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Competition for resources in an exclusion model with biased lane-changing mechanism
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The motivation for the proposed work is drawn from the attachment-detachment observed in biological
and physical transport processes that entail finite resources. We investigate the influence of limited particle
availability on particle dynamics within two parallel totally asymmetric simple exclusion lanes, with one lane
incorporating only particle detachment and the other considering particle attachment. We establish a theoretical
framework by employing vertical mean-field theory in conjunction with singular perturbation technique. The
analytical findings are supported by numerical and stochastic validation using a finite-difference scheme and
the Gillespie algorithm. By utilizing these approaches, we scrutinize various stationary properties, including
particle densities, phase boundaries, and particle currents for both lanes. Our analysis reveals that the complexity
of the phase diagram exhibits a nonmonotonic trend in the number of stationary phases as the particle count
increases. Each phase diagram is constructed with respect to the intrinsic boundary parameters, illustrating both
bulk and surface transitions occurring within the lanes. The interplay between finite resources and coupling
mechanisms gives rise to two phases involving upward shock in one of the lanes, while two phases exhibit
synchronized downward shock in both lanes. Finally, we delve into shock dynamics to comprehend critical
phase transitions occurring in the system.
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I. INTRODUCTION

Most natural occurrences and human-created transport
systems commonly undergo evolution in a nonequilibrium
state, displaying unique characteristics due to the continu-
ous input of internal or external energy. In recent decades,
there has been significant interest in studying such systems
across various fields like biology, physics, chemistry, and
specific applications such as vehicular flow, ant trails, intra-
cellular transport, gel electrophoresis, and protein synthesis
[1–8]. Nonequilibrium states are marked by a nonzero particle
current even in a. stationary state, posing challenges in de-
veloping a comprehensive framework. MacDonald and Gibbs
introduced the totally asymmetric simple exclusion process
(TASEP) in 1968 to understand nonequilibrium stochastic
transport systems, focusing on the kinetics of biopolymer-
ization [9,10]. This model explores the collective dynamics
of active particles moving in a preferred direction within a
lattice, adhering to the exclusion principle. The lattice can
be incorporated with various boundary conditions such as
open or periodic boundaries. The open boundaries result in
three steady-state. phases: low density (LD), high density
(HD), and maximal current (MC), which are governed by
the entry and exit rate of particles from the extreme ends of
the lattice [11–13]. When particle density, functions as an
order parameter, a first-order transition occurs from the LD to
HD phase, while a second-order transition occurs from either
the LD or HD phases to the MC phase. The model, along
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with its variants, effectively explains various nonequilibrium
phenomena like localized shock formation, phase transitions,
symmetry-breaking, and more [11–19].

Over the past few decades, there has been a noticeable in-
crease in the inclination to extend single-dimensional models
to coupled multilane systems, motivated by various real-world
phenomena. In both vehicular traffic and biological transport,
particles demonstrate the capability to adhere to or deviate
from their prescribed routes in various systems [20,21]. Sev-
eral instances from vehicular traffic illustrate such scenarios;
a few of them are as follows: (i) Accelerating on the entrance
ramp, the driver seamlessly merges into highway traffic by
changing lanes, skillfully finding a safe gap in the flow [22];
(ii) when faced with lane closure due to construction, drivers
employ zipper merging, alternately merging from closing
lanes into open ones; and (iii) faced with an obstacle or hazard
in their current lane, drivers swiftly change lanes to steer clear
of the impediment, be it road debris or a stalled vehicle [23].
Similarly, in biological transport, motor proteins can attach
and detach from microtubules and cytoplasm, allowing for
adaptability in their pathways [24]. Another example is seen
in ants who optimize resource collection by metaphorically
changing lanes on foraging trails, and adjust pheromone-
guided paths based on the availability of food sources [25]. In
both cases, the ability of particles to switch paths is influenced
by the dynamic conditions they encounter.

In light of all these situations, numerous efforts have been
made to adapt the exclusion model and explore particle dy-
namics, considering the particle configuration in neighboring
lanes as a significant factor. A theoretical framework em-
ploying vertical cluster mean field is employed to analyze a
two-channel model with symmetric and asymmetric coupling
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[26,27] or a combination of both [28–31]. The research find-
ings indicate that robust asymmetric coupling results in seven
stationary phases, the majority of which exhibit zero particle
flux in one of the channels. However, under strong asymmetric
coupling, the characteristics of the two lanes become nearly
identical. Subsequently, various adaptations of the coupling
model were introduced, integrating diverse dynamical rules,
including coupling on antiparallel lanes [32,33], multichan-
nel coupled system [34,35], periodic boundaries [36], and
Langmuir kinetics [37–43]. Some of them also conducted a
thorough examination of the system’s stationary properties
through a boundary-layer analysis [41–43]. In addition to
these studies, some other cellular automata models has been
applied to simulate realistic traffic flow scenarios, including
multilane systems with and without lane-changing feature
[44–48].

Most of the existing literature involves utilizing the open
TASEPs to investigate the collective behavior of particles on
a lattice equipped with an unrestricted reservoir. In adherence
to this approach, the entrance and exit rates remain consistent,
regardless of the reservoir’s occupancy. However, this may not
accurately depict reality. Numerous real-world occurrences,
both in the physical and biological realms, such as protein
synthesis, motor protein movement, pedestrian flow, and
vehicular traffic, entail competition for finite resources within
single or multilane systems. In this direction, various versions
of the exclusion model have arisen that preserve the total
particle count in the system [49], demonstrating a widespread
constraint on resources in almost all physical and biological
systems [50–53]. Such a restriction leads to a nontrivial effect
on the stationary properties resulting in the emergence of a
region featuring a delocalized domain wall, referred to as
the shock (S) phase. This phase connects a section with a
low-density profile on the left to a region with high particle
density on the right.

Despite the considerable research devoted to biased
lane-changing mechanisms in the multilane exclusion model,
there remains a notable gap in the literature regarding studies
focused on limited particle resources. Our objective is to
establish a theoretical framework for the system and explore
the influence of restricted particle resources on stationary
properties, while also characterizing its fundamental features.
We employ the concept of boundary-layer analysis to derive
a comprehensive solution for the density profiles as well
as the phase boundaries. These findings are then employed
to construct a phase diagram that elucidates both bulk and
surface transitions. The present research distinguishes itself
from previous investigations in several ways. (i) A global
constraint on particle resources is introduced. (ii) Lane
changing takes precedence over forward movement, with
the former being a certain event. This means that the lane-
changing mechanism is biased towards a specific lane. (iii)
We provide explicit theoretical expressions for the stationary
properties of the system. (iv) Validation of the results is
carried out through numerical and stochastic approaches,
utilizing finite-difference methods and simulations. (v)
Finally, boundary-layer analysis is also performed.

FIG. 1. Illustration of the two-lane exclusion model with open
boundaries. Lane A functions as a feeder lane, while lane B serves
as an absorber lane. Arrows represent permissible transitions, while
crosses indicate restricted transitions. The variables ᾱ and β repre-
sent the entry and exit rates, respectively.

