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Structural transition, orientational order, and anomalous specific heat in a two-dimensional
dimer crystal of core-softened particles

D. Pini ,1 T. Rovelli,1 F. Mambretti ,2,3 and D. E. Galli 1

1Università degli Studi di Milano, Dipartimento di Fisica “Aldo Pontremoli”, via Celoria 16, 20133 Milano, Italy
2Istituto Italiano di Tecnologia, via Melen 83, 16152 Genova, Italy

3Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, via Marzolo 8, 35131 Padova, Italy

(Received 19 December 2023; accepted 21 February 2024; published 25 March 2024)

Systems featuring hard-core–soft-shell repulsive pair potentials can form ordered phases, where particles
organize themselves in aggregates with nontrivial geometries. The dimer crystal formed by one such potential,
namely, the hard-core plus generalized exponential model of order 4, has been recently investigated, revealing
a low-temperature structural phase transition, with the onset of nematic ordering of the dimers. In the present
work, we aim to characterize this phase transition via a mean-field theory, by which a detailed analysis of the
low-temperature properties of the system is carried out under quadrupole approximation. We determine the
transition temperature and identify its order parameter, highlighting the link between the structural transition
and the nematic ordering of the system. The first-order character of the transition is established and supported by
the Landau expansion of the free energy in powers of the order parameter. The theory is subsequently generalized
to take into account lattice vibrations and dimer length fluctuations. Finally, we provide an explanation for the
anomalous behavior displayed by the specific heat in the vanishing-temperature limit, which is also supported
by Monte Carlo simulations.
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I. INTRODUCTION

In the soft-matter field, the effective interactions between
complex molecules can generate phases which look highly
different from those formed by their atomic constituents [1].
Soft materials are indeed made by units (much larger than
atoms but also much smaller than the overall system size)
which are sometimes found to form nontrivial structures, even
in presence of purely pairwise forces.

An important class of interactions for which this occurs
are the purely repulsive, yet bounded potentials belonging to
the so-called Q± class [2], whose Fourier transform changes
sign and reaches a negative absolute minimum at a nonvan-
ishing wave vector km. For this kind of interactions, the very
soft character of the shell repulsion acts in such a way that
the overlap energy cost is almost independent of the mutual
distance of the particles. Particles may then find preferable to
self-organize into domains made up of overlapping particles
separated by relatively large gaps, so that the interactions
between particles belonging to different domains is very weak
[3]. As a consequence, at low temperature or high density
these interactions favor a transition from the fluid to a cluster
crystal, whose lattice constant is determined by the interaction
itself, and is then essentially state-independent [4,5].

The phenomenology is further enriched by combining this
bounded repulsion with a hard-core, singular wall at shorter
distance, resulting in potentials of the hard-core–soft-shell
type, which serve as abstract models for the effective inter-
actions in several systems, from colloids to polymers [6–12].
Unlike bounded potentials, which lead to structureless, point-
like aggregates, such interactions can give rise to complex

geometries, largely different from the usual close packing of
spheres. Several of these nontrivial structures spontaneously
present clusters, stripes, or rings [13–16].

In such a framework, we recently investigated the clus-
ter phases of one-dimensional (1D) soft rods [17] and
two-dimensional (2D) soft disks [18] interacting via purely
repulsive potentials. In particular, in Ref. [18] we considered
a specific instance of hard-core–soft-shell interaction, namely,
the hard-core plus generalized exponential model of order
4 (HCGEM4) whose functional form is given in Sec. II, at
a density such that clusters consist of just two particles at
contact, resulting in a crystal of interacting dimers. We fo-
cused on the case in which the dimer length is much smaller
than the lattice constant, so that each dimer is free to rotate
with no steric hindrance from dimers on neighboring sites,
and addressed the problem of determining the orientational
order describing the lowest-energy configuration of the dimer
crystal. To this end, we employed both Monte Carlo and
Parallel Tempering numerical simulations at extremely low
temperature, and a gradient minimization method of the po-
tential energy of the system.

That study showed that, at zero or very low temperature,
the dimers align along the same direction. With a slight lexical
abuse, we shall refer to such a configuration as a nematic state,
even though we are aware that this term is generally used to
designate orientational order in liquid crystals which, unlike
the system considered here, are not in a crystal state.

