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The statistics of the diffusive motion of particles often serve as an experimental proxy for their interaction
with the environment. However, inferring the physical properties from the observed trajectories is challenging.
Inspired by a recent experiment, here we analyze the problem of particles undergoing two-dimensional Brownian
motion with transient tethering to the surface. We model the problem as a hidden Markov model where the
physical position is observed and the tethering state is hidden. We develop an alternating maximization algorithm
to infer the hidden state of the particle and estimate the physical parameters of the system. The crux of our
method is a saddle-point-like approximation, which involves finding the most likely sequence of hidden states
and estimating the physical parameters from it. Extensive numerical tests demonstrate that our algorithm reliably
finds the model parameters and is insensitive to the initial guess. We discuss the different regimes of physical
parameters and the algorithm’s performance in these regimes. We also provide a free software implementation
of our algorithm.
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I. INTRODUCTION

Since the early days of statistical mechanics, the statis-
tics of the stochastic motion of mesoscopic particles have
been an important experimental probe for their microscopic
properties. Most prominently, the Gaussian statistics of Brow-
nian motion provided experimental proof of the atomic
nature of matter [1–3] and were used to measure Avogadro’s
number [4]. Currently, new models are actively being devel-
oped to explain deviations from purely Brownian statistics
in biological and colloidal systems [5,6]. Of specific in-
terest are systems undergoing anomalous diffusion which
exhibit a Fickian behavior, i.e., a mean-square displacement
that is linear with time where the displacement statistics
are non-Gaussian [5–7]. These deviations from Gaussianity
can serve as an accessible probe for various experiments
[8–13].

In the analysis of such systems, two key sources for
non-Gaussianity are considered. First, particles may undergo
several different types of diffusion modes, stochastically
switching between them [14–19]. Second, particles may be
transiently confined to a small region [9,20–32]. In this work,
inspired by the experimental system of Chakraborty et al. [9],
we focus on the latter and specifically on two-dimensional
(2D) diffusion with transient tethering to the underlying sur-
face. Figure 1 depicts an example trajectory from such an
experiment. In such experiments, colloids or nanoparticles
are coated with molecules of interest (typically, peptides) and
undergo 2D diffusion on a surface coated with a different
molecule. The interaction between the molecules leads to
stochastic transient tethering of the particles to the surface.
The experiment aims to extract information regarding the
interaction between the peptides from the frequency of these
tethering and untethering events.

However, identifying these events may be challenging,
since the tethering to the surface is not directly observed but
rather needs to be inferred from the observed trajectories.
Several computational methods have been suggested to tackle
this in the past [22,24,31]. In this work we present a simple
and computationally efficient algorithm to infer tethering and
untethering events from observed trajectories and to estimate
the tethering and untethering rates, the diffusion coefficient,
and the effective confinement area of the interaction potential.
The algorithm is developed under the assumption that the
dynamics follows normal diffusion with Poissonian tethering
and untethering events, but can be easily extended to other
types of diffusion and tethering and untethering rates.

The structure of this paper is as follows. In Sec. II we
describe the stochastic hidden Markov model which we use
to model the problem, discuss the different timescales that the
model introduces, and define the regimes of model parameters
where our methods are valid. In Sec. III we describe our
algorithm and its underlying approximations. In Sec. IV we
present our numerical results on synthetic data. In Sec. V
we discuss the results and possible generalizations. The full
source code of the implemented algorithm is available on
GitHub [33].

II. STOCHASTIC MODEL

Our Markov model describes a particle alternating between
a freely diffusing state and a tethered state in two dimensions.
The transition between the states is modeled as a standard
two-state continuous-time Markov chain with characteristic
times τ0 and τ1, which are the inverses of the average rates
of tethering and untethering events, respectively. We denote
the state of the particle by S(t ), where S = 0 corresponds to
the free state and S = 1 to the tethered state. In the free state,
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the particle undergoes standard Brownian motion, while in
the tethered state, it is also confined to a harmonic potential
centered at the tether point X ∗(t ). Explicitly, the position of
the particle X (t ) follows an Ornstein-Uhlenbeck process with
a state-dependent potential

Ẋ (t ) = − k

γ
[X (t ) − X ∗(t )]S(t ) +

√
2Dξ (t ), (1)

where k is the spring constant, γ is the friction coefficient,
S(t ) ∈ {0, 1} indicates the free or tethered state, D is the dif-
fusion coefficient, and ξ is a standard two-dimensional white
noise 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). Observe that only the ratio
k/γ plays a role in the model, rather than k and γ individually.
We assume the particle is tethered to the point at which the
transition S = 0 → 1 occurs. More specifically, if the particle
becomes tethered at time t1 and remains tethered until unteth-
ering at t2, then X ∗(t ) satisfies

X ∗(t ) = X (t1) ∀ t ∈ [t1, t2). (2)

To summarize, the particle dynamics is modeled by a
continuous-time Markov process

F (t ) := (X (t ), S(t ), X ∗(t )). (3)

The model is specified by four parameters: τ0, τ1, D, and the
ratio k/γ . It is more convenient to work with the variable
A = Dγ /k, which is the characteristic area that the particle
explores in the tethered state. For notational purposes, we
group the model parameters as � := (τ0, τ1, D, A). Finally,
we note that A

D = γ

k has units of time. Its meaning is discussed
below.