II. DESCRIPTION OF THE MODEL

To replicate the transportation of entities along different
pathways, we formulate a model that consists of two parallel
one-dimensional lattices, identified as lane A and lane B, with
each lane composed of L sites. The sites are enumerated as
i = 1, 2, . . . , L, where the boundaries of each lane are repre-
sented by i = 1 and i = L, while the remaining sites constitute
the bulk. In strict accordance with the hard-core exclusion
principle, each lattice site is constrained to accommodate no
more than a single particle. Particles experience horizontal
drifting as they engage in unidirectional motion from the
left to the right along the lanes. Moreover, these lanes allow
vertical mobility of particles; specifically, lane A facilitates
desorption, while lane B functions as an absorption pathway
as shown in Fig. 1. The extreme boundaries of the lanes (at
site i = 1 and i = L) are connected to a reservoir with a finite
capacity. This naturally imposes a restriction on the overall
number of particles in the system. Let us use the notation Nt

to signify the total number of particles in the system and Nr (t )
to represent the number of particles in the reservoir at any
instant of time. Note that the reservoir has abundant capacity
to contain all the particles present in the system. Moreover,
this restriction influences the rates at which particles flow
from the reservoir into the lanes, which will be elucidated
later. This arrangement creates a regulated environment in
which the total number of particles on the lanes is determined
by the interaction between the dynamics of interconnected
lanes and the particle reservoir. At each time step, a site is
chosen randomly and updated in accordance with the system’s
dynamic rules, which are delineated as follows:

(i) Bulk sites: For lane A, the displacement of a particle
from the ith site relies on the status of the ith site on lane B.
In case site i on lane B is vacant, a particle from the ith site of
lane A is compelled to depart and then reconnects to the ith
site on lane B at a unit rate. If the intended site on lane B is not
vacant, then the particle is required to continue its horizontal
movement along the lane with a unit rate, given that the neigh-
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boring site is unoccupied. This indicates that a particle on lane
A tends to prefer detachment over unidirectional movement.

(ii) Entrance site: A particle from the reservoir has the po-
tential to enter through the first site i = 1 of lane A at a rate of
ᾱ, given that the respective site is unoccupied. In the presence
of a particle at this site, it initially attempts to attach to the
first site of lane B. If this attachment is not achievable, then
the particle then proceeds with its unidirectional movement
along lane A.

(iii) Exit site: A particle positioned at the Lth site on lane
A first tries to detach from its lane and attach to the last site of
lane B, given that the target site is unoccupied. If no successful
attachment occurs, then the particle exits lane A at a rate of β

to rejoin back the reservoir.
In lane B, particles enter from the initial site with a rate

of ᾱ and move along the lane from left to right at a unit rate,
following the exclusion principle. On reaching the final site,
they return to the reservoir with a rate of β. Additionally, each
unoccupied site in lane B can absorb incoming particles from
the corresponding vertical site in lane A at a unit rate.

The extreme ends of the lanes are connected to a limited
particle reservoir, indicating that the total particle count re-
mains conserved in the system. This conservation is expressed
by the following equation:

Nt = Nr (t ) + NA(t ) + NB(t ), (1)

where NA(t ) and NB(t ) denote the number of particles on lanes
A and B, respectively. Now implementing a global constraint
on the total particle count results in the regulation of the inflow
rate of particles into the lanes based on the number of parti-
cles present in the reservoir. Generally, a diminished particle
count in the reservoir suggests lower entry rates, while an
increased reservoir content corresponds to elevated entrance
rates. Therefore, it is rational to consider the entrance rate [49]
as follows:

ᾱ = α
Nr (t )

Nt
. (2)

Here α represents the inherent entrance rate of particles in
the absence of any restrictions on the particle number. It is
evident that Nr (t ) � Nt indicates that entry rates are bounded
between 0 and α. As Nt tends towards infinity, the ratio Nr/Nt

approaches 1, resulting in the convergence of ᾱ to α. In this
scenario, our model reduces to a well-examined two-lane cou-
pled model with infinite resources [26,30]. If one eliminates
the horizontal mobility of particles in lane B within the present
model, then it transforms into the model discussed in Ref. [54]
under specific conditions. Moreover, the current model can be
conceptualized as two parallel exclusion lanes where lane A
exhibits diffusive dynamics and serves as a feeder for lane B;
meanwhile, lane B exclusively involves the one-dimensional
transport of particles.

III. THEORETICAL APPROACH

The occupancy status of any site in the system can be
expressed through a set of binary numbers denoted by τi and
ni for lanes A and B, respectively, where i signifies the site
number. This variable τi (ni ) is assigned a “0” if the ith site on
lane A (B) is unoccupied and a “1” if it contains a particle.

The temporal variations in particle occupancy in the bulk
sites (1 < i < L) of both the lanes, as outlined by the master
equations, can be stated as follows:

˙〈τi〉 = J A
i−1 − J A

i − Vi, ˙〈ni〉 = J B
i−1 − J B

i + Vi. (3)

Here J j
i is the current passing from the site i to i + 1 in lane

j, ( j ∈ {A, B}) and Vi is the vertical transverse current from
lane A to B. Also, the symbol 〈. . . 〉 represents the statistical
average. The values of these particle currents involving one or
two-point correlators can be expressed as

J A
i = 〈τi(1 − τi+1)ni〉, J B

i = 〈ni(1 − ni+1)〉,
Vi = 〈ωτi(1 − ni )〉, (4)

where ω = 1 is the detachment or attachment rate from or to
lane A or B. At the boundary sites (i = 1, L), we have

˙〈τ1〉 = ᾱ〈(1 − τ 1)〉 − J A
1 − V1,

˙〈n1〉 = ᾱ〈(1 − n1)〉 − J B
1 + V1,

˙〈τL〉 = J A
L−1 − β〈τ LnL〉 − VL,

˙〈nL〉 = J B
L−1 − β〈nL〉 + VL. (5)

To analyze this system further, it is often satisfactory to
apply simple mean-field theory [55] in which the n-point
correlation function is substituted with the product of n in-
dividual one-point correlator functions neglecting all possible
correlations.

A. Continuum limit

We derive the continuum version of the proposed model
by coarse-graining the discrete lattice with a lattice constant
ε = 1/L and transforming both space and time as x = i/L ∈
[0, 1] and t ′ = t/L, respectively. Replacing the discrete vari-
ables τi and ni with continuous variables ρi(x) and σi(x),
respectively, and retaining terms up to second order in the
Taylor series expansion, we obtain

∂ρ

∂t ′ = εσ

2

∂2ρ

∂x2
+ J A ε

2

∂2σ

∂x2
+ ε(1 − ρ)

∂ρ

∂x

∂σ

∂x

− σ (1 − 2ρ)
∂ρ

∂x
− J A ∂σ

∂x
− Lρ(1 − σ ), (6)

∂σ

∂t ′ = ε

2

∂2σ

∂x2
− ∂J B

∂x
+ Lρ(1 − σ ). (7)

Note that the subscript i is dropped as each lane is free
from inhomogeneity of any kind. The symbols J A and J B

describe the bulk mean-field particle currents in lanes A
and B given by J A = ρ(1 − ρ) and J B = σ (1 − σ ), re-
spectively. The last term in both the Eqs. (6) and (7) is a
result of vertical coupling between the lanes. It is important
to note that this term involves multiplication by the lattice
length L, indicating the need to rescale the coupling rates
for observing competition between vertical and horizontal
movements.

As the boundaries of each lane exhibit distinct behavior
compared to the bulk, it is necessary to examine their evo-
lution discretely, as outlined in Eq. (5). At the steady state
and in the continuum limit (L → ∞), the density evolution
equations at the boundaries simplify to ρ(0) = σ (0) = ᾱ and
ρ(1) = σ (1) = 1 − β.
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The quantity of our interest is the solution of the system
at steady state which can be achieved by setting the time
derivative equal to zero. Doing so leads to a set of singularly
perturbed differential equations given by

εσ

2

∂2ρ

∂x2
+ J A ε

2

∂2σ

∂x2
+ ε(1 − ρ)

∂ρ

∂x

∂σ

∂x

− σ (1 − 2ρ)
∂ρ

∂x
− J A ∂σ

∂x
− ρ(1 − σ ) = 0,

ε

2

∂2σ

∂x2
− ∂J B

∂x
+ ρ(1 − σ ) = 0.

