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Ordering kinetics of the two-dimensional voter model with long-range interactions
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We study analytically the ordering kinetics of the two-dimensional long-range voter model on a two-
dimensional lattice, where agents on each vertex take the opinion of others at distance r with probability
P(r) ∝ r−α . The model is characterized by different regimes, as α is varied. For α > 4, the behavior is similar to
that of the nearest-neighbor model, with the formation of ordered domains of a typical size growing as L(t ) ∝ √

t ,
until consensus is reached in a time of the order of N ln N , with N being the number of agents. Dynamical
scaling is violated due to an excess of interfacial sites whose density decays as slowly as ρ(t ) ∝ 1/ ln t . Sizable
finite-time corrections are also present, which are absent in the case of nearest-neighbor interactions. For
0 < α � 4, standard scaling is reinstated and the correlation length increases algebraically as L(t ) ∝ t1/z, with
1/z = 2/α for 3 < α < 4 and 1/z = 2/3 for 0 < α < 3. In addition, for α � 3, L(t ) depends on N at any time
t > 0. Such coarsening, however, only leads the system to a partially ordered metastable state where correlations
decay algebraically with distance, and whose lifetime diverges in the N → ∞ limit. In finite systems, consensus
is reached in a time of the order of N for any α < 4.
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I. INTRODUCTION

The voter model was first introduced in the study of genetic
correlations [1,2]. Later, its basic properties were derived
in Refs. [3,4] and widely studied through the years [3–13],
with application to various disciplines [13–19]. The informing
idea is quite simple: at each point of a lattice, an agent can
express one of two possible choices, say “left” and “right”
or, equivalently, +1 or −1. Because of the similarity to the
Ising model, the term “spins” is also used for such agents. In
the original nearest-neighbor (NN) version, an agent takes the
status of a randomly chosen NN, so that the probability of the
spin flip is proportional to the fraction of opposite NN agents
surrounding it. In arbitrary space dimension, this dynamical
rule does not respect detailed balance, and hence the voter
model, although perhaps adequate for the description of some
social system and other phenomena, is not fitted to describe,
even at an elementary level, the thermodynamic properties
of physical substances such as magnetic materials. However,
regardless of its application domain, the interest in the voter
model is mainly due to the fact that it can be exactly solved
for every number of space dimensions [8,9], which is not true
for the Ising model. Then, the critical behavior of a broad
variety of models belonging to the universality class of the
voter one can be easily determined [20]. Furthermore, despite
the differences between the two models, it has been argued
sometimes that the analytical solution of the voter model
could shed some light on the properties of the less tractable
Ising one. In a sense, in passing from the latter to the former,
we trade detailed balance against exact solubility [7].

Through the years, many variants of the original model
have been proposed in order to adapt it to explain different
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situations [18,21–32]. In particular, in a recent paper [33],
the ordering kinetics of the one-dimensional voter model in
the presence of long-range interactions have been analytically
studied. There, the interaction probability between two agents
at distance r was taken to be of the form P(r) ∝ r−α . Various
regimes of α were analyzed, displaying a rich and diverse
structure. For α > 3, the model behaves as the NN (d = 1)
one, with a typical size of the domains growing as

√
t un-

til consensus is reached. Moreover, the correlation function
presents a dynamical scaling behavior, with corrections at
large distances. For smaller α, a breaking of scaling was found
and, lowering α to α � 2, the formation of partially ordered
stationary states was discovered, similarly to what is known
for the mean-field case, corresponding to α = 0.

Besides the interest in the voter model itself, the case with
extended interactions can also be framed into the more general
topic of long-range statistical models far from equilibrium, to
which an increasing interest has been devoted in recent years,
concerning phase-ordering kinetics [34–43] and other aspects
[44–46].

In this work, we extend the analysis of the ordering dy-
namics of the long-range voter model presented in Ref. [33]
by studying the evolution of the two-dimensional case, where
quite different results are observed. A brief summary of
what we find follows. For α > 4, the model’s behavior is
akin to that of the NN model: a correlation length grows
as L(t ) ∝ √

t and there are violations of dynamical scaling
due to the presence of a large amount of interfacial agents,
whose number decays as ρ(t ) = 1/ ln t . Due to that, the con-
sensus time grows as T ∝ N ln N , with the number N of
agents, as in the NN case. In addition, important finite-time
corrections can be explicitly computed for x ≡ r/L(t ) larger
than x∗ ∝ √

(α − 4) ln t , at variance with the NN case. For
α� 4, the system presents nontrivial stationary states, with the
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correlations decaying with distance r as r−(4−α) or as r−α for
2 < α � 4 and 0 � α � 2, respectively. Such stationary state
is approached through a coarsening regime with L(t ) ∝ t

2
α for

3 � α � 4 and L(t ) ∝ t
2
3 for 0 < α < 3. For α � 3, it is also

found that L(t ) monotonically increases with N at any t > 0
and diverges in the thermodynamic limit.

The paper is organized as follows: In Sec. II, we define
the voter model and derive the evolution equation for the
equal-time correlation function, the fundamental observable
from which most of the dynamical properties can be studied.
Then, in the following Secs. III–V, we separately study the
kinetics of the model in the α sectors α > 4, 2 < α � 4, and
0 � α � 2, respectively, where different dynamical properties
are found. In Sec. VI, we determine the dependence of the
coarsening growing length on the system size. A final discus-
sion and some future research perspectives are provided in the
last Sec. VII.

