experiment was given by
Zabusky and Kruskal [13], who studied the long-wave contin-
uum limit of the FPUT lattice and found that, to leading order,
the lattice dynamics were well approximated by the integrable
Korteweg–de Vries (KdV) equation, a universal partial differ-
ential equation (PDE) description of unidirectional nonlinear
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dispersive waves. In this limit, the formation of KdV solitons
near a shock front and their subsequent elastic collisions was
put forward as an explanation of the quasirecurrent mode shar-
ing observed by FPUT. It was later shown by Zakharov [14],
without making the unidirectional ansatz, that the resulting
lowest-order perturbation to the wave equation is also com-
pletely integrable. However, the resulting asymptotic PDE has
a short-wave instability, evident from the equation’s linear
dispersion relation. Indeed, the analysis and numerical con-
struction of solutions to this bidirectional description is much
more challenging in comparison with the KdV equation [15].
For this reason, recent works have focused on deriving a quasi
unidirectional description of FPUT’s dynamics in the contin-
uum regime [16,17], including a mathematical justification for
using a decoupled pair of KdV equations [18].

Another integrable system closely related to the original
FPUT experiment is the discrete Toda lattice [19]. By in-
troducing a noncanonical change of variables, in Ref. [20],
Flaschka proved the existence of a sufficient number of
conservation laws, showing that Toda’s Hamiltonian flow is
indeed completely integrable. It was pointed out in Ref. [21]
that, in the regime of small specific energy (∼E/N , E being
the total energy and N the number of oscillators), which
is the regime considered in the original FPUT experiment,
the FPUT lattice is actually closer to the Toda lattice than
to the linear chain. The authors in Ref. [21] performed ex-
tensive numerical simulations of both the FPUT and Toda
lattices, showing that in this regime the dynamics of the
two systems are virtually indistinguishable over rather long
timescales and, only on a much longer timescale, do the
FPUT dynamics achieve equipartition, whereas the excited
lattice mode distribution of Toda remains localized. Interest-
ingly, both the FPUT and Toda discrete systems relate back
to the KdV equation in the small-amplitude and long-wave
asymptotic regime. A study of the spectral characteristics of
the Toda lattice as N → ∞ and its relation to the scattering
problem of the KdV equation has been studied recently in
Ref. [22].
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FIG. 1. Simulations of the periodic Toda lattice (left column) and tangent FPUT lattice (right column), where δ = 2.45 × 10−2 and N = 64,
of an initially left traveling wave [see (11)]. The top row shows a subset of the normalized Fourier energy spectrum’s (nFES) evolution over
one quasirecurrent cycle [red (blue) denotes high (low) spectral density]. The white dashed line is the computed Burger’s shock time, ts ∼ 587.
The bottom row shows the spatial profile of the discrete left traveling wave L(�qn, pn) at t = 0, ts, 2ts.

In the present paper we study the dynamics of the FPUT
lattice in a neighborhood of the completely integrable sys-
tems discussed above. In particular, we study the evolution
of unidirectionally traveling, long-wave sinusoidal data on
Toda and nearby FPUT chains with periodic boundaries. In
this setting, both the FPUT and Toda dynamics can be ini-
tially well approximated by a generalized inviscid Burger’s
equation, as recently derived in Ref. [16], in the so-called
thermodynamic limit. Here, we numerically track differences
in initially nearby FPUT and Toda systems in appropri-
ate coordinates and show that the two systems actually
split on a timescale much shorter than those required for
the former system to approach equipartition [21]. Specifi-
cally, the two systems diverge sharply at a point in time
which agrees well with the initial shock time predicted from
the long-wave Burger’s approximation. The present paper
is motivated by numerous theoretical studies on FPUT’s
gradual route to thermalization, with direct relevance to er-
godic theory in many physical systems [3–5,23]. Our goal
is to view FPUT as a perturbation of an integrable system
and to provide a means to measure FPUT’s initial stages
of departure from integrability, highlighted with numerical
observations.

We organize this paper as follows: In Sec. II we outline
some relevant properties of the FPUT and Toda systems,
introduce a frame of reference to distinguish the short-term
dynamics of the two systems, and present numerical results;
in Sec. III we review the small-amplitude, long-wave asymp-
totics of FPUT and Toda, including the recent study conducted
in Ref. [16], and tie results stemming from the asymptotic
description to the numerics of the discrete systems presented
in the previous section; finally, in Sec. IV, we give some
concluding remarks.