The transition probabilities of S are Poissonian. In the
untethered state S(t ) = 0, the particle undergoes classic
Brownian motion. Hence its position at t + �t is normally
distributed around X (t ),

P(X (t + �t )) = 1

4πD�t
exp

(
− [X (t + �t ) − X (t )]2

4D�t

)
.

(4)

In the tethered state S(t ) = 1, the probability density function
of X (t + �t ) is given by the solution of the Fokker-Planck
equation with strong friction in a harmonic potential around
the anchor point X ∗(t ) [34],

P(X (t + �t )) = 1

2πA′(�t )
exp

(
−{X (t + �t ) − φ(�t )X (t ) − [1 − φ(�t )]X ∗(t )}2

2A′(�t )

)
, (5)

where we defined two auxiliary variables

φ(�t ) = exp

(
−D�t

A

)
, A′(�t ) = [1 − φ2(�t )]A. (6)

A. Discretized dynamics

The model defined above describes the full continuous-
time dynamics. In principle, we could use it to estimate
the model parameters � = (τ0, τ1, D, A). However, the ex-
perimental setup poses two difficulties. First, we can only
measure the particle positions X (t ) and do not have ac-
cess to the particle states S(t ) and tether points X ∗(t ). This
is the core challenge of the problem which we address in
Sec. III. Second, we only sample the process at discrete times
t1, t2, . . . , tN , separated by a finite time resolution �t = ti −
ti−1. To account for this, we define a discrete Markov process,
analogous to the continuous process, in which the tether point
is constrained to be one of the previously observed positions.
This discrete Markov process defines a sequence of random
states {Fn}N

n=1, where

Fn := F (tn) = (X (tn), S(tn), X ∗(tn)). (7)

The transition probabilities of Fn are given by the product of
the transition probabilities of S and X ,

P(Fn+1|Fn) = P(Sn+1|Sn; �)P(Xn+1|Fn; �), (8)

where X ∗
n+1 is uniquely determined by the history of {Xn} and

{Sn}, in accordance with Eq. (2):

X ∗
n+1 =

{
Xn+1 for Sn+1 = 1, Sn = 0
X ∗

n otherwise. (9)

The state transitions are Poissonian and to leading order in �t
read

P(Sn+1|Sn) =
{

1 − �t
τn

, Sn+1 = Sn
�t
τn

, Sn+1 
= Sn,
(10)

where τn = τ0 if Sn = 0 and τn = τ1 if Sn = 1. The distribu-
tion of the particle position in the next step follows Eqs. (4)
and (5),

P(Xn+1|Fn; �)

=
{

1
4πD�t exp[− 1

4D�t (Xn+1 − Xn)2], Sn = 0
1

2πA′ exp{− 1
2A′ [Xn+1 − φXn − (1 − φ)X ∗

n ]2}, Sn = 1,

(11)

where now φ and A′ are constants that depend on A and D
and the time step �t as in Eq. (6). Furthermore, we assume
that at the beginning of the measurement the particle is either
free (S1 = 0) or tethered at X1 (S1 = 1 and X ∗

1 = X1). Impor-
tantly, X ∗

n can only attain values among the previously visited
positions X1, . . . , Xn.

As usual for Markov processes, the probability of a trajec-
tory {Fn}N

n=1 is the product of the transition probabilities in
each step; thus the log-probability is additive:

log P({Fn}N
n=1; �)

= log P(F1) +
N−1∑
n=1

log P(Fn+1|Fn; �). (12)

An example trajectory generated from the discrete model is
depicted in Fig. 2.
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FIG. 1. Snapshot of an experimental microscopy video of
peptide-coated microparticles, in a system similar to that of
Chakraborty et al. [9]. The colored curve represents the top right
particle’s recorded trajectory in the 320 s preceding the snapshot.
The trajectory is colored based on time, as indicated by the timeline
at the bottom. During the time segment t ∈ [68, 294], the particle
is confined to a small region of space (shown in green) due to
tethering. (Image is courtesy of Amandeep Sekhon, Roy Beck, and
Yael Roichman).