Rather than the kind of ordering per se, the more interesting
result is the fact that, as was previously reported for a similar
system of particles interacting via a hard-core plus square-
shoulder potential [13,14], such a nematic state is achieved at
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the price of a deformation of the triangular lattice, which de-
scribes a 2D crystal of HCGEM4 dimers (or, more generally,
clusters) in the absence of orientational order. Specifically, the
dimers arrange on a less symmetrical centered rectangular lat-
tice, obtained from the triangular lattice by making one of the
sides of each of the triangles which tessellate the plane shorter
than the other two, to turn them from equilateral to isosceles.
For short dimers the extent of this deformation is very small,
but nevertheless it is crucial to stabilize the nematic phase.
In fact, requiring artificially that the lattice remains triangular
would lead to a very different kind of orientational order [18].

This result indicates that, besides the well-known fluid-
crystal transition mentioned above, there should be another
structural transition at lower temperature from the triangular
to the centered rectangular lattice. Moreover, such a transition
should be related to the one which leads from the orientation-
ally disordered to the nematic phase, even though in principle
the two transitions do not necessarily coincide.

The study of the structural transition and its relationship
to the onset of the orientational order of the dimers is the
subject of the present investigation. To this end, here we have
focused on the HCGEM4 model at the same density consid-
ered in Ref. [18] and in the regime where the temperature
is sufficiently low for it to form a dimer crystal, but the
same analysis could be carried out for any hard-core plus Q±
potential in the density and temperature range appropriate for
dimer formation.

After introducing the model potential and briefly recalling
the main features of clustering in the GEM4 and related in-
teractions in Sec. II, we introduce a mean-field approach to
describe the system in Sec. III. Specifically, in Sec. III A we
develop a general formulation of the theory, which is then
simplified by introducing the quadrupole approximation in
Sec. III B. This treatment allows one to obtain the Helmholtz
free energy and the probability distribution of the dimer ori-
entation, and naturally leads to the identification of the order
parameter of the structural transition, expressing the extent
of the deviation of the crystal structure from the triangular
lattice. Moreover, we find that the structural and orientational
transitions actually coincide: formally, this is expressed by
the explicit dependence of the nematic order parameter on the
structural order parameter.

The main features of the transition resulting from the
present description are considered in Sec. III C, where a Lan-
dau expansion of the free energy is performed as a function
of the structural order parameter, and it is found that its form
is characteristic of a first-order transition. The expression of
the transition temperature and the discontinuities of the order
parameter and of the specific heat at constant volume at the
transition are also determined to leading order in the dimer
length.

Since the above results are based on the minimization of
the mean-field Helmholtz free energy in a certain subset of
all possible lattice deformations, in Sec. III D it is shown that
the minimum remains stable even when all deformations com-
patible with the given density are considered. Subsequently,
in Sec. III E the theory is expanded to account for thermal
fluctuations in the positions of the lattice sites and of the dimer
length. This adds no new information about the qualitative
features of the transition, but nevertheless it is important to do

so, given that in the system at hand those degrees of freedom
are actually present.

Even though an extended comparison between the predic-
tions of the mean-field approach and the simulation results is
deferred to a future publication, here we have also performed
some Monte Carlo simulations to evaluate the specific heat at
temperatures much lower than the transition temperature. The
simulation method is described in Sec. IV.

In Sec. V the results obtained via the numerical minimiza-
tion of the mean-field Helmholtz free energy are presented
and discussed. These include the transition temperature for
different dimer lengths and the temperature dependence of
the structural and nematic order parameters and of the spe-
cific heat. Special attention is paid to the explanation of the
behavior of the specific heat at very low temperature, where
both theory and simulation display a deviation from the limit
expected on the basis of the equipartition of energy.

Finally, in Sec. VI we summarize the main results of the
study and draw our conclusions. In order not to make the
exposition too cumbersome, some technical points considered
in Secs. III and V have been derived in detail in Appen-
dices A–D.

II. MODEL POTENTIAL

The pair interaction considered in this work, following
Ref. [18], has a soft part which is a generalized exponential
model of order 4 (GEM4) [4,5,19]

w(r) = ε exp[−(r/R)4], (1)

as a function of the interparticle distance r. R and ε set the
range and strength of this potential, respectively. We then add
a repulsive hard-core of diameter 2δ, obtaining the HCGEM4
potential φHCGEM4(r) given by

φHCGEM4(r) =
{∞ r < 2δ,

ε exp[−(r/R)4] r � 2δ.
(2)

In the following, 2δ will range from 0.05 R to 0.25 R, corre-
sponding to a shell-to-core ratio equal to 20 and 4 respectively
(note that in Ref. [18] the hard-core diameter was denoted
by δ).