II. TANGENT FPUT AND TODA LATTICES

We consider the so-called (α + β)-FPUT system, with the
equations of motion

q̈ j = q j+1 − 2q j + q j−1 + α[(q j+1 − q j )
2 − (q j − q j−1)2]

+ β[(q j+1 − q j )
3 − (q j − q j−1)3]. (1)

In the case of a chain with N particles (0 � j � N − 1) and
periodic boundaries ( j ∈ ZN ), one can linearize (1) about the
zero solution and use the discrete Fourier transform to obtain
the following dispersion relation for right and left traveling
waves

ωk = 2

∣∣∣∣sin

(
πk

N

)∣∣∣∣, (2)

where k = −N/2 + 1, . . . , N/2. Denoting the position and
momentum Fourier coefficients as q̂k and p̂k , the normalized
Fourier energy spectrum (nFES) is defined to be

Ek

Etot
=

(
ω2

k q̂2
k + p̂2

k

)
∑

j

(
ω2

j q̂
2
j + p̂2

j

) . (3)

In the linear limit, the initial energy in mode k remains un-
changed as the system evolves. The nonlinear terms in (1)
allow modal energies to conservatively mix and the nFES’s
evolution is nontrivial (for instance, see Fig. 1). As an aside,
we remark here that a more physically realistic nonlinear
mechanical mass-spring model and its continuum limit was
studied in Ref. [24], where, unlike (1), a potential barrier
is introduced so that an infinite compression is required to
squash adjacent particles to zero length.

The Toda lattice [19,25] is also a Hamiltonian chain of
anharmonic oscillators, but with an exponential potential
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coupling nearest neighbors. Unlike FPUT, the Toda equa-
tions are completely integrable and techniques such as inverse
scattering [26] can be applied to obtain exact solutions. Here,
we study the periodic Toda system

q̈ j = 1

2γ

[
e2γ (q j+1−q j ) − e2γ (q j−q j−1 )

]
, (4)

where γ is a real parameter. The integrability of the Toda
equations becomes apparent if we write (4) in Flaschka’s
variables [20],

a j (t ) = γ q̇ j, b j (t ) = 1
2 eγ (q j+1−q j ). (5)

We then obtain the following first-order system:

ȧ j = 2
(
b2

j − b2
j−1

)
, ḃ j = b j (a j+1 − a j ). (6)

The equations in (6) can be expressed as a Lax pair, with the
defining relation

L̇ = [B,L], (7)

where [·, ·] denotes the standard commutator and the real N ×
N symmetric and antisymmetric matrices, L and B, are given
by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 0 · · · bN

b1 a2 b2 0 · · ·
0 b2 a3 b3
...

. . .
. . .

. . .

bN−1

bN bN−1 aN

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 b1 0 0 · · · −bN

−b1 0 b2 0 · · ·
0 −b2 0 b3
...

. . .
. . .

. . .

bN−1

bN −bN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

We denote the ordered real spectrum of the periodic Jacobi
matrix L by

	L,N (t ) = {λn}N
n=1.

Using Floquet theory and for N even, it can be shown that the
eigenvalues of L are ordered as [27]

λ1 < λ2 � λ3 < λ4 · · · < λN .

The Lax formulation in (7) implies that L is isospectral
over Toda’s evolution, i.e., 	L,N (t ) = 	L,N (0) for all t �
0. Using this fact, it can be shown that the traces of Ln

(for n = 1, 2, . . . , N) give N independent conserved function-
als of the 2N ab variables in involution, making the Toda
equations completely integrable [20]. The Liouville-Arnold
theorem [12] then asserts the existence of action-angle vari-
ables, confining Toda phase-space trajectories to wind about
N-dimensional invariant tori.