II. THE MODEL

In the voter model, a set of binary variables (spins), assum-
ing the value Si = ±1, is located on a d-dimensional lattice
and interacts with a probability P(�) = 1

Z �−α , where � is
the distance between two of them. Z is a normalization that
for α � d , depends on the number N of spins. In general,
distances are noninteger numbers: for instance, in the case of
a square lattice in d = 2, r = 1,

√
2, 2, . . .. Hence, it is useful

to introduce an integer index p, indicating proximity, such that
p = 1 means NN, p = 2 next-NN, and so on. Then,

Z =
∑

p

np �−α
p , (1)

where np is the number of lattice sites at proximity p, and �p

is the distance between two p-neighboring sites. In Eq. (1),
p runs from 1 to the maximum proximity number in the
considered lattice. To ease the notation, this will always be
implicitly understood in any p summation, unless differently
stated. Regarding np, it is clear that it is a multiple of 2d and
that it is an irregularly increasing function of p, fluctuating
around its continuum approximation np = �d−1ld−1

p , with �d

being the surface of a unit d-dimensional sphere.
The probability to flip a spin Si is

w(Si ) = 1

2N

∑
p

P(�p)
∑

|k−i|=�p

(1 − SiSk ), (2)

where k are the np sites’ p-neighbors of i. Our aim is to find the
correlation functions C(r, t ) = 〈Si(t )S j (t )〉, where r = |i − j|
is the distance between the ith and the jth sites. Follow-
ing Ref. [47], one has d

dt 〈Si1 Si2 · · · Sin〉 = −2〈Si1 Si2 · · · Sin ·∑n
m=1 w(Sim )〉 which, for n = 2, provides

d

dt
〈Si(t )S j (t )〉 = −2〈Si(t )S j (t )〉

+
∑

p

P(�p)

⎡
⎣ ∑

|k−i|=�p

〈S j (t )Sk (t )〉

+
∑

|q− j|=�p

〈Si(t )Sq(t )〉
⎤
⎦, (3)

r

dklp

i j

k

φθ

FIG. 1. The points i, j, k and their distances.

where time is measured in units of N elementary moves, i.e.,
in Monte Carlo steps.

Then, Eq. (4) can be written as

Ċ(r, t ) = −2C(r, t ) + 2
∑

p

P(�p)
np∑

k=1

C([[dk (r, �p)]], t ), (4)

where the dot is a time derivative and the double square brack-
ets indicate that we are using periodic boundary conditions.
In other words, the topology of the system becomes that of a
torus, which is obtained by gluing together the edges of the
lattice. This means that

[[n]] =
{

n if n ∈ D
M(n) if n /∈ D,

(5)

where D is the set of all possible distances on a quarter of the
lattice, and M(n) is the shorter distance computed moving
through the boundary. The various distances entering Eq. (4)
are sketched in Fig. 1. Let us remark that Eq. (4) is exact in any
d . Its solution in d = 2 will be obtained by approximating, in
different ways, the sums contained on the right-hand side, in
the following sections.

A dynamical correlation length can be extracted from C as

L(t ) =
∑

p np rp C(rp, t )∑
p npC(rp, t )

. (6)

Notice that generally speaking, L(t ) depends on N ; however,
we do not explicitly indicate such dependence to ease the
notation.

In the following, we will be interested in the ordering
kinetics of the model when it is prepared in a fully disor-
dered initial condition, i.e., P(Si ) = 1

2δSi,1 + 1
2δSi,−1, ∀i, with

C(r, t = 0) = δr,0. Typical behaviors of L(t ) for such pro-
cess on the two-dimensional (2D) square lattice, which will
be further commented on in the following sections, can be
seen in Fig. 2. This and the following figures of this article
are obtained by numerically solving Eq. (4) and represent,
therefore, exact results (apart, clearly, from numerical and/or
discretization errors) (see Supplemental Material [48]). Once
C(r, t ) has been obtained in this way, L(t ) is computed by
means of its definition (6). Generally, one sees in Fig. 2 that
there is an initial coarsening stage in which L(t ) increases
(typically algebraically in time), until saturation to a final
value of the order of 102 is attained. This is a finite-size effect
setting in when L(t ) becomes comparable to the system size
and, hence, can be pushed to larger and larger values of L in
the thermodynamic limit N → ∞.

In the rest of this article, we will study the model in-
troduced insofar, specializing to the two-dimensional case.
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FIG. 2. L(t ) is plotted against time on double-logarithmic axes,
for different values of α; see legend. System size is N = 3012. The
straight dashed lines are the analytic predictions (16), (56), and (61).

In order to do this, we have to separately consider different
regimes for α.

III. CASE α > 4

Since Eq. (4) cannot be routinely solved in a simple way,
we proceed by guessing the form of the solution and then
verifying the consistency of the assumption at the end of the
calculation, benchmarking also with the results of a numerical
integration of the same equation.

For sufficiently large values of α—which will turn out to
be α > 4—we expect a form of C(r, t ) analogous to the one
known for the NN model [8],

C(r, t ) = 1

ln t
f

(
r

L(t )

)
, (7)

where L(t ) is a function of time to be determined, which
reduces to L(t ) ∝ t1/2 in the NN case (i.e., for α → ∞).

Substituting the condition (7) into Eq. (4), we get

f (x)

t ln t
+ L̇(t )

L(t )
x f ′(x)

= 2

⎡
⎣ f (x) −

∑
p

P(�p)
np∑

k=1

f

(
[[dk (r, �p)]]

L(t )

)⎤
⎦, (8)

where f ′ means a derivative with respect to x ≡ r/L(t ).
Notice that the form (7) implies that the argument x of the
function f tends to become a continuous variable when L(t )
increases more and more. So we are allowed to use a con-
tinuum approach with respect to this variable. Enforcing this
fact, we can Taylor expand the argument of the sum on the
right-hand side of the above equation around � = 0. We ar-
gue now that the expansion can be truncated to the lowest
(significative) order. Heuristically, this is expected if P(�)
decays sufficiently fast (which will be shown to occur for
α > 4) to make only the terms with small � relevant. A more
precise statement of this concept follows: For small enough x,
i.e., smaller than a certain value x∗ that will be determined
later [see Eq. (30) below], the relevant contribution to the

sum on the right-hand side of Eq. (8) comes from the points
dk ≈ r, i.e., for small lp. Indeed, as one can verify a posteriori
[see Eq. (20)], for small r, f vary much less than P which,
in turn, decays sufficiently fast as to make relevant only the
contributions produced at small �. We now proceed with the
Taylor expansion of f around � = 0 in the sum. In doing
that, the first-order term cancels, as can be seen employing
a continuum approximation, namely, replacing the sum on the
right-hand side of Eq. (8) with an integral as