As extensively discussed in previous works [4,5], the
GEM4 potential belongs to the Q± class mentioned in Sec. I,
its Fourier transform reaching the absolute minimum at km =
5.09618 R−1. Q± interactions tend to display spontaneous
density modulations, which at low temperature or high density
manifest themselves as inhomogeneous, periodic phases, with
a periodicity dictated by km [5].

At variance with atomic crystals, where each lattice site
is occupied by a single particle and a change in the number
density ρ necessarily entails a change in the lattice spacing,
in these systems more particles pile up at the same lattice
site and a change in ρ is achieved by changing the site oc-
cupation number nc, while leaving the lattice spacing nearly
unchanged. This implies a linear relation between ρ and nc,
which for the triangular lattice reads

ρ =
√

3 k2
m

8π2
nc. (3)
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In this study, as in Ref. [18], we have considered the sys-
tem at fixed density ρ = 1.13971R−2, obtained from Eq. (3)
by setting nc = 2 and km = 5.09679R−1. The latter value is
slightly different from that of the GEM4 potential reported
above, because it corresponds to the “regularized” HCGEM4
interaction used in the simulations, see Sec. IV, whereby the
hard-core repulsion is replaced by a step of finite amplitude,
and the step function is included in the evaluation of the
Fourier transform. Either choice of km is acceptable, because
in both cases ρ belongs to the density interval where, at low
temperature, a monodisperse dimer phase is formed.

In fact, in the low-temperature regime thermal motion is
unable to redistribute particles among lattice sites, and nc is
bound to assume integer values. As a consequence, densities
which according to Eq. (3) would correspond to nearly integer
nc are obtained by keeping nc integer, and slightly changing
the lattice constant with respect to the optimal value. Instead,
densities corresponding to noninteger nc lying midway be-
tween two consecutive integers, say n and n + 1, are actually
obtained by having phases with nc = n and nc = n + 1 coexist
with each other [20,21]. The latter instance is not relevant
here, where we are interested in the case of dimer formation,
such that nc = 2.

For the HCGEM4 potential, dimers are not point-like ob-
jects, since the hard-core repulsion prevents the two disks on
each site from fully overlapping. Hence, the orientation of
each dimer becomes a relevant degree of freedom.

III. MEAN-FIELD THEORY

A. General formulation

We consider N particles mutually interacting via the
HCGEM4 potential of Eq. (2), arranged as an assembly of
N/2 dimers on a 2D crystal lattice. In this section, as well as
in Secs. III B–III D, we shall not take into account thermal
oscillations of either the lattice sites or the dimer length.
The latter then coincides with the hard-core diameter 2δ of
the potential at all temperatures. The position of the dimer
particles at site i = 1 . . . N/2 can be expressed as

xi,σ = Ri + σδi, (4)

where Ri is the position of the i site, σ = ±1 is the index
identifying the two particles of the dimer, and δi is the vector
of length δ connecting the center of the dimer with, say,
particle 1. A given configuration is then identified by the
angles ϑ1 . . . ϑN/2, 0 � ϑi < 2π for each i, which specify the
orientation of the dimers with respect to a fixed direction,
that we identify with the x axis. We remark that, since the
two particles in a dimer are distinguishable, the angles ϑi and
ϑi + π represent different configurations, although the two are
of course degenerate. The potential energy of the system is

U = 1

2

∑
i �= j,σ,σ ′

w(Ri − R j + σδi − σ ′δ j ) + N

2
w(2δ), (5)

where w(r) is the GEM4 potential of Eq. (1). The first and
second term of Eq. (5) refer respectively to the interdimer
interaction between the dimers at different sites, and to the
intradimer interaction between the particles within the same
dimer.

The Helmholtz free energy of the system consists of the
sum of its kinetic term K and its configurational term F . The
former is not relevant to the phase behavior and, in the present
case where the N/2 angles ϑi are the only degrees of freedom,
amounts to K = kBT N/4, where T is the temperature, and kB

is Boltzmann constant. We now focus on the configurational
Helmholtz free energy F , which will be studied by a mean-
field approximation. This approximation may be formulated
in several ways, but the most straightforward one is based on
the application of Gibbs’ variational principle to the proba-
bility distribution of the dimer configurations. According to
Gibbs’ principle, if P(ϑ1 . . . ϑN/2) is a (normalized) proba-
bility distribution and we denote by 〈 f 〉 the corresponding
average of a generic function f (ϑ1 . . . ϑN/2) such that

〈 f 〉 =
∫ 2π

0
dϑ1 . . .