B. Timescales

As seen above, the problem involves multiple timescales.
Three of them are given by the model parameters and rep-
resent the underlying physics: τ0, τ1, and A

D , which is the
equilibration time of the Brownian particle with the har-
monic potential. The other two timescales, �t and the total

Free

Tethered

FIG. 2. Example trajectory of N = 2000 steps generated from
the discrete model with τ0 = τ1 = 100, D = 1, and A = 0.5. The
sampling time step is �t = 1. The trajectory is color coded according
to the particle’s state, where blue and orange depict the free and
tethered states, respectively.

experiment duration T = tN − t1, are properties of the ex-
periment. We employ several realistic working assumptions
about these timescales that greatly reduce computational com-
plexity. First, we assume that τ0, τ1 � A

D , which physically
means that the rate of tethering and untethering events is much
smaller than the inverse of the harmonic equilibration time of
the particle. Violation of this condition means that the particle
can untether before the tethering potential has a significant
effect and thus tethering events will not be experimentally
discernible. This regime corresponds to standard Brownian
motion with an effective diffusion constant smaller than D.
Second, we require that �t � τ0, τ1 to avoid the possibility of
multiple transitions of tethering or untethering events within
a single sampling interval. This assumption is experimentally
realistic since modern cameras can easily achieve frame rates
higher than 103 Hz, and in many experiments τ0 and τ1 are
of orders of at least seconds [9,20,25]. In any case, if �t ≈
τ0, τ1, this would again correspond to an essentially pure
diffusive behavior in the discretized data. Third, if �t < A

D ,
the time discretization resolves the equilibration of a tethered
particle with its confining potential. Since our goal is only
to extract the physical parameters of the system, such reso-
lution does not add relevant information and only increases
the computational cost. Therefore, undersampling the discrete
dynamics to increase �t should not lead to a significant loss
of accuracy in the estimation of τ0 and τ1 but would greatly
reduce the search space. This is explicitly demonstrated in
Sec. IV. Even if the trajectories are experimentally measured
with small �t , we can safely downsample them such that
A
D � �t , or in other words φ � e−1 [cf. Eq. (6)]. For concrete-
ness, we mention the experimental parameters of the diffusing
nanoparticles system of Chakraborty et al. [9]. In this system,
τ0, τ1 ∼ 1 s, D ∼ 10 µm2/s, and A ∼ 1 µm2, which means a
sampling interval of �t = A

D = 0.1 s is sufficient and is easily
achievable experimentally. To summarize this, we assume the
following separation of timescales:

A

D
� �t � τ0, τ1. (13)

The leading-order expansion of Eq. (11), which is first order
in �t and zeroth order in φ, now reads

P(Sn+1|Sn) =
{

1 − �t
τn

, Sn+1 = Sn
�t
τn

, Sn+1 
= Sn,

P(Xn+1|Fn) =
{

1
4πD�t exp[− 1

4D�t (Xn+1 − Xn)2], Sn = 0
1

2πA exp[− 1
2A (Xn+1 − X ∗

n )2], Sn = 1,

(14)

where τn = τ0 if Sn = 0 and τn = τ1 if Sn = 1.
To conclude the discussion regarding timescales, Fig. 3

illustrates the section of phase space where our assumptions
hold (in time units of A

D ). For a point in the yellow region in the
figure, the farther it is from the two boundary lines, the better
the separation of scales is and the better our assumptions
hold. The marked points correspond to regimes that will be
analyzed in Sec. IV.
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min(τ0, τ1)
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Multiple transitions in Δt
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FIG. 3. Section of the phase space of �t , τ0, and τ1 in time units
of A

D . Note the logarithmic scale. The yellow region is where our
assumptions hold. The bottom horizontal boundary of the yellow
region corresponds to the inequality A

D � �t and the diagonal bound-
ary corresponds to the inequality �t � τ0, τ1. The bottom and left
regions are annotated according to the discussion in this section. The
markers correspond to the seven regimes analyzed in Sec. IV.

III. OUR METHOD

Our problem is as follows: In an experiment, we can mea-
sure the observed states {Xn}, but we do not have access to
the hidden states {Sn, X ∗

n } or to the model parameters � =
(τ0, τ1, D, A). We use the term hidden path to denote the
sequence of the hidden states {Sn}N

n=1 from which the sequence
{X ∗

n }N
n=1 can be determined. The goal is to infer the model

parameters � from a series of measurements. To this end, we
developed an alternating maximization algorithm [35], similar
to the classical expectation-maximization algorithm [36], to
estimate both the hidden states and the parameters of our
hidden Markov model.