(8)

Roughly speaking, in a singular perturbation problem [56],
the transition as the limit ε → 0 is not gradual but rather
abrupt. As the perturbation parameter ε diminishes, there is
a sudden change in the nature of the problem. Typically, a
singular perturbation problem arises when the perturbation
parameter ε is introduced into a differential equation to scale
the highest derivative in the equation. Consequently, as ε

approaches 0, the order of the differential equation decreases,
and the solution to the lower-order differential equation fails
to satisfy all the boundary conditions or initial conditions
at the same time. Thus, the solution experiences an abrupt
cessation as ε tends to 0, indicating the formation of boundary
layers. To find a global solution to the system, valid on the
whole domain, we need to find two solutions: the inner solu-
tion and the outer solution. The outer solution captures the be-
havior away from the boundary layer, while the inner solution
provides a detailed description of the boundary layer. Finally,
it is essential to match these solutions effectively to derive the
particle density at each site. We begin by exploring analytical
and numerical methods to derive the outer solutions.

IV. BULK SOLUTION

Here we present two approaches for obtaining the outer
solution or the bulk particle density for each lane.

A. Numerical technique

In this context, we outline an approach to deduce the
density profile of the system by numerically solving the con-
tinuum formulations of the partial differential equations as
presented in Eqs. (6) and (7). This technique offers two pri-
mary benefits. First, it is straightforward to implement and can
be readily adapted for generalizations of the current model.
Second, it proves valuable in situations where analytical treat-
ment of the problem is unfeasible, providing an alternative
means to derive solutions.

The initial step involves discretizing the partial differ-
ential equation using a finite-difference operator. In this
process, the time derivative is substituted with a forward-
difference formula, and the space derivative is replaced
by a second-order central-difference operator. Set 
x as
1/L, (L < ∞) and choose a suitable value for 
t to ensure
that |(ε
t )/(2(
x)2)| � 1, which represents the stability cri-
terion. Let ρ

j
i (σ j

i ) represent the particle density of lane A (B)
on site i
x and time step j
t . Thus, we have the following

set of equations for the bulk sites 2 � i � L − 1:

ρ
j+1
i = ρ

j
i + εσ

j
i 
t

2
x2

(
ρ

j
i+1 − 2ρ

j
i + ρ

j
i−1

)
+ ρ

j
i

(
1 − ρ

j
i

) ε
t

2
x2

(
σ

j
i+1 − 2σ

j
i + σ

j
i−1

)
+ (

1 − ρ
j
i

) ε
t

(2
x)2

(
ρ

j
i+1 − ρ

j
i−1

)(
σ

j
i+1 − σ

j
i−1

)
− ρ

j
i

(
1 − ρ

j
i

) 
t

2
x

(
σ

j
i+1 − σ

j
i

)

− σ
j

i 
t

2
x

(
1 − 2ρ

j
i

)(
ρ

j
i+1 − ρ

j
i−1

)
− L
tρ j

i

(
1 − σ

j
i

)
,

σ
j+1

i = σ
j

i + ε
t

2
x2

(
σ

j
i+1 − 2σ

j
i + σ

j
i−1

)
+ (

1 − 2σ
j

i

) 
t

2
x

(
σ

j
i+1 − σ

j
i−1

)
+ L
tρ j

i

(
1 − σ

j
i

)
.

(9)

Note that the above equations are not applicable for i = 1 and
i = L. Therefore, we must formulate separate equations for
these sites by employing Eq. (5), resulting in

ρ
j+1
1 = ρ

j
1 + αNr
t

Nt

(
1 − ρ

j
1

) − 
tρ j
1σ

j
1

(
1 − ρ

j
2

)
− L
tρ j

1

(
1 − σ

j
1

)
,

σ
j+1

1 = σ
j

1 + αNr
t

Nt

(
1 − σ

j
1

) − 
tσ j
1

(
1 − σ

j
2

)
+ L
tρ j

1

(
1 − σ

j
1

)
,

ρ
j+1
L = ρ

j
L + 
tσ j

L−1ρ
j
L−1

(
1 − ρ

j
L

) − 
tβρ
j
Lσ

j
L

− L
tρ j
L

(
1 − σ

j
L

)
,

σ
j+1

L = σ
j

L + 
tσ j
L−1

(
1 − σ

j
L

) − 
tβσ
j

L

+ L
tρ j
L

(
1 − σ

j
L

)
,

along with

Nr = Nt −
(

L∑
i=1

ρ
j
i +

L∑
i=1

σ
j

i

)
. (10)

The solution is derived in the limit as j approaches infinity,
ensuring that the system reaches its steady state. While this
method easily produces the density profile, its effectiveness
is limited when it comes to explicitly investigating additional
stationary properties of the system. Moreover, this approach
necessitates the independent study of each parameter, α, β,
and μ, which is a cumbersome process for drawing concrete
conclusions regarding the macroscopic behavior and station-
ary properties of the system.

In the following section, we derive explicit expressions for
the particle densities and currents at each site within both
lanes. These expressions will simplify our task and facilitate a
more comprehensive analysis of the stationary properties.
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(a) (b)

FIG. 2. (a) Possible states of a vertical cluster in the two-lane
system. (b) Feasible transitions in a vertical cluster. (i) P10P01, (ii)
P10P00, (ii) P10, (iv) P11P00, (v) P11P10, and (vi) P11P01.

B. Cluster mean-field theory

To obtain explicit expressions for essential stationary prop-
erties in the current model, it is crucial to employ a theoretical
framework that adequately accounts for correlations. An ex-
ample of such a theory is the vertical cluster mean field,
which specifically addresses the behavior of particles along
the vertical direction. This methodology has proven to be
valuable in accurately capturing the properties of various two-
lane transport systems [26–30].

The current system allows for three types of vertical clus-
ters: fully occupied, half-filled, and fully empty as shown in
Fig. 2(a). In the case of a fully filled vertical cluster, denoted
as (11), both sites are occupied. On the other hand, scenarios
(01) and (10) represent half-filled situations, with particles
located in either lane A or lane B, not both, respectively.
Finally, an empty cluster is designated by (00). Let us define
the probabilities for these potential configurations of a vertical
cluster by P11, P01, P10, and P00. For the conservation of
probabilities, it is necessary that

P00 + P10 + P01 + P11 = 1, (11)

which is also called as the normalization condition. Thus,
the bulk particle densities on each lane can be expressed by
utilizing these vertical cluster probabilities as

ρ = P11 + P10, σ = P11 + P01. (12)

The absence of any form of inhomogeneity in the bulk
indicates a reasonable assumption that the cluster probabili-
ties remain unaffected by the spatial position of the vertical
cluster. Thus, the master equation governing the evolution of
these vertical clusters can be expressed as:

dP11

dt
= P01P10 + P11P01 + P11P10 − 2P11P00 − P11P01

− P11P10, (13)

dP10

dt
= 2P11P00 + P11P10 − P10. (14)

Each expression on the right-hand side can be easily
comprehended through the visual representations depicted
in Fig. 2(b). The master equation corresponding to P01 can
be formulated using a similar approach and deriving the

equation for P00 becomes straightforward by applying the
normalization condition outlined in Eq. (11).