∑
p

P(�p)
np∑

k=1

f

(
[[dk (r, �p)]]

L(t )

)

→
∫

d� � P(�)
∫ 2π

0
dθ f

(
d (r, �, θ )

L(t )

)
, (9)

where θ is the angle between �r, namely, the segment i − j (see
Fig. 1), and ��p, namely, the segment i − k, and

d (r, �, θ ) =
√

r2 + �2 − 2�r cos θ ≈ r − � cos θ, (10)

where the last relation holds for � � r. Notice that we have
written d (r, �, θ ) in Eq. (9), instead of [[d (r, �, θ )]], because
we are working for small d . Therefore, the first-order term in
the Taylor expansion reads

− f ′(x)
∫

d� �2 P(�)
∫ 2π

0
dθ

cos θ

L(t )
= 0. (11)

Then, upon Maclaurin expanding f on the right-hand side of
Eq. (8) up to second order in the small quantity �, we arrive at

f (x)

t ln t
+ L̇(t )

L(t )
x f ′(x)

= −
∑

p

P(�p)
np∑

k=1

[
f ′′(x)(dk − r)2 L−2(t ) + x f ′(x)ϕ2

k

]
,

(12)

where ϕk is the angle between �r and �dk , namely, the segment
j − k (see Fig. 1).

Using the law of sines, it is sin ϕk = �
dk

sin θk � �
r sin θk ,

the last passage holding for small �. In the same limit, it is also
sin ϕk � ϕk , leading to ϕk ≈ �

r sin θk . Using this fact, Eq. (12)
takes the form

f (x)

t ln t
+ L̇(t )

L(t )
x f ′(x) = −[J f ′′(x) + x−1K f ′(x)] L−2(t ),

(13)

where J≡ ∑
p P(�p)

∑
k[dk (r, �p) − r]2 and K≡ ∑

p l2
pP(�p)∑

k sin2 θk . Since d − r ≈ � cos θ , after Eq. (10), in the con-
tinuum limit,

J ≈ K ≈ π

∫
d� �3P(�). (14)

Notice that such expression is only convergent for α > 4,
which already suggests that the solution we will arrive at in
this way only holds in that range of α values.

We now make the ansatz, to be verified a posteriori, that
the term f /(t ln t ) can be dropped in Eq. (13) because it is
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subdominant for large t , yielding

L̇(t )

L(t )
x f ′(x) = −J [ f ′′(x) + x−1 f ′(x)]L−2(t ). (15)

The right-hand side does not explicitly depend on time. In
order to have the same property on the left-hand side, it must
be

L(t ) = D t
1
2 . (16)

Then we have that for α > 4, the correlation growth law is
the same as in the NN model [10]. This behavior is clearly
observed for any value of α > 4 in Fig. 2, where data for
L(t ) have been obtained numerically, as already explained at
the end of Sec. II. Plugging the form (16) in Eq. (15), an
equation for f (x) emerges,

x2
0

2
f ′′(x) +

(
x2

0

2x
+ x

)
f ′(x) = 0, (17)

with x2
0 ≡ 4J /D2. The solutions are

f (x) = c1E1

[(
x

x0

)2
]

+ c2, (18)

where E1 is the exponential integral special function [49]. In
order to fix the constant, one should impose that the correla-
tion function (7) goes to 1 when r = 1 (the minimum distance
in the lattice) and t � 1, i.e., when x → 0. In such case, we
can use that

E1(z) ∼ −γ − ln z as z → 0, (19)

where γ is the Euler-Mascheroni constant. Using this asymp-
totic result in Eq. (18) and keeping only the dominant term for
large times, one has c1 = 1. Moreover, imposing that C(r) →
0 when r → ∞, c2 = 0 is also determined. Therefore,

f (x) = E1

[(
x

x0

)2
]
. (20)

Let us remind the reader that the solution obtained for C(r, t ),
given in Eq. (7), with f (x) and L(t ) given in Eqs. (20) and
(16), respectively, is only valid for small values of x, namely,
for x < x∗. As we will show at the end of this section, x∗ is a
weakly increasing function of time [see Eq. (30)].

The above determinations are compared with the outcome
of the numerical solution of Eq. (4) in Fig. 3, for α = 5.
Because of the form (7), one should find data collapse of
the curves at different times (corresponding to different col-
ors in the figure) by plotting ln t · C(r, t ) against x = r/L(t ).
This is the kind of plot presented in the main part of the
figure, where L(t ) has been extracted from C(r, t ) by means
of Eq. (6). A good data collapse can be appreciated, at suffi-
ciently long times, in the small-x sector, for x < x∗, where x∗
can be located where the master curve f (x) changes its shape
from concave to straight, in this double-logarithmic plot. The
quality of the data collapse is poorer for short times, but it
constantly improves as time elapses. The concavity of f (x)
in the region x < x∗ signals that the decay is faster than any
power, as indeed our analytical form (20) implies. Actually,
in the figure, we also plot the scaling function in Eq. (18)
with gray circles, where c1 = 0.55, c2 = 0, x0 = 1.65 have
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FIG. 3. ln t · C(r, t ) is plotted against r/L(t ) for α = 5 at differ-
ent times (see legend), in a log-log plot. The number of agents is N =
3012. The heavy gray circles are the form (18) with fitting parameters
c1 = 0.55, c2 = 0, x0 = 1.65. Inset: C(r, t ) against x = r/t2/α , still
with double-logarithmic scales. The green dashed line is the form
x−α of Eq. (27), with x = r/�(t ).

been used as fitting parameters. This form interpolates the
data for x < x∗ very well. The fact that we have to use c1 < 1
to superimpose the curve to the data is probably due to the
fact that the analytical determination c1 = 1, c2 = 0 is only
correct in the very large-time limit when x∗(t ) � 1, as we
will comment on further below. The form of C(r, t ) for x > x∗
will be investigated later and we will discuss this part of the
figure in due time, and the inset as well.