If the hidden path is known, the problem of optimal pa-
rameter estimation is fairly standard and is typically solved
by maximizing the likelihood of the model parameters, which
according to Bayes’ rule is proportional to the exponential
of Eq. (12). Maximizing P(�|{Fn}) can be done numeri-
cally or using analytical approximations, as described below.
However, when the hidden path is not known, the likelihood
function to consider is

L(�|{Xn}) = P(�)

P({Xn})
P({Xn}|�) (Bayes)

= P(�)

P({Xn})

∑
{Sn}

P({Fn}|�), (15)

where the sum is over all 2N possibilities for the hidden
paths, P(�) is the prior probability distribution for the model
parameters, and the evidence P({Xn}) is a constant we may

ignore [37]. Recall that {Fn} = {Xn, Sn, X ∗
n } is the trajectory

of both the observed and hidden states of the particle, and
the log-probability of such a trajectory is the sum of the
log-probabilities of all the steps, as in Eq. (12). Computing
the sum in Eq. (15) is intractable for typical values of N .
However, numerical evidence shows that most hidden paths
are very unlikely and thus have a negligible contribution to
this sum. Taking a uniform prior P(�) = const, we posit that

logL(�|{Xn}) ∼ max
{Sn}

log P({Fn}|�). (16)

A key idea of our method is to use the right-hand side of
Eq. (16) as a proxy for the computationally intractable left-
hand side. It is analogous to the saddle-point approximation
from statistical mechanics, where the integral is replaced with
the maximum of the integrand. To compute the right-hand side
of Eq. (16), we only need to find the most likely hidden path
{Ŝn}N

n=1, given the model parameters �. This discrete opti-
mization problem can be efficiently solved using the Viterbi
algorithm from dynamic programming [37,38]. Below we
briefly describe the parameter estimation method and how
the Viterbi algorithm is implemented for our model. Then we
present our alternating maximization approach for estimating
the maximum-likelihood model parameters.

A. Parameter estimation

Given the most likely hidden path {Ŝn}, maximizing the
log-likelihood in Eq. (16) is maximizing a sum of the
logarithmic terms from Eq. (14). We use the following
maximum-likelihood estimators (MLEs) to approximate the
most likely model parameters:

τ̂0 := N00 + N01

N01
�t, τ̂1 := N11 + N10

N10
�t,

D̂ := 1

4(N00 + N01)�t

N−1∑
n=1

(1 − Ŝn)(Xn+1 − Xn)2,

Â := 1

2(N10 + N11)

N−1∑
n=1

Ŝn(Xn+1 − X ∗
n )2. (17)

Here Ni j is the number of i → j transitions of Ŝn that occur
along the trajectory. The derivation of these estimators is
trivial by taking the derivative of Eq. (16) with respect to each
model parameter and equating to zero.

B. Finding the most likely sequence of states

We now describe how to find the maximum-likelihood path
{Ŝn}, conditioned on the model parameters �. Recall that the
tether point X ∗

n can only assume one of the previously visited
positions X1, X2, . . . , Xn [see Eq. (9)]. We represent the set of
all possible paths as a directed layer graph (Fig. 4), known
as a trellis in the Viterbi literature. In this graph, columns
correspond to the discrete time n and rows to the tether point
X ∗

n , which can be either one of X1, . . . , Xn or free (untethered).
Each vertex represents the state of the particle at time n and
each path from left to right corresponds to a specific sequence
of tethered and free states.

We set the edge weights to be the logarithm of the transi-
tion probabilities between states according to Eq. (8). With
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FIG. 4. Trellis graph of the observed and hidden states, given
the observed particle positions X1, . . . , X4. Each node represents a
different state Fn = (Xn, Sn, X ∗

n ), with the row corresponding to the
hidden state and the column to the time n and the observed state
Xn. The edges represent allowed state transitions and are weighted
according to the logarithm of Eq. (8). Each trajectory {Fn} is given as
a path on the graph that advances from left to right.

this choice of edge weights, the log-likelihood of a path
[Eq. (12)] is just log P(F1) plus the sum of edge weights
along the corresponding path in the graph. Thus, finding the
maximum-likelihood sequence of hidden states is reduced to
the problem of finding the path of maximum weight in a
directed layer graph. The latter problem is efficiently solved
using the Viterbi algorithm [38]. This algorithm scans the
trellis column by column from left to right and computes, for
each vertex, the maximum-weight path that ends at that vertex.

C. Alternating maximization algorithm

Given an estimate of the hidden path {Sn}, we can apply
Eq. (17) to obtain the maximum-likelihood estimate of the
model parameters � = (τ0, τ1, D, A). Conversely, given an
estimate of the model parameters �, it is easy to find the
maximum-likelihood hidden path using the Viterbi algorithm
as explained in the preceding section. Combining these two
observations naturally leads to an alternating maximization
procedure for estimating both the most likely model param-
eters �̂ and the most likely hidden path.