By expanding the right-hand side of Eq. (4) in a Taylor
series, one sees that the Toda and FPUT systems agree up
to second order in γ if one sets α = γ and β = (2/3)γ 2. As
the original FPUT experiment, here we consider initial data
excited only in the first mode [see (11)]. It follows that for

each j,

|q j+1(0) − q j (0)| � 2πA

N
,

where A denotes the amplitude of the initial sinusoid. Hence,
we define the tangency parameter, δ ≡ 2πAγ /N , and obtain
a family of FPUT chains which are initially O(δ2) tangent
to the Toda lattice. One expects that the dynamics of the
tangent FPUT lattice remain “close” to the Toda system’s on
a timescale which depends inversely on δ. Indeed, the simu-
lations shown in Fig. 1 show the nearly identical evolutions
of both the nFES and real-space lattice dynamics for Toda
and a nearby tangent FPUT system (see Sec. III for initial
data and definition of ts). Only on a much longer timescale
do the Toda and tangent FPUT dynamics diverge, and, in
the latter case, eventually achieve equipartition (not shown
here—see Ref. [21]). We note here the clear emergence of
KdV-like solitons in both lattices seen in the bottom panels
of Fig. 1 for the chosen parameters in the quasirecurrent
regime.

To study the short-term departure of the nonintegrable
tangent FPUT system from integrable Toda, we express the
tangent FPUT equations in the ab coordinates of (5), which
leads to

da j

dt
= log

(
b j

b j−1

)
{1 + log(4b jb j−1) + (2/3)[log2(2b j )

+ log(2bj ) log(2b j−1) + log2(2b j−1)]},
db j

dt
= b j (a j+1 − a j ). (9)

Note that the b j terms are strictly positive [see the definition in
(5)]. We now reconstruct the matrix L in (8) with the solutions
to the equations of motion in (9). Furthermore, we define the
spectral evolution of L to be

�	L,N (t ) = 	L,N (t ) − 	L,N (0).

Figure 2 shows a side-by-side comparison of the spectral
evolutions of the Toda and tangent FPUT systems considered
in Fig. 1. Both the relative and absolute tolerances in our
numerics are set to O(10−12) to properly resolve the spectrum
on the scales shown. Interestingly, we observe a sharp depar-
ture in the tangent FPUT’s spectrum from Toda’s isospectral
evolution at a particular time, denoted by the vertical dashed
line in Fig. 2.

The time ts in Fig. 2 depicts the initial shock time of
the unidirectional hyperbolic PDE long-wave approximation,
outlined in the next section. The shock time is also depicted in
the top panels of Fig. 1 with a dashed horizontal line, which
is seen to accurately predict the excitation of higher lattice
modes near the shock front. The bottom panels in Fig. 1 show
the nearly identical wave profiles at and after the shock front
forms (see Sec. III for a definition of L).

III. CONTINUUM APPROXIMATION

The dispersion relation in (2) makes clear that the linear
dynamics of long-wave data can be well approximated by
the (bidirectional, nondispersive) wave equation on a chain
near the limit N → ∞. However, discrete dispersion effects
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FIG. 2. Simulations of the spectral evolution �	L,N (t ) for the periodic Toda lattice (left column) and tangent FPUT lattice (right column)
for the same initial data and parameters in Fig. 1 shown over one quasirecurrent cycle. The first shock time ts is depicted with a dashed vertical
line.

become increasingly noticeable as the wavelength approaches
the lattice-spacing and higher-order dispersive terms need to
be included in the linear PDE approximation. The contin-
uum asymptotics of the full FPUT chain can be derived by
expressing (1) in terms of nearest-neighbor differences or
“strain” variables, r j = q j − q j−1. Introducing a small pa-
rameter ε, one can make the ansatz r j (t ) ≈ εu(X, T ), with
long spatiotemporal scales X = ε j and T = εt , and obtain the
following asymptotic PDE description of FPUT,

uT T = uXX + εα(u2)XX + ε2

[
1

12
u(4) + β(u3)XX

]

+ ε3 1

12
α(u2)(4) + ε4

[
1

360
u(6) + 1

12
β(u3)(4)

]

+ O(ε5). (10)

The lowest-order approximation in the top line of Eq. (10)
with β = 0, is called the “bad” Boussinesq equation, as its
linear dispersion relation implies a short-wave instability.
Indeed, it is known that there exist solutions to the bad
Boussinesq equation which blow up in finite time [15,28].
The Boussinesq equation is derived in the asymptotic small-
amplitude, long-wave regime of the FPUT or Toda lattice,
where it is linearly stable. However, due to nonlinear wave
mixing, higher wave vectors will eventually be generated,
leading to exponential instability. By including the third-order
terms in (10), one obtains spectral stability about the zero so-
lution in the regime k → ∞. Thus, the short-wave instability
is an artifact of the truncation in the PDE approximation and
not the true dynamics of the lattice.