∫ 2π

0
dϑN/2 P(ϑ1 . . . ϑN/2) f (ϑ1 . . . ϑN/2),

(6)

then the equilibrium distribution P0 is that which minimizes
the functional 	[P] given by

	[P] = 〈U 〉 + kBT 〈ln P〉, (7)

By evaluating 	[P] at P0, the configurational Helmholtz free
energy F is obtained.

The mean-field approximation amounts to representing
P(ϑ1 . . . ϑN/2) as the product of N/2 independent one-dimer
contributions by setting

P(ϑ1 . . . ϑN/2) = p(ϑ1) × · · · × p(ϑN/2). (8)

Clearly, Eq. (8) implies the neglect of correlations between
dimer orientations. Besides this limit inherent to the mean-
field approximation, we also note that, since p(ϑ ) is assumed
to be the same for all dimers, such an ansatz is unable to
describe any kind of orientational order different from the
nematic one. The rationale for considering only nematic order
is that, as stated in Sec. I, our former study [18] showed that
a nematic phase is indeed the preferred state at T = 0. It is
then natural to assume that such a phase will still occur at
low, but nonvanishing temperature, even though this does not
rule out a priori the possibility that also other, more complex
ordered phases might appear, which are not accounted for by
the present theory.

By adopting the factorization of Eq. (8), the entropic term
of Eq. (7) is straightforwardly expressed in terms of p(ϑ ) as

〈ln P〉 = N

2

∫ 2π

0
dϑ p(ϑ ) ln p(ϑ ), (9)

whereas for the energetic term we find

〈U 〉 = 1

2

∫ 2π

0
dϑ

∫ 2π

0
dϑ ′

{ ∑
i �= j,σ,σ ′

w[Ri − R j + σδ(ϑ ) − σ ′δ(ϑ ′)]p(ϑ ) p(ϑ ′)

}
+ N

2
w(2δ). (10)
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To disentangle the dependence on the dimer orientation from
the interaction potential w(r), it is useful to express Eq. (10)
in Fourier space by introducing the Fourier transform w̃(q) of
the interaction

w̃(q) =
∫

dr e−iq·rw(r). (11)

Equation (10) then becomes

〈U 〉 = N

v

∑
k

〈cos(k · δ)〉2w̃(k) − N
∫

dq
(2π )2

〈cos(q · δ)〉2w̃(q) + N

2
w(2δ), (12)

where v is the volume of the primitive cell, the sum runs over
the vectors k of the reciprocal lattice, the integral is extended
to the whole plane, and we have indicated by 〈. . .〉 the av-
erages over the dimer orientation according to the one-dimer
probability distribution p(ϑ ). The integral in Eq. (12) stems
from the i �= j constraint in Eq. (10) and accounts for the fact
that, even though in the mean-field approach different dimers
are regarded as uncorrelated, the two particles within the same
dimer should still be considered as (trivially) correlated, since
the orientation of either particle is determined by that of the
other. This can be appreciated in the limiting case of a crystal
with a very large lattice constant, such that the interactions
between dimers on different sites can be disregarded alto-
gether. In this limit, the lattice constant of the reciprocal lattice
becomes very small and in Eq. (12) the sum over k tends to
the integral over q, so that the two contributions cancel out,
and 〈U 〉 correctly reduces to the intradimer term Nw(2δ)/2.
Disregarding the integral would amount to adding to the in-
tradimer energy a contribution in which the positions of the
two particles would be taken as independent, which is clearly
incorrect.

By adding up Eqs. (9) and (12) and setting β = 1/(kBT ),
we obtain

βF

N
=β

v

∑
k

〈cos(k · δ)〉2w̃(k) − β

∫
dq

(2π )2

〈cos(q · δ)〉2w̃(q) + 1

2
〈ln p〉 + β

2
w(2δ). (13)

Following Gibbs’ principle, the equilibrium distribution is
determined by functional minimization of βF/N given by
Eq. (13) with respect to p(ϑ ), i.e.,

δ

δp(ϑ )

[
βF

N
− ζ

∫ 2π

0
dϑ p(ϑ )

]
= 0, (14)

where δ/δp(ϑ ) indicates functional differentiation, and ζ is
a Lagrange multiplier to be determined by the normalization
condition for p(ϑ ).