The form (7) implies a breakdown of standard dynamical
scaling [50–52] [i.e., a scaling as in Eq. (47)] due to the
presence of the logarithmic factor. As in the NN case, this
is due to the building up of thick interfaces around correlated
regions of size L(t ). In order to see this, we now compute the
density of interfaces, ρ(t ), which is related to the correlation
function between agents at unitary distance as

ρ(t ) = 1
2 [1 − C(r = 1, t )]. (21)

In our case,

ρ(t ) =
[

1 − 1

ln t
E1

(
1

x2
0L2(t )

)]
. (22)

For large t , again using Eq. (19), one gets

ρ(t ) ∼ γ − ln
(
x2

0D
)

ln t
. (23)

Hence the amount of interfaces vanishes only logarithmically,
whereas correlated regions grow algebraically as in Eq. (16),
similarly to what observed in the NN model [9,20].

As we commented already, the solution obtained thus far,
based on a Maclaurin expansion for small �, is only valid
for sufficiently small values of r, namely, for x < x∗. In the
following, we determine the form of C(r, t ) in the large-r
domain, which will be found to be quite different, as can also
be appreciated in Fig. 3. This will also allow us to determine
x∗. For large r, the sum on the right-hand side of Eq. (4)
is dominated by the contributions at k ≈ j, i.e., for dk ≈ 0,
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namely, � ≈ r and θ ≈ 0. The first term on the right-hand side
is subdominant and can be discarded, so, going again in the
continuum and using the small argument expansion (19), one
has

Ċ(r, t ) ≈ −2
P(r)

ln t

∫
d� dθ �

[
γ + ln

(
d2(r, �, θ )

x2
0L2(t )

)]

≈ −2
P(r)

ln t

∫
d�dθ � ln

(
d2(r, �, θ )

x2
0L2(t )

)
, (24)

where, in the last passage, we have dropped subdominant
terms for large t . The approximation (19) is correct up to
z � 1, namely, for d � x0L(t ). Since, in the above approxi-
mation, d ≈ rθ ≈ �θ , we can integrate up to � ≈ x0L(t ). By
evaluating the integral and retaining the dominant term for
large L(t ), one gets

Ċ(r, t ) ∝ P(r)x2
0L2(t ). (25)

Integrating the differential equation yields

C(r, t ) ∝ P(r) x2
0 t2, (26)

and then one has a scaling form,

C(r, t ) ∝
(

r

�(t )

)−α

, (27)

with

�(t ) ∝ x4/α

0 t2/α. (28)

Notice that for x > x∗, C turns from the fast decay of Eq. (20)
to a slower algebraic decrease, as can be appreciated in Fig. 3.
Moreover, the reference length changes from L(t ) ∝ t1/2 to
the slower one, �(t ) ∝ t2/α . This can also be seen in Fig. 3
because a good data collapse in the region x > x∗ is only
obtained by plotting C(r, t ) against r/t2/α , as done in the
inset. In the way, in this figure one can also observe some
lattice effects in the form of small ripples at large r. This is
because, on the square lattice, periodic boundary conditions
have a different effect moving along one of the two easy
axes or in different directions (the boundary is met sooner
upon proceeding along the easy axis with respect to going,
say, along a diagonal). Clearly, this fact deteriorates the data
collapse. However, this effect is pushed to smaller and smaller
values of the correlation as the thermodynamic limit N → ∞
is taken. Notice also that with the rescaling presented in
the inset, the collapse at x < x∗ is definitely worse than the
one obtained in the main part of the figure. This effect can
be magnified upon increasing α since the difference between
the growth exponent of L(t ) and of �(t ) increases. We do not
show this here.

The actual value of x∗ can be obtained by matching the
two forms of C in the large- and small-r sectors. Using the
asymptotic form [49] of E1,

E1(z) ≈ e−z

z
, (29)

we find

x∗(t ) ∝
√

(α − 4) ln t . (30)

As t → ∞, x∗ → ∞. This justifies the fact that we could take
the limit x → ∞ to fix the boundary conditions in Eq. (18)
despite the fact that x < x∗ in that case. Notice that x∗ → 0
for α → 4, implying again that all the above ceases to be valid
for α � 4. This case will be considered in Sec. IV.

Consensus time

We conclude this section by computing the consensus time
T , namely, the time needed to reach a fully ordered configura-
tion. When this happens, it must be C(r, t ) ≡ 1; hence we use
the criterion∑

p=0

np∑
k=1

C([[dk (r, �p)]], t = T ) =
∑
p=0

np∑
k=1

1 = N (31)

to determine T , similarly to what is done in [8]. Notice that
in Eq. (31), the summations start from p = 0, differently from
elsewhere. Resorting again to the continuum approximation,
transforming the sum into integrals, we have

2π

∫ L

0
dr r C(r, T ) = N, (32)

where

L ∝
√

N (33)

is proportional to the linear size of the lattice. In Eq. (31),
we can send to ∞ the upper integration limit because C is
integrable, according to the expressions (7) and (20). One has∫ L

0 dr r C(r, T ) ∝ L(T )2/ ln T , and hence

T ∝ N ln N, (34)

to leading order, as in the NN model [8].