Our primary objective is to discern the solutions corre-
sponding to the long-term behavior of the system. Conse-
quently, we establish the following conditions:

dP00

dt
= dP10

dt
= dP01

dt
= dP11

dt
= 0. (15)

By utilizing Eq. (11) as well as Eqs. (13) and (14) in Eq. (15),
we derive the following set of equations:

2P11P00 = P01P10, 2P11P00 + P11P10 = P10. (16)

These equations can be solved concurrently, leading to two
distinct scenarios:

(i) P10 = P11 = 0, (ii) P10 = P00 = 0. (17)

By applying the particle density expression for each lane as
outlined in Eq. (12) to the above equations, we can draw
two conclusions: In scenario (i) lane A displays zero particle
density, whereas in (ii) lane B is entirely occupied with a
particle density of 1.

Before proceeding with further analysis, it is essential to
highlight that the system is subject to open boundary condi-
tions. To conduct a comprehensive examination of the system,
one must account for both the entry and exit currents from the
system, represented by the following equations:

J A(0) = ᾱ(1 − P11 − P10),

J B(0) = ᾱ(1 − P11 − P01),

J A(1) = βP11,

J B(1) = β(P11 + P01). (18)

Similarly, the bulk current for each lane can be stated by

J A = P11(1 − P11 − P10),

J B = P11 + P01(1 − P11 − P01). (19)

As the particle current remains consistently continuous across
the system, it allows us to establish a relationship between the
bulk and boundary currents:

J A(0) + J B(0) = J A + J B = J A(1) + J B(1). (20)

Now, we can leverage the fact that the system is connected to a
finite particle reservoir with a reservoir occupancy of Nr . Re-
turning to the particle number conservation (PNC) equation,
as expressed in Eq. (1), we can restate it as:

Nt

2L
= Nr

2L
+ 1

2

(
NA

L
+ NB

L

)
, (21)

or, in a more simplified form:

μ = ρr + 1

2

[∫ 1

0
ρ(x)dx +

∫ 1

0
σ (x)dx

]
. (22)

In this context, μ = Nt/(2L) signifies the filling factor, which
is a measure of the ratio of the total number of particles to the
total number of sites in a system. Furthermore, we employ the
variable ρr to denote the reservoir density.

Now, with all the essential components in hand, our at-
tention shifts to a comprehensive analysis of the important
stationary properties of the system. The objective is to derive
explicit expressions for both particle densities and reservoir
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density. This will be achieved by leveraging the solutions
obtained from the vertical master equation, as indicated by
Eq. (17), and by incorporating the principles of current
continuity, as expressed in Eq. (21), and particle number con-
servation, as given in Eq. (23). These explicit expressions will
subsequently be employed to quantify the stationary charac-
teristics of the system, encompassing phase diagrams, density
profiles, particle currents, and potential phase transitions.

To investigate the influence of finite resources on a two-
lane system, we examine the dynamic characteristics across
the parameter space defined by α and β. Our examination
encompasses a thorough inspection of various stationary sys-
tem properties, including density profiles, particle currents,
and probable phase transitions. In the context of a one-
dimensional open TASEP with infinite particle resources and
boundary parameters, α and β, previous studies have iden-
tified three stationary phases [13,14,16]: LD, HD, and MC
phases. Notably, a delocalized shock phase is confined to a
specific line in the phase plane. However, when the particle
species are constrained in number, the originally delocalized
shock phase undergoes a transformation. It evolves into a lo-
calized shock phase that manifests across a substantial region
of the phase plane, resulting in an increase in the number of
phases to four [49].

Now let us explore the possible stationary phases that could
endure in the two-lane strongly coupled system with con-
strained resources. To begin, we employ the notation P/Q to
represent a phase of the system, where P and Q signify a phase
manifested by lanes A and B, respectively. Derived from the
two solutions to vertical probabilities outlined in Eq. (17), two
distinct scenarios emerge. In case (i), lane A exhibits zero
particle density, whereas in case (ii), lane B is completely
filled with a maximum particle density of 1. Both of these
cases depict a condition of zero particle current, leading us to
label the corresponding phases in the respective lanes as ZC0

and ZC1, where the subscript indicates the particle density. In
each of these situations, the opposing lane can manifest any of
the four phases: LD, HD, MC, and S. Now we examine each
of these situations individually.

1. Zero particle current in lane A: (ZC0/Q)

Let us start by considering the scenario where P10 = P11 =
0. According to Eq. (12), we get ρ = 0, signifying the case
of zero particle density in lane A. Consequently, the particle
currents given by Eqs. (19) and (20) are simplified to

J A(0) = ᾱ, J B(0) = ᾱ(1 − P01),

J A = 0, J B = P01(1 − P01),

J A(1) = 0, JB(1) = βP01. (23)

With P10 = 0 and P11 = 0 in this system, the vertical clus-
ter (01) can be interpreted as particles, and the corresponding
holes are denoted by (00). Thus, the two-lane system can be
viewed as one-lane system with some entrance rate αeff and
exit rate β. Here lane A is in the ZC0 phase and the other lane
can assume one of the following phases: LD, HD, MC, or S.
Now we scrutinize each of these phases individually.

(i) ZC0/LD phase. In this entrance-dominated phase, the
particle current is governed by the entry parameter implying

that P01 = αeff . By utilizing the continuity of current across
the lanes, we can write

αeff (1 − P01) = J A(0) + J B(0) = J A + J B,

which is equivalent to

αeff (1 − P01) = ᾱ + ᾱ(1 − P01).

The above can be solved to calculate the expression for the
effective entrance rate as

αeff = 1
2 [1 + ᾱ −

√
(1 + ᾱ)2 − 8ᾱ], (24)

which is valid for ᾱ < 1
6 . We must recall that the parameter ᾱ

is regulated by the reservoir density ρr and the filling factor
μ. Thus, we exploit the particle conservation criteria given by
Eq. (22), which can be restated as

μ = ρr + αeff

2
(25)

and solved to determine the value of reservoir density as

ρr = 1

2(α + 2μ)
[α(μ − 1) + μ(4μ − 1)

+
√

α2(μ − 1)2 + 2α(1 − 3μ)μ + μ2]. (26)

The existential criteria for this phase can be written as follows:

αeff < β, ᾱ < 1
6 . (27)

In the limit, μ → ∞, ᾱ tends to converge to α. This results in
the effective rate αeff matching the calculated effective rate for
this phase when resources are infinite, as detailed in Ref. [26].

(ii) ZC0/HD phase. Here lane A remains in the zero cur-
rent phase while lane B displays the high-density phase.The
current continuity equation in this case takes a simplified form

P01(1 − P01) = βP01 ⇒ P01 = 1 − β. (28)

Utilizing PNC, we retrieve the reservoir density
ρr = 2μ−1+β

2 . The feasible region corresponding to phase
requires β to remain less than 0.5 and the effective entrance
rate which leads to

2μβ(1 − β )

(2 − β )(2μ − 1 + β )
< α <

2βμ

(2μ − 1 + β )
. (29)

Clearly, when μ → ∞, the condition for the existence of
a (0/HD) phase in a system with no constraint on particle
resources is recovered [26].

(iii) ZC0/MC phase. Let us assume that lane B exhibits
maximal current phase with particle density given by 0.5
and current equal to 0.25. In such a scenario, we get
P00 = P01 = 0.5. By particle number conservation, the value
of reservoir density can be procured as

ρr = μ − 1
4 . (30)

Moreover, the other parameters are αeff = 3ᾱ and
ᾱ = α(4μ−1)

4μ
. Using all these expressions, the condition

for the existence of this phase can be framed by

max
{
ᾱ, 1

2

}
< β, 1

6 < ᾱ < 1
2 . (31)

As μ approaches infinity, the expression for the effective
entry rate coincides with the scenario involving infinite re-
sources, as documented in Ref. [26].

(iv) ZC0/S phase. Presume that lane A displays particle
density 0, while lane B exhibit a discontinuity in the density
profile connecting a section of low density on the left to a
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section of high density on the right. We prefer to denote the
position of this sudden transition in lane B by xB.