Recent work has focused on a rigorous justification for
making the unidirectional approximation near the continuum
limit of the FPUT lattice, to avoid the stability issues associ-
ated with the lowest-order bidirectional description in (10).
As mentioned in the Introduction, a pair of decoupled left
and right propagating KdV equations was originally proposed
in Ref. [13] and later rigorously justified in Ref. [18]. More
recently, a quasi unidirectional approximation of FPUT dy-
namics was given in Refs. [16,17].

To study quasi unidirectional behavior of the FPUT lattice
near the continuum limit, the authors in Ref. [16] consider

initial data of the form

q j (0) = A cos φ sin

(
2π j

N

)
,

p j (0) = ω1A sin φ cos

(
2π j

N

)
, (11)

for 0 � j � N − 1, where φ is a phase parameter. When
φ = π/4, the initial data propagate purely to the left (left
traveling wave or LTW). Here, we use LTW initial data in
each figure and, without loss of generality, set A = 1 so that
the degree of tangency to Toda scales with γ /N . By taking
the small parameter ε = 1/N and scaling qj (t ) ≈ ε−1Q(X, T )
and p j (t ) ≈ P(X, T ), one can introduce the following left,
L(QX , P), and right, R(QX , P), traveling variables

L = (QX + P)ε−1

π
√

2
and R = (QX − P)ε−1

π
√

2
. (12)

Plugging into (1), it follows that the equations for L and R
decouple at zeroth order into

LT = LX and RT = −RX ,

with an O(ε) remainder. At next order, a pair of general-
ized inviscid Burger’s equations can be derived, decoupled
at O(ε2). The Burger’s long-wave approximation leads to an
explicit expression for the initial shock time, which we use
here to compute ts ≈ 587 for the data shown in Fig. 1 (see
Ref. [16] for details).

Going back to Fig. 1, the bottom panels show the virtually
identical evolutions of a LTW for Toda and the tangent FPUT
systems at ts and 2ts. The profiles are shown in terms of L
in (12), given approximately by L(�q j, p j ), where �q j =
q j+1 − q j . The long-wave Burger’s approximation holds well
up to the first shock time, but at later times the formation of
KdV solitons in Fig. 1 is apparent and higher-order derivatives
in the PDE approximation become important [18]. Our numer-
ics clearly depict the connection between the quasirecurrent
behavior [Figs. 1(b) and 1(d)] and the formation and subse-
quent elastic collisions of solitons [Figs. 1(a) and 1(c)], as
first proposed in Ref. [13]. Taken together, Figs. 1 and 2 show
how the nonintegrable dynamics of the tangent FPUT system
split sharply from the integrable dynamics of the nearby Toda
system just past the first shock time, where, in both systems,
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FIG. 3. Simulations of the periodic Toda lattice (left column) and tangent FPUT lattice (right column), where δ = 0.884 and N = 64, of
an initially left traveling wave [see (11)]. The top row shows the normalized Fourier energy spectrum’s (nFES) evolution [red (blue) denotes
high (low) spectral density]. The white dashed line is the computed Burger’s shock time, ts ∼ 12.8. The bottom row shows the spatial profile
of the discrete left traveling wave L(�qn, pn) at t = 0, ts, 2ts.

there is a sudden cascade of energy injected into the higher
lattice modes. We remark that, due to the relatively high
degree of tangency to Toda (δ ∼ 0.025), the spectral evolution
of FPUT in Fig. 2 exhibits a smooth, quasirecurrent trajectory
[with approximately the same quasirecurrent cycle shown in
Fig. 1(a)] about Toda’s identically zero spectral evolution.

For comparison, Fig. 3 shows the evolution of the nFES
and corresponding wave profiles for tangent FPUT and Toda
with a much larger tangency parameter, δ = 0.884, and hence
a larger nonlinear coefficient γ . Again, the initial shock time
is well approximated by the long-wave asymptotics given in
Ref. [16]. After the shock forms, and in contrast to the nFES
shown in Fig. 1 where only a small subset of higher modes are
excited, Fig. 3 shows that energy is suddenly transferred to the
highest lattice modes, having wavelengths on the order 1/N .
Differences in the wave profiles of tangent FPUT and Toda