IV. CASE 2 < α � 4

A. Stationary states without consensus

The NN voter model is impacted by the presence of
metastable stationary states without consensus in d � 3
[3,4,9], whose lifetime diverges in the thermodynamic limit
N → ∞. The same feature [33] is found in the d = 1 model
with the same type of long-range interactions that we are
considering here, for α � 2. We show below that stationary
states with similar characteristics are also found in the present
2D case, but now for α � 4. Starting with the case 2 < α � 4,
it is not difficult to be convinced that the state with correlation
function

Cstat (r) ∝ r−(4−α) for r � 1 (35)

is stable for N → ∞. According to Eq. (4), letting the left-
hand side be equal to zero, this function should obey

Cstat (r) =
∑

p

P(�p)
np∑

k=1

Cstat ([[dk (r, �p)]]). (36)

Moving to the continuum approximation, one has

Cstat (r) �
∫ r

1
d�

∫
dθ � P(�)Cstat[d (r, �, θ )]

+
∫ L

r
d�

∫
dθ � P(�)Cstat[d (r, �, θ )]. (37)
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Since for r � 1 Eq. (35) holds, while C(0) ≡ 1, we can use the interpolating form

Cstat (r) � (1 + κr)−(4−α) (38)

in the integral, where κ is a constant, thus having

Z Cstat (r) �
∫ r

1
d�

∫
dθ �1−α[1 + κ

√
r2 + �2 − 2�r cos θ ]−(4−α) +

∫ L

r
d�

∫
dθ �1−α[1 + κ

√
r2 + �2 − 2�r cos θ ]−(4−α),

(39)

where we used Eq. (10). The integrals are dominated by the region θ � 0 because, at this angle, there is a peak of the integrands
at � = r. Letting θ = 0 in the integrands, one arrives at

Z Cstat (r) � 2π

∫ r

1
d� �1−α[1 + κ (r − �)]−(4−α) + 2π

∫ L

r
d� �1−α[1 + κ (� − r)]−(4−α). (40)

Working now, for simplicity, for L/r � 1 (however, such limitation can be relaxed), the second integral is negligible and,
integrating the first term, one has

ZCstat (r) � 2π
[κ (r − 1) + 1]α[κ + (α − 3)κr − 1] − [(α − 2)κ − 1][κ (r − 1) + 1]3

(α − 3)(α − 2)κ2r2[κ (r − 1) + 1]3
∼ 2π

(κ r)−(4−α)

α − 2
, (41)

with the last passage holding for large r.
Evaluating Z by also transforming the sum in Eq. (1) into

an integral as

Z � 2π

∫ L

1
d� �1−α, (42)

for large L, one finds Z � 2π/(α − 2). Then, Eq. (41) reads

ZCstat (r) � Z (κr)−(4−α), (43)

providing consistency to the initially postulated form (35).
In Fig. 4, the evolution of C(r, t ), obtained by numerically

solving Eq. (4) on the square lattice, is shown for α = 7/2. In
the main part of the figure, it can be seen that C(r, t ) gradually
approaches the stationary form (35) (dashed magenta line),
starting from smaller values of r.
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FIG. 4. C(r, t ) is plotted against r, on a double-logarithmic scale,
at different times (see legend), for α = 7/2. The number of agents is
N = 3012. The magenta dashed line is the algebraic behavior (35).
Inset: C(r, t ) is plotted against x = r/L(t ). The green dashed line
is the scaling behavior (47), (48) in the coarsening stage preceding
stationarization.

Clearly, the stationary state (35) is not fully ordered since
the criterion (31) is not met. Still, it is strongly correlated
because the correlation length Lstat diverges in such a state.
Indeed, using the definition (6), one finds

Lstat = α − 2

α − 1
L ∝ α − 2

α − 1
N

1
2 , (44)

for large N .

B. Consensus time

The lifetime of stationary states diverges for large N, but
is otherwise finite. Hence, in a finite system, consensus is
always reached in a limited time T . We saw in Sec. III that
T ∝ N ln N for α > 4 [Eq. (34)]. We did not find a simple way
to compute the consensus time for α � 4. However, using the
criterion that T must be a nondecreasing function of α because
global ordering is promoted by the extent of interactions, and
recalling that it is T = N [53] in the mean field (i.e., α = 0),
we conclude that the N dependence of T for 0 < α � 4 must
be compressed between N and N ln N . Since for α > 4 the
ln N factor is caused by the logarithmic correction to scaling
in Eq. (7), and there is no such correction for any value α < 4
(as we will see, this is true down to α = 0+), we argue that
T ∝ N for any 0 � α � 4.

In order to check this hypothesis, recalling the consensus
criterion (31), we have computed the distance from the con-
sensus,

D(t ) =
∑

p

P(�p)
np∑

k=1

1 −
∑

p

P(�p)
np∑

k=1

C([[dk (r, �p)]], t ).

(45)

In this equation, the first term on the right-hand side is a
number that can be exactly computed by enumerating all the
possible distances on the lattice, while the second term on the
right-hand side is readily computed once C is known, which is
done by means of the numerical solution of Eq. (4). Consensus
is reached when D = 0. We find that D(t ) decays to zero
exponentially. This can be seen in Fig. 5, where the case with
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FIG. 5. D(t ) is plotted against t/N (main figure) or against
t/(N ln N ) (inset). The vertical scale is logarithmic. Different curves
correspond to various values of N ; see legend.

α = 7/2 is considered. Here we plot only a relatively short
time interval because for longer times numerical errors tend to
increase and data become progressively less affordable. From
the main figure, it is seen that curves for different values of N
can be collapsed on a single one by plotting against rescaled
time t/N . Instead, the rescaling with t/(N ln N ), shown in the
inset, fails in collapsing the curves. Hence we can conclude
that T ∝ N is correct. Summarizing the results for the con-
sensus time for all values of α, we have

T (N ) ∝
{

N ln N, α > 4
N, 0 < α � 4.