As lane B is in the low-density phase on the left, we ob-
serve that P01 = αeff near the left boundary, and the effective
entrance rate remains the same, as indicated by Eq. (24). The
criteria for the persistence of the shock phase require that the
entry rate must be equal to the exit rate, thus leading to

ρr = βμ(1 − β )

α(2 − β )
. (32)

The only variable remaining to be determined is the position
of the shock, which can be derived from the conservation of
particles and expressed in a simplified form as follows:

xB = 1 − β − 2(μ − r)

α(2 − β )
. (33)

Finally, the boundary parameters must satisfy the following to
display this phase:

0 < xB < 1, β < 0.5. (34)

This phase ceases to exist in case μ → ∞.

2. Zero particle current in lane B: (P/ZC1)

Now, let us consider the alternate scenario where P00 =
P10 = 0. As a consequence, the particle density in lane B
reaches its maximum value of 1, resulting in zero particle
current. The revised value of the particle currents are detailed
as follows:

J A(0) = ᾱ(1 − P11), J B(0) = 0,

J A = P11(1 − P11), J B = 0,

J A(1) = βP11, J B(1) = β. (35)

In this situation, particles in lane B are represented by the
fully filled vertical cluster (11), while a vacancy corresponds
to (10). Consequently, in this case, the two-lane system can be
conceptualized as a one-dimensional TASEP system with an
entry rate of ᾱ and an effective exit rate denoted by βeff . Also,
lane B remains in the ZC1 phase, while lane A can exhibit any
of the four phases: LD, HD, MC, and S.

(i) HD/ZC1 phase. The stationary particle density of lane
A is given by 1 − βeff , while that of lane B is 0. This re-
lationship implies that P11 = 1 − βeff . Applying the current
continuity principle, we can express it as:

P11(1 − P11) = βP11 + β = βeffP11. (36)

Solving this equation yields the value of the effective exit rate:

βeff = 1
2 [1 + β −

√
(1 + β )2 − 8β]. (37)

Now we make use of Eq. (22) to calculate reservoir density as

ρr = 1
4 (β − 3 + 4μ −

√
1 − 6β + β2). (38)

Finally, the conditions fulfilled by this phase are delineated as:

βeff < ᾱ, β < 1
6 . (39)

(ii) LD/ZC1 phase. During this phase, we assume that lane
A portray the LD phase. In such scenarios, P11 = ᾱ and the
reservoir density is given by

ρr = μ(2μ − 1)

α + 2μ
. (40)

Under these circumstances, the existential condition for this
phase is

ᾱ(1 − ᾱ)

2 − ᾱ
< β < ᾱ <

1

2
. (41)

(iii) MC/ZC1 phase. During this phase, lane A experi-
ences a maximal current phase with particle density given
by 0.5. So we have P11 = P01 = 0.5. The resulting reservoir
density is given by:

ρr = μ − 3
4 . (42)

The effective exit rate can be obtained in a straightforward
manner as βeff = 1 − β. Therefore, this phase persists only
when:

1
6 < β < 1

2 < ᾱ. (43)

(iv) S/ZC1 phase. In this scenario, a shock persists in lane
A, linking a segment with particle density ᾱ on the left to a
region with particle density 1 − βeff on the right, separated
at the point denoted by xA. The effective exit rate retains the
same value as expressed in Eq. (37). For lane A to display
the shock phase, it must adhere to the condition ᾱ = βeff ,
providing us with the reservoir density expressed as:

ρr = μ(1 + β −
√

1 − 6β + β2)

2α
. (44)

Revisiting Eq. (22) allows us to calculate the shock position
in this case, given by:

xA = 2 − ᾱ − 2(μ − r)

1 − 2ᾱ
. (45)

Hence, the determined region for this phase must meet the
criteria of 0 < xA < 1 in conjunction with ᾱ < 0.5. This phase
vanishes when μ tends to 0.

In addition to the aforementioned phases, several other
phases are observed, arising from the combination of the two
scenarios. During these phases, certain region of the system
exhibit P/ZC1, while the remaining part displays ZC0/Q.
Considering that particle current must remain continuous
across each lane, these two scenarios can be appropriately
aligned.

3. Other phases

We choose to represent these phases as R-S/M-N, where R
(S) indicates the type of stationary phase on the left (right) of
lane A, while M (N) denotes the stationary phase on the left
(right) of lane B. The stationary properties for such phases are
as follows:

(i) LD-ZC0/ZC1-HD phase. In this phase, we observe a
LD/ZC1 phase on the left connected to a ZC0/HD region on
the right, and the position of the domain wall in the lanes is
represented by xA and xB. As mentioned previously, this phase
can be visualized as two single-lane TASEP models. One has
a entry rate of ᾱ and an exit rate of βeff , while the other has
αeff − β as the boundary parameters.

To ensure current continuity in the system, the shock po-
sition must be synchronized between both lanes. Therefore,
we employ the notation xs to represent the common shock
position. Additionally, for the system to maintain the shock
phase, we must have αeff = βeff , which leads to the condition
ᾱ = β, enabling us to derive the reservoir density as ρr = βμ

α
.
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To determine the position of the shock in this phase, we use
the conservation of particles, transforming Eq. (22) into:

μ = ρr + 1

2

[∫ xs

0
(ᾱ + 1)dx +

∫ 1

xs

(0 + 1 − β )dx

]
, (46)

which yields

xs = 2(μ − r) − (1 − β )

2β
. (47)

Thus, the identified region in the phase diagram corresponding
to this phase is

0 < xs < 1, β < 0.5. (48)

In the presence of an infinite supply of particles, this phase
does not persist.

(ii) MC-ZC0/ZC1-MC phase. Here the left bulk of the
system remains in the MC/ZC1 phase while the right bulk dis-
plays the ZC0/MC phase. As elaborated on in the preceding
case, the synchronization of the shock position between two
lanes is evident. Specifically, the particle density in each lane
can be written as

ρ =
{

0.5, if 0 < x < xs

0, if xs < x < 1,

σ =
{

1, if 0 < x < xs

0.5, if xs < x < 1,

(49)

where xs gives the common shock position. Therefore, this
phase is entirely dominated by the bulk. The position of the
shock can be determined by applying particle-hole symmetry.

In the limit as μ approaches infinity, the shock position
stabilizes at 0.5 [26], leading us to characterize this phase as a
Meissner phase.

The analysis presented thus far yields the outer solution,
representing the bulk particle density for both lanes. Now
we will explore the methodology for calculating the inner
solutions associated with each phase.

V. INNER SOLUTION: BOUNDARY-LAYER ANALYSIS

To elucidate the characteristics of the boundary layer, we
first analyze the behavior of the system in the thermodynamic
limit. Under this condition, Eq. (8) transforms into a set of
first-order differential equations, each accompanied by two
boundary conditions, resulting in an overdetermined system.
In such cases, a boundary layer is observed either within
the bulk or at the boundaries. The solution of the first-order
differential equations is called the outer or bulk solution and
delineates the major portion of the density profile, whose thor-
ough analysis has been conducted in the preceding section.
Such a solution will be denoted by ρb and σb for the two lanes.

Here we provide a summary of the methodology associated
with obtaining the boundary-layer solution. For a comprehen-
sive understanding, readers can refer to Ref. [57]. The outer
solution satisfies a first-order differential equation, accommo-
dating at most a single boundary condition. To address the
other condition, a boundary layer emerges within the density
profile. This layer must adhere to two essential criteria: (i)
It must fulfill the other boundary condition and (ii) it must
asymptotically approach the outer solution. Generally, the
boundary layer satisfies one boundary condition, while the

outer solution addresses the other. Nevertheless, in certain
scenarios, a boundary layer within the system’s bulk can sep-
arate two outer solutions, each of them meeting one of the
boundary conditions. Therefore, it can be concluded that the
presence of this layer is not confined solely to the peripheries
or boundaries of the system. This boundary-layer solution is
referred to as the inner solution and is denoted by ρin/σin.