If we set c(q) = 〈cos(q · δ)〉, then the solution of Eq. (14)
gives for the equilibrium distribution

p(ϑ ) = 1

Q
exp

[
− 4β

v

∑
k

c(k) cos(k · δ)w̃(k)

+ 4β

∫
dq

(2π )2
c(q) cos(q · δ)w̃(q)

]
, (15)

where Q is the one-dimer partition function

Q =
∫ 2π

0
dϑ exp

[
− 4β

v

∑
k

c(k) cos(k · δ)w̃(k)

+ 4β

∫
dq

(2π )2
c(q) cos(q · δ)w̃(q)

]
. (16)

Substitution of Eq. (15) into Eq. (13) gives

βF

N
= − β

v

∑
k

c(k)2w̃(k) + β

∫
dq

(2π )2
c(q)2w̃(q)

+ β

2
w(2δ) − 1

2
ln Q, (17)

with c(q) to be determined by the self-consistency condition

c(q) = 1

Q

∫ 2π

0
dϑ cos(q · δ)

× exp

[
− 4β

v

∑
k

c(k) cos(k · δ)w̃(k)

+ 4β

∫
dq′

(2π )2
c(q′) cos(q′ · δ)w̃(q′)

]
. (18)

Equations (16)–(18) determine the mean-field Helmholtz
free energy F of the dimer crystal for a given lattice. In
the present situation in which the lattice has not been fixed
beforehand and the crystal may undergo a structural transition,
F must be also optimized with respect to the lattice itself. In
general, for a 2D lattice four scalars would be needed, one
for each component of the two primitive vectors. However,
here we are considering the system at fixed density ρ, which
fixes the cell volume at v = 2/ρ. Moreover, the x axis can
be aligned with one of the primitive vectors with no loss of
generality, leaving two independent scalars. These we identify
with the lattice constant a and with a dimensionless parameter
s such that cot ψ = a2s/v, where ψ is the angle between the
primitive vectors. We then set

A =
(

a as
0 v/a

)
B = 2π

v

(
v/a 0
−as a

)
, (19)

where A is the matrix obtained by arranging the primitive
lattice vectors into columns, and B is the corresponding matrix
of the reciprocal lattice. The triangular lattice is identified by
a = a0 = (2v/

√
3)1/2, s = 1/2.

It is worthwhile pointing out that, according to Eqs. (15)
and (18), the probability distribution of the dimer orientation
p(ϑ ) cannot be uniform, whatever the temperature. A constant
p(ϑ ) over the interval (0, 2π ) would yield

c(q) ≡ 〈cos(q · δ)〉 = J0(qδ), (20)

where J0(x) is the Bessel function of order 0

J0(x) = 1

2π

∫ 2π

0
dϑ e−ix cos ϑ . (21)

If Eq. (20) were a self-consistent solution of Eq. (18), then
plugging it into Eq. (15) should give back p(ϑ ) ≡ 1/(2π ), i.e.,
the argument of the exponential in the rhs of Eq.(15) should
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not depend on the direction of δ. That argument contains an
integral I over q,

I =
∫

dq
(2π )2

cos(q · δ) J0(qδ)w̃(q), (22)

and a sum  over the reciprocal lattice vectors k,

 =
∑

k

cos(k · δ) J0(kδ)w̃(k). (23)

The integral I is indeed isotropic, since it is the inverse Fourier
transform of an isotropic function. However, this is not the
case for the sum , which does depend on the direction of δ,
as can also be readily checked numerically.

The fact that p(ϑ ) cannot be isotropic is perhaps not
surprising: since the dimers themselves are not uniformly dis-
tributed, but lie instead on a crystal lattice, there is no reason
why the field exerted on a given dimer by all the others should
be independent of the direction. Such a scenario is different
from that of liquid crystals for which, in their orientationally
disordered state, all orientations are equivalent.

Having said so, two important remarks are in order: first,
this situation does not prevent the possibility that, just as
in liquid crystals, the system may have no macroscopic ori-
entational order. Consider the case of the highly symmetric
triangular lattice: even though p(ϑ ) displays maxima for some
preferred directions, the lattice invariance under rotations of
60◦ implies that, if the invariance is not spontaneously broken,
those directions will add up to give no net orientational order.