(46)

C. Approaching stationarity by coarsening

We have seen [Eq. (44)] that the stationary states are
characterized by a macroscopic correlation length. Since this
quantity starts from a microscopic value, it must grow due to a
coarsening phenomenon that will be arrested in the stationary
state. This can be appreciated in Fig. 2, where a clear increase
of L(t ) is observed for any value of α.

In order to compute the properties of such pre-asymptotic
coarsening, we have to distinguish between the cases with 3 �
α � 4 and 2 < α < 3.

1. 3 � α � 4

We can argue that C(r, t ) approaches the stationary form
(35) initially for small values of r, and then for larger and
larger distances. This is very well observed in Fig. 4. We
will also prove, by checking for consistency at the end of the
present calculation, that a large-r scaling form for C,

C(r, t ) = f

(
r

L(t )

)
for r � L(t ), (47)

is obeyed with

f (x) ∝ x−α for x � 1, (48)

where L(t ) is a function of time to be yet determined. Looking
at the inset of Fig. 4, one can already be convinced, at least
visually, that this is correct. The crossover point r∗ between

the small- and large-r behaviors can be found by matching the
two forms (62) and (47), (48), thus obtaining

r∗(t ) ∝ L(t )
α

2(α−2) . (49)

Plugging the scaling assumption (47) into Eq. (4), we arrive at

L̇(t )

L(t )
x f ′(x) = 2

⎡
⎣ f (x) −

∑
p

P(�p)
np∑

k=1

f

(
[[dk (r, �p)]]

L(t )

)⎤
⎦.

(50)

Once again, we have to evaluate the sum appearing in Eq. (50).
In this case, we can restrict the summation domain to the
region dk (r, �p) < r∗ because the decay of C is integrable after
r∗ and not before. Transforming the sum into an integral and
using the interpolating expression (38), we have to evaluate

S(r) =
∫

d�

∫
dθ �P(�)[1 + κ

√
r2 + �2 − 2�r cos θ]−(4−α)

(51)

on the restricted domain mentioned before. Working for
r � r∗, the set of allowed values of θ satisfying these con-
straints is θ ∈ [−r∗/r, r∗/r], i.e., a tiny interval. Therefore, we
can safely set θ = 0 in the integral and replace

∫
dθ → 2r∗/r,

the interval amplitude. Then we arrive at

S(r) = 2r∗

r

∫ r

r−r∗
d� �P(�)[1 + κ (r − �)]−(4−α)

+2r∗

r

∫ r+r∗

r
d� �P(�)[1 + κ (� − r)]−(4−α). (52)

The algebraic function �P(�) does not appreciably vary in the
integration interval because we are considering r � r∗, and
hence the integrals are approximated by

S(r) = 2r∗P(r)
∫ r

r−r∗
d� [1 + κ (r − �)]−(4−α)

+ 2r∗P(r)
∫ r+r∗

r
d� [1 + κ (� − r)]−(4−α), (53)

which, for large r∗, is

S(r) ∝ P(r)

α − 3
r∗α−2 ∝ x−α

α − 3
L(t )−α/2. (54)

Therefore, Eq. (50) gives

L̇(t )

L(t )
x f ′(x) ∝ x−α

α − 3
L(t )−α/2 , (55)

so one has consistency with the x−α behavior and

L(t ) ∝ t2/α, 3 < α < 4. (56)

The cases with α = 3 or α = 4 must be considered separately.
For α = 4, instead of Eq. (35), one has Cstat ∝ (ln r)−1.

Therefore, proceeding as before, one finds r∗/(ln r)1/4 ∝
L(t ), in place of Eq. (49). Solving for large L gives
r∗ ∝ L(t )[ln L(t )]1/4. For α = 4, Eq. (54) becomes S(r) ∝
P(r)r∗2/ ln r∗. Using the value of r∗ thus obtained, one gets
S(r) ∝ x−4L(t )−2[ln L(t )]−1/2. Inserting this result into the
differential equation (50) and solving for large times, we
arrive at

L(t ) ∝ t
1
2 (ln t )−

1
4 , α = 4. (57)
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The behavior for α = 3 can also be obtained proceeding
along the same lines. In this case, the integrals in Eq. (53)
amount to

S(r) = 2L(t )3/2 ln[κ L(t )3/2 + 1]

κ r3

= 2 κ−1 x−3 L(t )−3/2 ln(κ L3/2 + 1) . (58)

Upon substituting this form into Eq. (50), we again find con-
sistency with the form (48) and, for large times,

L(t ) ∝ (t ln t )2/3, α = 3. (59)

It can be seen in Fig. 2 that in the interval 3 � α � 4,
the growth laws predicted in this section are well verified.
At very late times, the curves bend due to the presence of
the stationary state and, later on, flatten due to the finite-size
effect. Notice that since C(r = 1, t ) = Cstat (r), in this coars-
ening stage, the density of interfaces ρ stays constant. This
holds true for any α � 4.