In the preceding section, we have successfully determined
the outer solution by examining two distinct situations: the
first involving zero particle current along with density zero
in lane A and the second featuring zero particle current in
lane B but with a maximum particle density set at 1. Since
the boundary-layer solution must asymptotically align with
the outer solution, it is crucial to compute the inner solu-
tion while taking into account the characteristics of the outer
solution.

A. Zero particle current in lane A

As elucidated earlier, the stationary characteristics in this
scenario are dictated by Eq. (23), where both the particle
current and density in the bulk as well as at the exit sites
of lane A are precisely zero, but a nonzero particle current
is present at the entrance site. Consequently, we expect the
existence of a boundary layer merely at the left boundary in
lane A.

Our primary objective now is to compute the boundary
layer or the inner solution pertaining to lane B. We have the
following continuum system at the steady state:

ε

2

∂2σ

∂x2
+ (1 − 2σ )

∂σ

∂x
= 0. (50)

To derive a boundary-layer solution, it is convenient to intro-
duce a rescaled variable, denoted as a = (x − x0)/ε, where
x0 signifies the location of the boundary layer. If there is a
boundary layer at the left end, then x0 is set at 0, and with
ε approaching 0 (L → ∞), the variable a tends towards ∞.
Similarly, in case x0 = 1, then a → −∞ as ε → 0.

Now, in terms of the rescaled position, the differential
equation given by Eq. (50) gets modified to

1

2

d2σin

da2
+ (2σin − 1)

dσin

da
= 0, (51)

which on integrating once yields

1

2

dσin

da
− σin(1 − σin ) = k0, (52)

where k0 is the constant of integration. Calculating the value
of this constant using the criteria that the inner solution must
saturate to the outer solution gives k0 = σb(σb − 1). Further
integration yields the following:

σin(a) = 1

2
+ |2σb − 1|

2
coth(a|2σb − 1| + k2),

σin(a) = 1

2
+ |2σb − 1|

2
tanh(a|2σb − 1| + k2). (53)

Here 1
|2σb−1| is the width of the boundary layer with respect to

a and the constant k2 gives the center of the boundary layer.
Moreover, these constants depend on the boundary condition
that the inner solution satisfy.
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We adopt the notation Tk/Ck to describe a boundary layer
of tanh / coth type as given by Eq. (53) for the different phases
of the system. Here k can take the values l , b, or r, indicating
the presence of a boundary layer at the left end, in the bulk, or
at the right end, respectively.

In the following discussion, we scrutinize each of the pre-
viously mentioned scenarios regarding the outer solution for
their corresponding boundary-layer solutions.

(i) ZC0/LD phase. In this particular case, the outer solu-
tion for lane B satisfies the left boundary condition at x = 0,
clearly indicating the manifestation of a boundary layer at the
right end. Here the corresponding bulk densities are ρb = 0
and σb = αeff , where αeff is determined by Eq. (24).

In lane A, only the entry current is nonzero, giving rise
to a boundary layer of Cl type characterized by a positive
slope. On the other lane, two distinct types of boundary-layer
solutions appear in the vicinity of the boundary at x = 1 de-
pending on the entry-exit parameters. When αeff < 1 − β, the
boundary layer exhibits a positive slope, and the correspond-
ing inner solution follows a tanh-type profile. Conversely,
when αeff > 1 − β, the boundary layer displays a negative
slope, and the inner solution takes on a coth-type profile. Thus
the two types of boundary layers in this case are denoted
by Cl/Tr and Cl/Cr which are separated by the boundary
αeff = 1 − β. We prefer to use the term “surface transi-
tions” to describe such changes occurring within a specific
phase.

(ii) ZC0/HD phase. Similarly to the previous case, a
boundary layer of Cl type emerges in lane A. The outer so-
lution in lane B is an exit-dominated phase and adheres to the
right boundary condition, while the inner solution satisfies the
condition at x = 0. When 1 − β < αeff , the boundary layer
must have a positive slope, making it necessary to employ a
coth-type inner solution. Conversely, when 1 − β > αeff , the
boundary layer, featuring a negative slope, is associated with
a tanh-type solution. Therefore, the boundary-layer solution
Cl/Tl is distinguished from Cl/Cl by the line αeff = 1 − β.

(iii) ZC0/S phase. In this context, a stationary shock
emerges in the density profile of lane B, connecting a re-
gion of LD phase with a particle density of αeff = ᾱ to an
HD phase with density, 1 − β. The position of this shock is
denoted as xB and is determined by Eq. (33). Consequently,
the outer solution comprises of two segments: one with a
density less than 0.5 (on the left) and the other greater than
0.5. This gives rise to a boundary layer of the tanh-type, thus
labeled as Cl/Tb.

(iv) ZC0/MC phase. Here lane B exhibits a maximal cur-
rent phase where the bulk density is precisely equals 0.5. To
satisfy the two boundary conditions, specifically σ (0) = ᾱ

and σ (1) = 1 − β, a boundary layer must be present at each
end. The conditions for the existence of this phase are ᾱ >

0.5 and β > 0.5, implying that σ (1) < 0.5 < σ (0). Conse-
quently, a boundary layer of coth type appears at both ends
and can be denoted as Cl/Cl,r .

B. Zero particle current in lane B

The stationary particle currents in this instance are deter-
mined by Eq. (36), indicating the emergence of a boundary
layer on the right boundary of lane B. Following a similar pro-

cedure as in the previous case, two types of boundary layers
are identified, labeled as tanh-type and coth-type. Hence, the
respective inner solutions demonstrated in the phases of this
category can be expressed as follows:

(i) HD/ZC1 phase. In this case, two distinct types of
boundary conditions are observed: Tl/Cr and Cl/Cr , which are
distinguished by the line ᾱ = 1 − βeff .

(ii) LD/ZC1 phase. A tanh-type boundary layer is ob-
served in lane A when ᾱ < 1 − βeff , whereas it is of coth-type
when ᾱ > 1 − βeff .

(iii) S/ZC1 phase. A stationary shock phase manifests in
the density profile with the shock position denoted as xA. The
corresponding boundary layer is characterized by Tb/Cr .

(iv) MC/ZC1 phase. In this case, a boundary layer of the
type Cl,r/Cr emerges in the density profile.

C. Combination of P/ZC1 and ZC0/Q phases

As previously explained, in such phases, lane A exhibits
the P-ZC0 phase, while the other displays the ZC1-Q phase.

(i) LD-ZC0/ZC1-HD phase. The solution for the bulk of
the density profile is

ρ =
{
ᾱ, if 0 < x < xs

0, if xs < x < 1,

σ =
{

1, if 0 < x < xs

1 − β, if xs < x < 1.
(54)

In this phase, the boundary layer is not limited to the bound-
aries; rather, it manifests in the bulk in the form of a shock at
the position xs, thus taking on the form of Cb/Cb.

(ii) MC-ZC0/ZC1-MC phase. Applying a similar ap-
proach, in this case, a boundary layer of the type Cl,b/Cb,r

emerges.