Second, even though strictly speaking p(ϑ ) is not uniform,
in the absence of orientational order it may be nearly uniform,
provided the dimer length 2δ is small compared to the lattice
constant a. As stated above, a uniform p(ϑ ) cannot be recon-
ciled with the fact that the quantity  in Eq. (23) depends on
ϑ , i.e., on the direction of δ. However, if we consider again
the triangular lattice, that dependence is very weak. In fact,
in a multipole expansion in which cos(k · δ) in Eq. (23) is
expanded in powers of its argument, both the second-order
quadrupole and the fourth-order octupole terms are found to
be actually isotropic. Specifically, we have∑

k∈T
(k · δ)2g(k) = 1

2
δ2
∑
k∈T

k2g(k), (24)

∑
k∈T

(k · δ)4g(k) = 3

8
δ4
∑
k∈T

k4g(k), (25)

where T denotes the triangular lattice, and g(k) is a generic
spherically symmetric function such that the sums over k are
convergent. The dependence on the direction of δ appears only
at order δ6 or higher, i.e., from the esadecapole term on. For
small δ, this is indeed a very small effect, and we expect that,
in the absence of orientational order, the errors induced by
regarding p(ϑ ) as if it were uniform should be similarly small.
In the next section we shall introduce such an approximation.

B. Quadrupole approximation

The theory described in Sec. III A has two drawbacks: first,
it hinges on the self-consistency condition of Eq. (18) for
c(q). This equation is rather involved, and requires a fully
numerical solution. Second, it does not lead to a clear identifi-
cation of the order parameter of the transition. To simplify the

treatment and make the underlying physics more perspicuous,
in the following we shall not be concerned with the solution
of Eq. (18), but shall consider instead a simplified formula-
tion of the theory, based on the quadrupole approximation.
This amounts to replacing cos(q · δ) in Eqs. (15)–(17) by its
expansion truncated just at second order in δ by setting

cos(q · δ) � 1 − 1
2 (q · δ)2, c(q) � 1 − 1

2 〈(q · δ)2〉. (26)

When Eq. (26) is substituted into Eq. (17) for the
Helmholtz free energy, the contributions containing
〈(q · δ)2〉 and 〈(k · δ)2〉 cancel out, and we find

βF

N
= β

v

∑
k

w̃(k) − 1

2
ln Q

− βw(0) − β

2
δ2 ∇2w(r)|r=0 + β

2
w(2δ), (27)

where the term containing ∇2 originates from recasting in
real space the expression β

∫ dq
(2π )2 (q · δ)2w̃(q), which is ob-

tained by the expansion of the argument of the exponential in
Eq. (16). We remark that for the GEM4 interaction this term
actually vanishes.

The one-dimer partition function Q is now given by

Q =
∫ 2π

0
dϑ exp

[
2β

v

∑
k

(k · δ)2w̃(k)

]
, (28)

and the probability distribution of dimer orientation is

p(ϑ ) = 1

Q
exp

[
2β

v

∑
k

(k · δ)2w̃(k)

]
. (29)

A feature that considerably simplifies the present theory
with respect to the more general treatment of Eqs. (15)–(18),
is that there is no self-consistency condition akin to Eq. (18)
to be enforced. Such a condition would stem from the term
containing 〈(k · δ)2〉(k · δ)2 in the argument of the exponential
of Eq. (29), which here is disregarded since it is of order
higher than δ2. One may say equivalently that at order δ2 the
self-consistency condition becomes trivial, because it reduces
to the definition of 〈(k · δ)2〉 in terms of p(ϑ ). Clearly, Eq. (27)
still needs to be optimized with respect to the crystal lattice.

Let us now focus on the integral of Eq. (28). Its argument
contains the sum∑

k

(k · δ)2w̃(k) =
2∑

α,γ=1

∑
k

w̃(k)kαkγ δαδγ = δT · C · δ,

(30)

where the indexes α, γ denote the components of the vectors
k, δ, and C is the 2 × 2 matrix with elements cαγ given by

cαγ =
∑

k

w̃(k)kαkγ . (31)

Since C is symmetric, it is diagonalized by a rotation.
Let �1 and �2 be the (real) eigenvalues of C corresponding
respectively to the 11 and 22 position on the diagonal. We then
have