(1) Initial guess. Guess an initial value �̂(0) for the four
model parameters.

(2) Path maximization step. Conditioned on the current
parameter estimate �̂(m), apply the Viterbi algorithm to find
{S(m)

n }N
n=1, the most likely hidden path given �̂(m),

S(m) := arg max{Sn}L({Sn}|�̂(m), {Xn}). (18)

(3) Parameter maximization step. Use Eq. (17) to obtain
the maximum-likelihood estimate of the model parameters
conditioned on the current estimate of the hidden path,

�̂(m+1) := �̂({S(m)}, {Xn}). (19)

(4) Convergence. Alternate between steps 2 and 3 until
|θ̂ (m+1) − θ̂ (m)|/θ̂ (m) � ε for each θ̂ ∈ �̂.

Since the sample space is discrete, convergence typically
occurs exactly, i.e., �̂(n+1) = �̂(n). However, in our exper-
iments we used ε = 10−3 to stop the iterations when the
relative change is small. The specific threshold 10−3 is in-
consequential. Furthermore, we set the maximum number of

iterations to 20, to prevent the possibility of infinite loops
that alternate between several discrete hidden paths without
satisfying the convergence criterion (in practice, less than ten
iterations typically suffice for convergence). We also define a
criterion for divergence: If after the parameter maximization
step the estimators τ̂0 or τ̂1 exceed the arbitrary threshold of
0.9T , we say the algorithm diverged and stop the iterations.
This is done to avoid cases where the particle is estimated to
stay tethered or untethered for the entire sampling time due to
an unphysical divergence of the MLEs. In practice, we test the
regimes where T � τ0, τ1 and most runs do not diverge. We
say the algorithm has converged if the convergence criterion
was satisfied without first triggering the divergence criterion.

The Viterbi algorithm scans each edge on the graph once,
leading to an O(N2) complexity. However, most paths are not
likely, e.g., a path where at some point Sn = 1 and (Xn −
X ∗

n )2 � A, meaning the particle roams far from its tether
point. To improve the running time, we implemented edge
pruning of the trellis graph. Specifically, we discard the paths
of all but the q most likely tethered nodes at each time step
(column) during the algorithm’s execution. This reduces the
complexity to O(qN ). In our tests, we used q = 10, which
showed no significant impact on the results compared to no
pruning.

In the Appendix we discuss an extension of our algorithm
that outputs the K most likely hidden paths rather than the
single best path. We generally found that the 100 most likely
paths yield similar parameter estimates, so the results in the
rest of this paper use K = 1.

D. Bootstrap bias correction

For reasons that will be discussed in Sec. IV, the MLE
predictions for the model parameters give very good estimates
of D and A, but consistently overestimate the waiting times τ0

and τ1. This overestimation can be largely corrected by using
a parametric bootstrap procedure [39]. The idea is simple:
Define the bias � as the expected difference between the MLE
and the true parameters: � = 〈�̂〉 − �. Assuming the bias
does not depend sensitively on � itself, one can estimate �

by simulating trajectories with parameters �̂ and rerunning
the procedure on this simulated data (for which we know the
true parameters). This is done as follows.

(i) Apply the alternating maximization algorithm described
in Sec. III C to obtain the MLE �̂.

(ii) Generate M random trajectories using �̂ as the “true”
simulated model parameters.

(iii) Apply the alternating maximization algorithm to each
simulated trajectory, yielding the estimated model parameters
�̂′

i for 1 � i � M.
(iv) The bias is estimated by the median value of the ob-

served biases,

�̂ := median
1�i�M

(�̂′
i − �̂) .

(v) Finally, the bias is used to correct the original estimate,
that is, the bias-corrected estimate for the true model parame-
ters is given by

�̂B = �̂ − �̂. (20)
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TABLE I. True model parameters, accuracy, and estimated parameters (mean ± standard deviation) for the seven regimes analyzed using
the alternating maximization algorithm (Sec. III C) without bias correction. The accuracy is defined as the fraction of time steps at which the
algorithm correctly predicted both the tethered state S and the tether point X ∗.