VI. RESULTS AND DISCUSSION

In this section, we conduct a thorough exploration of
the steady-state characteristics within the proposed model,
with a particular emphasis on the stationary phase diagrams.
We utilize theoretical expressions for the outer solution and
findings from boundary-layer analysis to scrutinize the sys-
tem’s behavior in the α − β space. To validate the theoretical
findings, we perform kinetic Monte Carlo simulations (akin
to the Gillespie algorithm) with the lattice size of each lane
L = 1000. For a given system state, the algorithm iden-
tifies all potential sites for a successful move, computes
their kinetic rates, and sums them. The event probability
is then determined by weighing each rate against the total
rate. The time until the next event is calculated as 
t =
−ln(r)/(sum of all kinetic rates), where r is a random number
generated from a uniform distribution between 0 and 1. The
lists are updated accordingly, and the process is iterated until
109 number of events have occurred. To ensure the system
reaches a steady state, the initial 5% of these events are ex-
cluded. These simulation points are graphed with an accuracy
of less than 2% in each figure, a precision reflected by the size
of the symbols employed in the plots.
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FIG. 3. Phase diagrams for stationary states for different values of μ: (a) μ = 0.1, (b) μ = 0.4, (c) μ = 0.5, (d) μ = 0.6, (e) μ = 0.9, (f)
μ = 1, (g) μ = 1.5, (h) μ = 3, and (i) μ → ∞. Each diagram delineates both bulk and surface transitions, categorized through boundary-layer
analysis. Solid lines denote bulk transitions, while dashed (thick red) lines describe surface transitions. M designates the Meissner phase phase
corresponding to MC-ZC0/ZC1-MC phase which is independent of the boundary parameters.

A. Stationary phase diagrams

We examine the stationary behavior of the system under
different filling factors in the α − β phase plane. The values
of μ are selected such that they explain all the possible and
crucial structural changes in the phase diagrams.

Figure 3 presents stationary phase diagrams for various
filling factor values, capturing topological changes and pro-

viding a comprehensive characterization of phases through
their boundary layers. Solid lines denote bulk transitions,
while dashed lines indicate surface transitions. The notation
(Mk, Nk ) represents the boundary layer, where M, N ∈ {T,C}
signifies the type of the tanh-type/coth-type boundary layer
and k ∈ {l, b, r} describes its position, the left boundary,
bulk, or the right boundary. Theoretical critical values for μ

that correspond to qualitative changes can be obtained from
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Eqs. (30), (41), and (39) and are given by

μc1 = 0.25, μc2 = 0.5, and μc3 = 0.75. (55)

For μ � μc1 , the phase diagram is characterized by only
two stationary phases: ZC0/LD and ZC0/S [refer to Fig. 3(a)].
As μ increases within the range μc1 � μ � μc2 , four distinct
phases emerge, namely ZC0/HD, ZC0/MC, LD-ZC0/ZC1-
HD, and MC-ZC0/ZC1-MC, as evident from Fig. 3(b).
Beyond the critical value μc2 , the system undergoes substan-
tial topological changes both qualitatively and quantitatively,
with the addition of LD/ZC1 and S/ZC1 phases. So the phase
schema now exhibits a total of eight phases, as depicted in
Fig. 3(d). The domain occupied by the MC-ZC0/ZC1-MC
phase can be classified into two types. In one, the position of
the shock is contingent on the boundary parameters α − β,
while in the other, the position is consistently fixed at 0.5,
no longer influenced by the rates α and β. Thus, the latter
case can be categorized as a Meissner phase. After the criti-
cal value μc3 , two new phases emerge in the phase diagram
namely, MC/ZC1 and HD/ZC1, as shown in Fig. 3(e). At
this point, the phase diagram displays the maximum number
of phases and includes all possible phases for the system. A
further increase in the value of μ results in the shrinkage and
expansion of the phase regions [see Fig. 3(f)–3(h)]. Finally, in
the limit μ → ∞, the phase diagram becomes much simpler,
consisting of only seven phases as shown in Fig. 3(i) and the
results of Ref. [26] are recovered.

Now we emphasize a few observations that can be de-
rived from these phase diagrams. In all the phases of the
form ZC0/Q where Q ∈ {LD, HD, MC, S}, as confirmed by
Eq. (23), particles enter both lanes but exit exclusively from
lane B. The detachment (attachment) of particles from (to)
lane A (B) compels the particles to swiftly shift to lane B
on entry through lane A. Consequently, particle progression
occurs solely along lane B. In phases exhibiting zero particle
current in lane B and density equal to 1 (P/ZC1 form), par-
ticles enter exclusively through lane A, yet they exit through
both lanes. It is evident from Fig. 3 that these phases exist pri-
marily for smaller values of β, indicating that a slow exit rate
results in the accumulation of particles in lane B until a point
is reached where no particle movement becomes possible.
Thus, the mobility of the particles is only possible in lane A.

A noteworthy observation in the current system is the iden-
tification of two phases characterized by downward shocks.
Typically a downward shock refers to a sudden and significant
decrease in the particle density. Such types of shocks are
observed in the LD-ZC0/ZC1-HD phase and MC-ZC0/ZC1-
MC phase. In the LD-ZC0/ZC1-HD phase, the position of
the downward shock is given by Eq. (47) which depends on
two parameters, μ and β. This shock links a segment in the
low-density phase on the left to the zero-density phase on the
right in lane A. Simultaneously, in lane B, it connects a region
with particle density 1 on the left to the high-density phase on
the right. Furthermore, the location of this downward shock is
coordinated in both lanes. A similar observation applies to the
MC-ZC0/ZC1-MC phase, but the downward shock remains
within the interval [0,0.5]. When this position is precisely
equal to 0.5, we prefer to characterize the phase as the Meiss-
ner phase, as in this case, the density profiles are independent
of the boundary parameters α − β. In these phases, the entry

of the particles is limited solely through lane A. However,
owing to the attachment-detachment mechanism, their exit
is exclusively facilitated through lane B. Now we will dis-
cuss each of these shock phases in detail in the upcoming
section.

B. Shock dynamics and phase transitions

In this section, we commence our discussion by scrutiniz-
ing the characteristics of the diverse types of shocks present
in the system. There are four phases involving a discontinuity
in the density profiles, namely ZC0/S, S/ZC1, LD-ZC0/ZC1-
HD, and MC-ZC0/ZC1-MC. In the former two phases, there
is an upward shock confined to only one lane. Conversely, the
latter two phases display a synchronized downward shock in
both lanes.

1. Upward unsynchronized shock

Initially, our attention is directed towards examining how
the shock propagates in the ZC0/S and S/ZC1 phases
concerning variations in both the entry and exit rates.
This analysis relies on the analytical expression derived in
Sec. IV B 1 and IV B 2. The shock’s velocity in ZC0/S and
S/ZC1 phases is given by

V =
{
β − αeff , for ZC0/S phase,
βeff − ᾱ, for S/ZC1 phase,

where αeff and βeff is given by Eq. (25) and (38), respectively.
To achieve a stationary shock, the velocity must be zero, in-
dicating that β = αeff and βeff = ᾱ. The position of the shock
can be represented as follows:

xB = 1 − β − 2(μ − r)

α(2 − β )
, xA = 2 − ᾱ − 2(μ − r)

1 − 2ᾱ
,

corresponding to ZC0/S and S/ZC1 phase, respectively.
To analyze the behavior of the shock in the ZC0/S phase,

we fix μ = 0.4 and α = 2 and systematically vary the exit rate
β. In Fig. 4, we present density profiles, shock position, and
shock height for different values of β, providing a visual rep-
resentation of the shock’s dynamics. The observation reveals
that with increasing β, the shock moves from the left towards
the right and eventually reaches the left boundary of lane B,
as depicted in Fig. 4. Furthermore, the shock height decreases
linearly with respect to β. The corresponding value of height
of the shock is 
 = 1 − β − αeff = 1 − 2β and maintains a
positive value as xB approaches 0. This phenomenon suggests
the existence of a tanh-type boundary layer at the left end,
signifying a transition from the ZC0/S phase to the ZC0/HD
phase. Physically, this can be understood as follows. When
β = 0, signifying a zero exit rate, particles tend to accumulate
near the right end of lane B. As a result, the particle number in
the reservoir increases, ultimately enhancing the effective en-
try rate. Consequently, the particle density at the left end rises
while at the right end, it decreases, resulting in a reduction in
the height of the shock.