are now evident, particularly after the shock forms (compare
the bottom panels of Fig. 3 at t = 2ts). Figure 4 again shows
a side-by-side comparison of the L-spectral evolution of the
Toda and tangent FPUT systems shown in Fig. 3. Clearly the
departure is more pronounced and appears from the outset
(compare parenthetical scales in Figs. 2 and 4). Figure 4 again
shows a sharp divergence in the Toda and tangent FPUT spec-
tral evolutions soon after the initial shock forms. In contrast to
the smooth quasirecurrent evolution of tangent FPUT shown
in Fig. 2, the postshock evolution of tangent FPUT in Fig. 4
follows a chaoticlike trajectory, whereas the Toda evolution
remains isospectral even in the strongly nonlinear regime.

Up to this point we have fixed the number of particles
in the lattice at N = 64. To validate our assertion further, in
the top panels of Fig. 5 we show a sample of results from
extensive simulations on larger lattices (N = 128 and 512),

FIG. 4. Simulations of the spectral evolution �	L,N (t ) for the periodic Toda lattice (left column) and tangent FPUT lattice (right column)
for the same initial data and parameters in Fig. 3. The first shock time ts is depicted with a dashed vertical line.
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FIG. 5. Simulations of the spectral evolution of the tangent FPUT lattice on a lattice of (a) N = 128 (δ = 0.1) and (b) N = 512 (δ = 0.12).
The first shock time, ts ∼ 293 in (a) and ts ∼ 938 in (b), is depicted again with a dashed vertical line. (c) is a zoomed-in plot of (b) and the half
period of the linear lattice, Tlin/2 ∼ 256, is depicted with a solid vertical line. For comparison, (d) is the Toda spectral evolution at the same
axis scaling as (c).

where again the computed asymptotic shock times ts mark
a localized, pronounced, and short-term departure of tangent
FPUT’s spectrum from Toda’s.

Finally, we remark on the importance of the tangency pa-
rameter value, δ ∝ γ /N , in our analysis. Either for a fixed N ,
as the strength of nonlinearity vanishes, γ → 0, or for a fixed
γ , as the number of particles grows, N → ∞, the approxi-
mate shock -time calculated in Ref. [16] grows ts → ∞. A
natural question is then, in the regime δ 
 1 and over long
timescales, are tangent FPUT’s and Toda’s spectral evolutions
indistinguishable? According to Ref. [6], the α-FPUT lattice
eventually reaches equipartition for arbitrarily small nonlin-
earities on a sufficiently long timescale. Clearly, in the linear
limit (γ = 0), tangent FPUT and Toda are identical: a(t ) = 0
and b(t ) = 1/2, and hence �	L,N (t ) = 0, for all t � 0. As
one tunes 0 < δ 
 1 away from zero, numerically resolving
the spectral evolution with sufficient accuracy becomes an is-
sue. However, we note here that in our simulations the spectral
evolution of tangent FPUT is not identically zero (with respect
to the prescribed numerical tolerances) before the first shock
formation.

Indeed, Fig. 5(c) shows a zoomed-in plot of Fig. 5(b),
where the vertical axis is scaled down by an order of mag-
nitude. Before the computed shock time, Fig. 5(c) shows
regular oscillations in tangent FPUT’s evolution from the out-
set, 2–3 orders of magnitude beneath the spectral values to the
right side of the shock time. We find that these oscillations
have a period well approximated by FPUT’s linear dispersion

relation (2), i.e., Tlin = 2π/ω1 [see the vertical line in
Fig. 5(c)]. We remark that these preshock oscillations in
FPUT’s spectral evolution are common to all of our simula-
tions for small δ. To confirm that these oscillations are not
an artifact of our numerics, we show Toda’s trivial evolution
again in Fig. 5(d) with the same axis scalings as those in
Fig. 5(c).

IV. CONCLUSIONS

We have presented results showing how the virtually in-
distinguishable macroscopic trajectories of the tangent FPUT
and Toda systems actually split abruptly near the first shock
time predicted by the long-wave Burger’s equation asymp-
totics, by expressing both systems in the ab coordinates and
accurately tracking their subsequent spectral evolutions. As
the shock time occurs on a much shorter timescale than the
one required for FPUT’s eventual thermalization, studied in
Ref. [21], we provide a means to distinguish FPUT’s short-
term dynamics from the isospectral evolution of the nearby
integrable Toda lattice.
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