Regime D, A �t τ0 τ1 Accuracy (%) τ̂0 τ̂1 D̂ Â

1 1 10 100 100 96 ± 2 131 ± 24 130 ± 19 1.00 ± 0.05 0.99 ± 0.05
2 1 1 100 100 94 ± 2 122 ± 21 122 ± 16 1.00 ± 0.01 0.99 ± 0.02
3 1 0.5 100 100 88 ± 4 125 ± 22 123 ± 17 1.00 ± 0.01 0.99 ± 0.02
4 1 10 50 50 93 ± 2 77 ± 11 75 ± 8 0.99 ± 0.05 0.98 ± 0.05
5 1 10 20 20 87 ± 2 47 ± 9 43 ± 5 0.97 ± 0.06 0.94 ± 0.06
6 1 10 200 50 96 ± 1 356 ± 95 79 ± 12 0.99 ± 0.04 0.97 ± 0.09
7 1 10 50 200 97 ± 2 60 ± 11 248 ± 43 1.01 ± 0.08 1.00 ± 0.04

Note that the median is calculated for each parameter θ ∈
� independently. We chose to estimate �̂ using the median
since it is robust to outliers and we found that it gave better
results in mean-square error.

IV. RESULTS

We test the algorithm’s performance on synthetically gen-
erated trajectories, whose model parameters � are known.
The implementation of the algorithm in PYTHON, as well as
the code to generate all figures in this paper, is available at
[33].

In all trajectories, we use D = 1 and A = 1 and a total
experiment duration of T = 10 000. Note that both D and A
can always be set to unity by properly choosing length and
time units, so this choice is without loss of generality. Thus,
each experiment is specified by three scalars, the sampling
time �t and the model parameters τ0 and τ1, all expressed in
time units of A

D = 1. We focus on seven different regimes of
� and �t , detailed in Table I. We mention that the conditions
in Eq. (13) are barely satisfied in regimes 3 and 5. This is
intentional, as we wish to test the algorithm slightly beyond
its bounds.

A. Stability

As described above, the algorithm requires an initial
guess of the model parameters �̂(0). We found empirically
that the algorithm converges to a single fixed point almost

regardless of the initial parameters. To demonstrate this, we
show in Fig. 5 the results of the algorithm when applied to
a single observed trajectory corresponding to regime 1, with
1000 different �̂(0)′s, randomly drawn from a log-uniform
distribution spanning two decades around �. We mention
this experiment’s wide distribution of initializations �̂(0) is
intended to illustrate the algorithm’s stability, and in a prac-
tical situation, better priors can often be used, especially for
D and A. The convergence for other regimes is qualitatively
similar and is not shown here. Out of the 1000 algorithm runs,
960 converged and only these runs were taken into account
in the figure. Since the outcome of the algorithm is largely
independent of the initial guess, in what follows we use the
true model parameters � as the initial guess �̂(0).

B. Recovering the parameters and hidden states

For each of the regimes in Table I, we generated 1000 syn-
thetic trajectories and ran the algorithm with initial parameters
that are equal to the true model parameters, as discussed in the
preceding section regarding stability. Over 98% of the runs in
each regime have converged (the other runs entered a loop
and stopped after the maximum number of iterations). Runs
that converged typically did so within three to eight iterations.
We define the accuracy as the fraction of time steps for which
the algorithm predicted both the correct state Sn and tether
point X ∗

n (if Sn = 1). The mean and standard deviation of the
accuracy over all converged runs are detailed in Table I. It can
be seen that the accuracy is fairly high in all regimes and that

0 2 4 6 8 10 12
Iterations

10−1

100

101

τ̂0/τ0

0 2 4 6 8 10 12
Iterations

τ̂1/τ1

0 2 4 6 8 10 12
Iterations

D̂/D

0 2 4 6 8 10 12
Iterations

Â/A

FIG. 5. The algorithm is insensitive to the initialization �(0). Here we show the evolution of the estimators τ̂0, τ̂1, D̂, and Â of the four
model parameters along the algorithm iterations over a single synthetic trajectory. The values are normalized by the true parameter values
so that a perfect prediction would be unity in all panels. The first iteration is the initial parameter guess. We drew 1000 initial guesses at
random from a log-uniform distribution around the true value and ran the algorithm, keeping only the 960 runs that converged. The evolution
of the estimators of each (converged) run is shown, exhibiting a strong convergence towards a single fixed point. Note that the vertical axis is
logarithmic. The red dashed line represents the most likely parameter value, given the true hidden path. It does not coincide, in general, with
the true model parameters.
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FIG. 6. Distribution of the algorithm’s estimates of physical model parameters for regimes 1, 2, and 3 with τ0 = τ1 = 100 and �t =
10, 1, 0.5, respectively. The dashed lines represent the true parameter value. The top row shows the maximum-likelihood estimates of the
alternating maximization algorithm. The bottom row shows the estimators after the bootstrap bias correction procedure.

it decreases as �t approaches A
D from above or τ0 and τ1 from

below, consistently with the constraints of Eq. (13).
Next we examine how well the algorithm recovers the

model parameters. For each regime, Table I depicts the mean
and the standard deviation of the algorithm’s estimates �̂ =
(τ̂0, τ̂1, D̂, Â) over all converged runs. These results exhibit
two clear trends: The temporal parameters τ0 and τ1 are con-
sistently overestimated, while the spatial ones D and A are
correctly estimated (although there is a very slight yet consis-
tent underestimate of A in most regimes). The overestimate of
the temporal parameters ranges from 20% to 120% and will
be discussed in Sec. IV C.