Conversely, in investigating the propagation of the shock
with fixed μ = 0.4 and β = 0.2, while varying α, it is noted
that the rapid movement of xA inversely correlates with α,
causing the shock height to shift swiftly from 1 to 0 (see
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(a)

(b)

FIG. 4. (a) Density profiles of particles in lane A with α = 2,
μ = 0.4 and β = 0.01, 0.05, 0.1, 0.15, and β = 0.24. (b) Position
and height of the shock in ZC0/S phase with respect to β for fixed
α = 2 and μ = 0.4. The variable 
 = 1 − β − αeff gives the height
of the shock. Symbols describe Monte Carlo results, while solid,
dashed, and dotted lines correspond to theoretical findings.

Fig. 5). Meanwhile, the shock height maintains a steady value
of 1 − 2β.

Comparable analyses can be employed to investigate the
S/ZC1 phase. When (μ, β ) is fixed at (0.9, 0.1), the shock
consistently moves towards the left and its height stabilizes
at a constant value of −β +

√
1 − 6β + β2 which can be

computed by utilizing Eq. (45).

2. Downward synchronized shock

Now we explore the shock dynamics for the phases in-
volving synchronized shocks in both lanes. Employing μ = 1
and β = 0.4, we continuously increase the entry rate of the
particles (refer to Fig. 6). The position and the height of the
shock in this category is given by

xs = 2(μ − r) − (1 − β )

2β
, 
 = β. (56)

The system enters this phase at α ≈ 0.58 just before which
the system manifests the ZC0/HD phase. As the value of
α increases, the position of the boundary layer starts shift-

(a)

(b)

FIG. 5. (a) Density profiles of particles in lane A with β = 0.2,
μ = 0.4 and α = 0.1, 0.2, 1, and β = 8. (b) Position and height
of the shock in ZC0/S phase with respect to α for fixed β = 0.2
and μ = 0.4. The variable 
 = 1 − β − αeff gives the height of the
shock. Symbols describe Monte Carlo results, while solid, dashed,
and dotted lines correspond to theoretical findings.

ing from the left end of the lanes to enter the bulk of both
the lanes and thus the system exhibits the LD-ZC0/ZC1-HD
phase constituting a downward shock in each lane. At the
critical value of α ≈ 1.34, this downward shock reaches the
right end of the lanes and the system transitions into LD/ZC1

phase. However, no change in the height of the shock occurs;
finally, a boundary layer of coth-type is detected in LD/ZC1

for both lanes. From the above analysis, one can conclude
that a second-order transition occurs from the ZC0/HD to
LD-ZC0/ZC1-HD to LD/ZC1 phase if one considers particle
density as the order parameter.

On investigation of the other scenario, i.e., fixing α = 0.8,
and changing β, we observe a continuous phase transition
from the LD-ZC0/ZC1-HD phase to the MC-ZC0/ZC1-MC
phase as shown in Fig. 7. At (α, β ) = (0.8, 0.28), the system
is in LD/ZC1. If one monitors the position and the height
of the shock, then they monotonically decrease and increase,
respectively, with an increasing exit rate up to β = 0.5. Both
of these values saturate at the point 
 = 0.5, thus violating the
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(a)

(b)

FIG. 6. (a) Density profile and (b) position as well as the height
of the shock in LD-ZC0/ZC1-HD phase for fixed (μ, β ) = (1, 0.4).
The variable 
 = β gives the height of the shock. Symbols describe
Monte Carlo results, while solid and dashed lines correspond to
theoretical findings.

condition of existence of the LD-ZC0/ZC1-HD phase. So the
system transitions into MC-ZC0/ZC1-MC phase indicating a
second-order continuous transition.

VII. SUMMARY AND CONCLUSION

To summarize, we offer a thorough overview of two to-
tally asymmetric simple exclusion lanes: one characterized
by particle detachment and the other by particle attachment.
In particular, the particles of a specific lane are compelled to
move vertically once the corresponding vertical site becomes
vacant. If this vertical movement is not feasible, then they
simply pursue horizontal motion along their designated lane.
Investigation of this interconnected system occurs within a
constrained resource setting, where the filling factor defines
the number of particles in the system. This restriction influ-
ences the entry rate of particles into the lanes.

The particle movement relies significantly on the vertical
site in the adjacent lane, so we employ the vertical cluster
mean-field technique to establish a theoretical framework.
This approach aids in deriving explicit expressions for the

(a)

(b)

FIG. 7. (a) Density profile and (b) position as well as the height
of the shock in the LD-ZC0/ZC1-HD phase for fixed (μ, α) =
(1, 0.8) and different values of β. The variable 
 gives the height
of the shock. Symbols describe Monte Carlo results, while solid and
dashed lines correspond to theoretical findings.

bulk stationary properties of each lane. However, to thor-
oughly analyze the system, we utilize singular perturbation
theory to explore the stationary properties of the system in
detail. To corroborate our analytical findings, we conduct
kinetic Monte Carlo simulations (equivalent to the Gillespie
algorithm) for validation, complemented by a numerical ap-
proach involving a finite-difference scheme applied to the
continuum version of the system.

By employing a combination of analytical and numeri-
cal methods, we investigate the influence of limited particle
resources on critical stationary properties of the system,
including phase diagrams, particle densities, and phase tran-
sitions. Our analysis reveals two types of stationary phases:
(i) one lane displays zero particle density, while (ii) the other
lane exhibits maximum particle density, each implying no
particle flow. The phase diagram undergoes notable qualitative
and quantitative changes as the particle count in the system
varies. Initially less complex, the phase diagram becomes
more intricate with an intermediate particle count, eventually
settling again into a simpler form. Specifically, the number of
phases transitions from 2 to 6 to 8 to 10, where it reaches
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its maximum before decreasing to 7 in the case of infinite
particle resources. This implies that the number of phases that
can persists follows a nonmonotonic trend with increasing
particles in the system. Each phase diagram exhibits both
bulk and surface transitions, the latter arising from the pres-
ence of a boundary layer in the system. Precisely, two types
of surface transitions, tanh and coth, are observed in the
system.

A salient feature of our study is the manifestation of both
upward and downward shock in the system. The bulk solution
to the left of an upward shock exhibits a smaller magnitude
compared to the bulk solution on the right side. Conversely, in
the scenario of a downward shock, this trend is reversed. The
system manifests two phases marked by an upward shock and
two phases defined by a downward shock. Under a specific
set of parameters, the upward shock is localized to one lane
within the system. Conversely, in the case of a downward
shock, both lanes experience this phenomenon, and the shocks
in both lanes are synchronized. We analyze the propagation
of shocks concerning changes in both entrance and exit rates,

aiming for a comprehensive understanding of the phase tran-
sitions occurring in the system.

The main objective of this proposed work is to reveal the
nonequilibrium stationary properties inherent in a two-lane
coupled system operating under constrained conditions. By
thoroughly investigating this system, we aim to shed light on
the intricate dynamics governing diverse biological and phys-
ical transport processes. We expect that the insights gained
from this study will not only advance our comprehension
of these complex phenomena but will also establish a basis
for future exploration in the broader field of nonequilibrium
systems, potentially impacting various scientific disciplines.
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