2. 2 < α < 3

The α − 3 denominator in Eq. (55) indicates that the
above approach is only valid for 3 � α � 4. The differ-
ence from the previous case is that now, when searching
for the solution of Eq. (50), still for large r, the restriction
d (r, �p) < r∗ that we imposed before in Sec. IV C 1 must be
replaced with a more stringent one, dk (r, �p) < r̃ � r∗, at
large times. The reason is the following: for � � r, the sum-
mand S (�, r, t ) in the last term of Eq. (50) can be obtained by
letting C([[dk (r, �p)]], t ) � C([[dk (r, 0)]], t ) = C(r, t ) ∼ x−α

[x = r/L(t )]. Hence, calling S< the behavior of S at small
�, one has S<(�, r, t ) ∼ x−αP(�). Instead, for �p ∼ r, one
has S (�p, r, t ) � S>(�p, r, t ) � P(r)C(dk � 0, t ) � P(r)[1 +
κdk]−(4−α), where we again used the interpolating form (38).
If S<(�p = r∗, r, t ) � S>(� = r∗, r, t ), one can proceed as
in Sec. IV C 1, restricting the sum in Eq. (4), namely, the
integral (51), to d (r, �) < r∗, as we did. This is correct for
sufficiently large values of α, which happens to be the case
when the solution presented in Sec. IV C 1 is valid, namely,
for α > 3. However, for α � 3, this is no longer true and
the sum in Eq. (4) must be restricted to distances dk < r̃,
where r̃ is defined as the distance where S<(�p = r̃, r, t ) �
S>(�p = r̃, r, t ). We have not found a simple way to explicitly
determine r̃. For this reason, letting r̃ ∼ Lβ , where β(α) is an
unknown exponent, we make the simplest possible ansatz that
β is a linear function of α such that r̃ ∝ r∗ for α → 3, namely,
β = a(α − 3/2), where a is a constant yet to be determined.
Evaluating the integrals in Eq. (53), with the replacement
r∗ → r̃, for large r̃ one has

S(r) = P(r)

3 − α
r̃. (60)

Plugging this result into Eq. (4), one finds consistency with
the x−α behavior for a = 1, namely, β = α − 3/2. Asking for
the explicit time dependence to drop out, one finds

L(t ) ∝ t2/3. (61)

We can see in Fig. 2 that this behavior is very well observed
for any α < 3.

In general, the growth exponent 1/z—defined by L(t ) ∝
t1/z—is a nondecreasing function of the range of interactions
because ordering is promoted by far-reaching communica-
tions. This is what we find here also since 1/z increases
from the NN value 1/2, for α > 4, up to 2/3 at α = 3. The
saturation of this exponent to the NN value upon crossing
a critical value αNN of α is quite generally observed. Be-
sides the case at hand, where αNN = 4, it is also found in
the same model in d = 1, with αNN = 3 in that case [33],
and also in ferromagnetic models with algebraic interactions
[34–39,42]. On the opposite side of the α variation interval,
it is also generally found that 1/z saturates to a maximum
value (1/z)max below a certain value αLR of α. Here we
find αLR = 3, in the corresponding d = 1 voter model, it is
found [33] αLR = 2, while for the d = 1 Ising model, one
has αLR = 1 [41,54]. In the 1D voter and Ising models, the
saturation value is (1/z)max = 1 [33,54] and this has a simple
interpretation. Indeed, the motion of interfaces can be thought
of as an advection-diffusion process, where advection is due
to the long-range interactions and diffusion to thermal fluctu-
ations or other noise sources. When interactions are extremely
long ranged, for α < αLR, the advection fully determines the
interfaces motion, leading to a ballistic behavior with 1/z =
(1/z)max = 1. What is interesting in the present 2d voter case
is the appearance of a nontrivial value (1/z)max = 2/3 eluding
an interpretation in terms of a fully advected process. It is
clear, however, that such exponent results from the competi-
tion between the two contrasting effects induced by the same
long-range interactions. Indeed, besides promoting global or-
dering, interaction with far-apart agents at distances larger
than the size of the ordered regions also has a disordering
effect. Let us mention, to conclude this short discussion, that
a nontrivial value (1/z)max = 3/4 of the maximum growth ex-
ponent is also observed in the 2D Ising model with analogous
long-range interactions [39,55], although for different reasons
of a geometrical nature.

V. CASE 0 < α � 2

We show below that the stationary solution

Cstat (r) ∝ r−α for r � 1 (62)

exists.
To verify the consistency of this expression, we proceed as

in the case 2 < α � 4. We use the interpolating expression

Cstat (r) � (1 + κr)−α, (63)

in Eq. (37). Working, as in the case of Sec. IV A, for 1 �
r � L, the relevant contribution to the integrals comes from
the region � ≈ r and θ ≈ 0, so we can bring the probability P
out of such integrals, thus arriving at

Z Cstat (r) � 2π r−α

∫ r

1
d� �[1 + κ (r − �)]−α

+ 2π r−α

∫ L

r
d� �[1 + κ (� − r)]−α

� 2π
κ−α L2−α

2 − α
r−α. (64)
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Evaluating Z as in Eq. (42), one has Z = 2π
2−α

L2−α , and hence
the result (64) is consistent with Eq. (62).

Using the definition (6), the correlation length in the sta-
tionary state diverges, for large N , as

Lstat = α − 2

α − 3
L ∝ α − 2

α − 3
N

1
2 . (65)

Notice that for α = 2, we have a logarithmic correction,
Lstat = L/ lnL ∝ N1/2/ ln N .

Also in this case, therefore, there is a macroscopic correla-
tion length at stationarity, implying that some coarsening must
initially characterize the kinetics, as can also be appreciated
in Fig. 2. However the time domain where L(t ) grows does
not increase with N and, hence, this phenomenon cannot be
macroscopically observed. This is because, as we will discuss
in the next section, L(t ) carries an N dependence (for fixed t)
when α � 3. As can be seen in Eq. (68), in fact, L(t ) is already
of the order of N1/2 at fixed t , and hence Lstat is approached
by L(t ) in a time of the order of one. For this reason, we do
not proceed to the determination of the growth law for α < 2
here. However, it is quite natural to expect that the growth
exponent stays equal to its maximum value (1/z)max = 2/3
for α � 2 also, as seems to be suggested by Fig. 2, even
if the power-law behavior is too limited in time, because of
the reasons explained just above, to arrive at more definite
conclusions.