To investigate the effect of the sampling time �t , we focus
on the three regimes 1, 2, and 3, which differ only by �t (see
Table I). The distributions of the estimated model parameters
are depicted in the top row of Fig. 6. Note that the centers
of the distributions hardly change with �t . This supports the
claim described in Sec. II that the sampling time can be in-
creased without losing information, as long as Eq. (13) holds.
We mention that the width of the distribution for the spatial
parameters D and A decreases with �t . That is to be expected
since the accuracy of the MLEs increases with N , but for a
fixed T , the number of samples N is inversely proportional to
�t .

By focusing on regimes 1, 4, and 5, the effect of τ0 and τ1,
when they are equal, can be isolated. As τ0 and τ1 decrease,
the accuracy decreases and the relative overestimate of τ0 and
τ1 increases. This is consistent with Eq. (13), since decreas-
ing τ0 and τ1 challenges the assumption that �t � τ0, τ1.
Finally, regimes 6 and 7 explore the case of τ0 
= τ1. Note
that when τ0 < τ1, i.e., when the particle is more likely to be
tethered than free, the parameter estimates are better, with less
overestimation for the temporal parameters, compared to the
opposite case.

C. Overestimation and bias correction

As seen in Table I and Fig. 6, while the spatial parameters
D and A are correctly estimated to high accuracy, the temporal

parameters τ0 and τ1 are consistently overestimated, with an
increasing overestimation as τ0 and τ1 decrease compared
to �t . This bias is due to a systematic misidentification of
brief tethered or untethered intervals. More specifically, if the
particle tethers and then untethers (or vice versa) over a short
time window, the likelihood is dominated by the temporal
terms (regarding Sn) in Eq. (14) over the spatial terms. As a
result, the likelihood of a trajectory that stays in the same state
is higher than that of a trajectory that switches tethering states
twice within this short interval, even if the true dynamics
involved such a switch.

To see this, take a short time interval of l steps, in which
the particle does not move much. Compare two sequences of
hidden states, one in which the particle is tethered in the first
step and untethered in the last one, and one in which it is
free throughout the time window (a similar argument holds
for the opposite scenario). Taking the difference between the
log-likelihoods of the two hidden trajectories using Eq. (14)
and expanding to leading order in l , we obtain

�L = 2 log

(
1 − �t/τ

�t/τ

)
+ O(l,�t2), (21)

where for simplicity we took τ0 = τ1 = τ . For short time
windows, this tends to be positive since �t � τ0, τ1, with the
first term slowly diverging as �t → 0.

In addition, since the distribution of the free and tethered
interval durations times is exponential, it is dominated by such
short intervals, which are systematically misclassified by the
MLE estimates. An example of this phenomenon is illustrated
in Fig. 7. Since the MLE estimates for τ0 and τ1 [Eq. (17)]
are inversely proportional to the number of switching events,
missing brief tethering and untethering intervals leads to over-
estimation of the waiting times. We correct this bias using
a parametric bootstrap procedure, as described in Sec. III D.
The bottom row of Fig. 6 shows the distribution of the bias-
corrected estimates �̂B, which are concentrated within a small
region around the true value. Note that although the mode of
the distributions for τ0 and τ1 is slightly biased, the means
of the distributions are close to the true values, as evident in
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FIG. 7. Hidden paths of a single trajectory realization with N =
300 steps, τ0 = τ1 = 100, D = 1, A = 1, and �t = 10. The true
hidden path is at the top. In the middle are the ten most likely hidden
paths conditioned on the true parameters, with the upper row being
the most likely. At the bottom are the ten most likely hidden paths
given the algorithm’s estimated model parameters, again with the
upper row being the most likely. Blue intervals correspond to the
free state and orange intervals correspond to the tethered state.

Table II. Importantly, the bootstrapping successfully mitigates
the bias in the rate estimation without affecting the already ac-
curate estimates of D and A. In our simulations we generated
M = 100 bootstrapping trajectories (cf. Sec. III D) for each
analyzed trajectory.

V. DISCUSSION AND OUTLOOK

We developed and tested an efficient and accurate al-
gorithm to analyze trajectories of diffusing particles with
transient tethering, to identify tethering and untethering
events, and to estimate the physical parameters of the system.
The crux of our method is using the Viterbi algorithm to
find the most likely sequence of hidden states, estimate the
most likely model parameters for that sequence, and then bias
correct the estimates using a parametric bootstrap procedure.
Our algorithm successfully recovers the model parameters
and is largely insensitive to the parameter initialization. It
is applicable when the time interval between frames �t is
significantly shorter than the typical tethering and untethering
times and longer than, or comparable to, the equilibration time

of the particle with the tethering potential. When the latter
condition is not met, downsampling of the time series can be
performed without significant loss of accuracy in estimating
the physical parameters.

Our method as presented above only applies, of course,
to normal 2D diffusion with Poissonian transient tethering.
However, it can be readily generalized to other situations. For
example, it can easily be generalized to a different spatial
dimension (d 
= 2) by adjusting the prefactors in Eq. (11).
In higher dimensions, the aforementioned misidentification
of brief tethered intervals should be less prominent since
a sequence of short steps becomes less likely (no recur-
rence). Other diffusive statistics (anomalous diffusion) or
non-Poissonian tethering and untethering can also be mod-
eled by adjusting the transition probabilities [Eq. (14)]. For
example, it could incorporate a drift term or an observational
error term for position samples, as in Bernstein and Fricks’s
work [22]. However, one must assume a specific functional
form for the diffusion and tethering dynamics; in the regime
in which we are working, only a few dozen tethering and
untethering events per trajectory are observed. Hence, due to
the small sample size, statistical goodness-of-fit tests would
lack sufficient power to distinguish, e.g., between Poissonian
and non-Poissonian tethering.
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APPENDIX: THE K MOST LIKELY PATHS

Our saddle-point approximation in Eq. (16) replaces the
sum over all hidden paths with the likelihood value of the
single most likely path. An immediate generalization is to
sum over the top K likeliest paths, which would improve the
estimation accuracy of L. Given the top K likeliest paths, we
can estimate the model parameters as a weighted sum of the
MLEs of each path [cf. Eq. (17)] as

�̂[K] =
∑K

i=1 P({Fn}[i]|�)�̂({Fn}[i] )∑K
i=1 P({Fn}[i]|�)

, (A1)

TABLE II. True model parameters vs their bootstrap bias-corrected estimates for the seven regimes analyzed. The estimates display the
mean and a 95% confidence interval. We used M = 100 synthetic bootstrap trajectories per analyzed trajectory.

Regime D, A �t τ0 τ1 τ̂B
0 τ̂B

1 D̂B ÂB

1 1 10 100 100 102 (71–141) 100 (73–139) 1.00 (0.91–1.08) 1.00 (0.91–1.08)
2 1 1 100 100 98 (73–129) 100 (76–138) 1.00 (0.97–1.03) 1.00 (0.97–1.03)
3 1 0.5 100 100 101 (75–137) 101 (69–133) 1.00 (0.99–1.02) 1.00 (0.98–1.03)
4 1 10 50 50 49 (38–64) 49 (36–61) 1.00 (0.92–1.08) 0.99 (0.87–1.07)
5 1 10 20 20 18 (9–28) 19 (11–26) 0.98 (0.88–1.11) 0.98 (0.87–1.10)
6 1 10 200 50 190 (100–316) 51 (32–77) 1.00 (0.92–1.06) 0.99 (0.85–1.16)
7 1 10 50 200 51 (36–76) 198 (131–295) 1.00 (0.87–1.20) 1.00 (0.94–1.08)
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where {Fn}[i] is the trajectory corresponding to the ith most
likely hidden path. Finding the K highest likelihood paths can
be easily done by a slight modification of the Viterbi algo-
rithm, also known as list Viterbi [40,41]. The modification is
discarding all but the K most likely paths ending at each node
rather than all but the most likely path. Doing this increases
the computational complexity by K2.

In our numerical tests, we found no significant improve-
ment in the results when increasing K up to K = 100. This
is because the K most likely paths are very similar, differing
from each other in just a few steps, leading to very similar
MLEs of �. Typically, the top paths only differ by slight
perturbations of the tethering and untethering times and do
not display qualitative differences.

To demonstrate this, Fig. 7 depicts the true hidden path of a
single trajectory along with the top K = 10 most likely hidden
paths. The likelihood of these paths can be computed with re-
spect to either the most likely parameters given the true hidden
path (“oracle”) or the estimated �̂ (without bootstrapping).
It is seen that this choice does not significantly change the
result, and the most likely hidden paths are all qualitatively
very similar, differing by just a few steps from each other,
and are similar to the true hidden path. They miss the brief
tethered interval at time t = 93 and the brief free interval at
time t = 220. Because the results were similar for K up to
100, in Sec. IV we presented only results pertaining to K = 1.
However, using K > 1 top paths may be beneficial in other
regimes.
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