VI. SIZE DEPENDENCE OF THE COARSENING DOMAINS

For α > 4, we can use the scaling ansatz (7) and the defini-
tion (6), employing the continuum approximation, to compute
the N dependence of L(t ),

∫ L
L

1
L

dx x2 f (x)∫ L
2L

1
L

dx x f (x)
= 1. (66)

Note that the θ dependence and the 1/ ln t factor are the same
for the numerator and the denominator and can be canceled.
The integral can be easily performed noting that the form
for large x is the one that is relevant to understand the N
dependence. Then one finds that

L(t ) = (α − 2)(Lα − L3)

(α − 3)(Lα − L2)
. (67)

Then, L does not depend on N for N � 1. Following the
same procedure, one can check that such behavior still holds
for 3 < α � 4. In the limiting case α = 3, one has L ∝ ln N .
For 2 < α < 3, it is L ∝ N

3−α
2 , while for N = 2, one gets

L ∝ √
N/ ln N . Finally, for α < 2, L ∝ √

N . Summarizing:

L(t ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α−2
α−3 L0 ∝ N0 for α > 3,

lnL ∝ ln N for α = 3,

α−2
3−α

L3−α ∝ N (3−α)/2 for 2 < α < 3,

L/ lnL ∝ ∝ √
N/ ln N for α = 2,

α−2
α−3 L ∝ √

N for α < 2.

(68)

FIG. 6. In the left part of the figure, L(t ) is plotted against t for
α = 4 and different system sizes; see legend. In the upper-right part,
the same plot is shown, but for α = 5/2. In the lower-right part, still
for α = 5/2, we plot N− 3−α

2 L(t ) against t .

These behaviors are illustrated in Fig. 6. For α > 3, which
in the figure is represented by the case α = 4 on the left half
of the plot, the effect of changing N is only manifested at the
time when L(t ) approaches L by a flattening of the curves.
This is the usual finite-size effect observed in a coarsening
system with short-range interactions. Instead, for α � 3, rep-
resented by the case α = 5/2 in the upper-right part of the
plot, one sees that on top of the flattening effect discussed
before, there is an N dependence at any time. According to
Eq. (68), curves for different system sizes should collapse by
plotting N− 3−α

2 L(t ), which is in fact very well observed in the
lower-right part of the figure.

VII. CONCLUSIONS

In this paper, we have studied analytically the ordering
kinetics of the 2d voter model with long-range interactions.
In this formulation, agents at distance r agree with probabil-
ity P(r) ∝ r−α . The dynamical properties markedly depend
on the value of α. For α > 4, we find a behavior analo-
gous to the one observed in the corresponding model with
NN interactions, in that coarsening is characterized by the
growth law L(t ) ∝ t1/2 and scaling is violated due to an abun-
dance of interfacial spins whose density vanishes slowly as
ρ(t ) ∝ 1/ ln t . A peculiar feature introduced by the long-range
interactions is the presence of a characteristic scale x∗(t )
[x = r/L(t )] beyond which a different behavior, characterized
by standard scaling and another growth law of correlations,
is observed. x∗(t ) slowly increases in time [see Eq. (30)],
eventually relegating this behavior to huge distances, and thus
eventually banishing it. However, this effect produces sizable
corrections at finite times. A similar feature was observed in
d = 1 [33]. Coarsening ends up in a fully ordered state in a
consensus time T = N ln N , as in the NN case.

The situation changes a lot when α crosses α = 4. For
α� 4, in fact, dynamical scaling is fully reinstated and
the correlation length increases as L(t ) ∝ t1/z, with an α-
dependent exponent 1/z = 2/α for 3 < α < 4, and with
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1/z = 2/3 for 0 < α < 3. The other important difference with
the large-α case is that now the coarsening kinetics does
not lead the system to consensus, but to a metastable state
whose lifetime diverges in the thermodynamic limit. Similar
stationary states are exhibited by the corresponding 1d model
for α < 2 and by the the NN model in d � 3 and in the mean
field. Let us also remark that nonequilibrium stationary states
are generally observed in various systems with long-range
interactions [56]. In the present model, metastable states are
partially ordered with algebraically decaying correlations and
an infinite correlation length (in the N → ∞ limit). Finite
systems eventually escape this state and reach consensus in
a time of the order of N , irrespective of α. Another interesting
feature, making the long-range case different from the short-
range one, is the N dependence of the coarsening length L(t )
at any time for α � 3 [see Eq. (68)], a feature that is generally
observed in coarsening systems with sufficiently extended
interactions [33,41].

Our study can be framed in the more general topic of
the evolution far from equilibrium of systems with slowly
decaying interactions [44–46] and, more specifically, in the
context of phase-ordering kinetics with long ranges [34–43].
Given the scarcity of analytically tractable models in this field,
we believe that our result can provide a relevant contribution
to the understanding of such problems. Indeed, one can argue
that the results arrived at analytically in this paper could

hardly be obtained by means of numerical simulations. This is
because, particularly for α � 4, most of the relevant features
are encoded into the properties of correlations at relatively
large distances, which are shaded in simulations by the noise.
Indeed, the only numerical attempt to study the long-range
voter model that we are aware of is in d = 1 [57], while
simulation of the Ising model with long-range interactions
suffer from huge noise and finite-size effects for small values
of α [40,41].

The study undertaken in this paper and, for d = 1, in
[33] open the way to different possible generalizations. First,
Eq. (4) is exact in any dimension and, therefore, its analysis
is also feasible for d > 2. On the basis of the knowledge
gained so far, we expect stationary states without consensus
to be present for any value of α for d � 3. However, the
coarsening properties and other features remain to be studied.
Furthermore, in the context of aging systems, the behavior of
two-time quantities, such as the two-time correlation func-
tions, which have not been widely considered so far, are of
great interest and could also be investigated analytically. This
and other related topics are interesting research lines left for
future activity.
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