δT · C · δ = δ2

2
{ �1 + �2 − (�2 − �1) cos [2(ϑ − ϕ)] },

(32)
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where ϕ is the angle between the eigenvector corresponding
to �1 and the x axis. By inserting Eq. (32) into Eq. (28) we
obtain

Q = 2π exp

[
β

v
δ2
∑

k

k2w̃(k)

]
I0

(
β

v
δ2�

)
, (33)

where I0(x) is the modified Bessel function of order 0,

I0(x) ≡ J0(ix) = 1

2π

∫ 2π

0
dϑ ex cos ϑ , (34)

and we have set � ≡ �2 − �1. If Eq. (33) is substituted into
Eq. (27), then we obtain for the Helmholtz free energy

βF

N
= β

v

∑
k

w̃(k)

[
1 − 1

2
(kδ)2

]
− 1

2
ln

[
I0

(
β

v
δ2�

)]

− βw(0) − β

2
δ2 ∇2w(r)|r=0 + β

2
w(2δ) − 1

2
ln(2π ),

(35)

or, by virtue of Poisson identity,

βF

N
= β

∑
R �=0

w(R) + β

2
δ2
∑
R �=0

∇2w(R) − 1

2
ln

[
I0

(
β

v
δ2�

)]

+ β

2
w(2δ) − 1

2
ln(2π ). (36)

In the numerical evaluation of F , Eq. (36) has been pre-
ferred to Eq. (35) not only because the lattice sums are more
rapidly convergent in real space but, more importantly, also
because Eq. (36) does not require the numerical evaluation of
w̃(k). In general, this would not be an issue, but is relevant
in the present situation, in which, for small δ, F must be
mapped with extremely high accuracy to establish if the phase
transition takes place.

By inserting Eqs. (32) and (33) into Eq. (29), the probabil-
ity distribution p(ϑ ) becomes

p(ϑ ) = exp
{− β

v
δ2� cos [2(ϑ − ϕ)]

}
2π I0

(
β

v
δ2�

) . (37)

From Eqs. (35) and (36), � emerges as the natural order
parameter of the structural transition. Consider the triangular
lattice: in this case, because of Eq. (24), the matrix C is a mul-
tiple of the identity, � vanishes, and so does the logarithmic
term ln[ I0(βδ2�/v) ] in the Helmholtz free energy F . Since
I0(x) > 1 for x �= 0, that term always favors nontriangular
lattices such that � �= 0. This, however, is contrasted by the
lattice sum in the expression of F , for which the triangular
lattice is always the optimal choice. Which effect prevails will
be determined by temperature.

Moreover, Eq. (37) for p(ϑ ) shows that the occurrence
of this structural transition coincides with that of nematic
orientational order. For the triangular lattice such that � =
0, Eq. (37) gives a uniform p(ϑ ), which obviously corre-
sponds to an orientationally disordered phase. As discussed
in Sec. III A, strictly speaking p(ϑ ) is never uniform, not even
for the triangular lattice, but to make this evident one should
consider a description accurate at least to order δ6, which is
well beyond the quadrupole approximation considered here.

Nevertheless, the exact p(ϑ ) would still give no macroscopic
orientational order, consistently with what is found here.

For � �= 0, p(ϑ ) instead develops a peak along a certain
direction. For � < 0, the distribution is peaked at ϑ = ϕ,
ϑ = ϕ + π , i.e., the direction is that of the eigenvector cor-
responding to �1. For � > 0, the distribution is peaked at
ϑ = ϕ + π/2, ϑ = ϕ + 3π/2, i.e., the direction is that of the
eigenvector corresponding to �2. In other words, the direc-
tion of nematic order is always that of the eigenvector of C
corresponding to its larger eigenvalue.

The link between the structural transition and the nematic
order is further stressed by introducing the nematic order
parameter Q. In 2D, Q is a 2 × 2 matrix whose elements qαγ

are given by

qαγ =
{

2〈nαnγ 〉 − 1 α = γ ,

2〈nαnγ 〉 α �= γ ,
(38)

where n = δ/δ is a unit vector with the same direction as δ.
We have then

q11 = 〈cos(2ϑ )〉,
q22 = − q11 = −〈cos(2ϑ )〉,
q12 = q21 = 〈sin(2ϑ )〉. (39)

The nematic order parameter is defined so that in the disor-
dered phase all its elements vanish, whereas in the nematic
phase its larger eigenvalue and the corresponding eigenvector
give respectively the amount and the direction of the orienta-
tional order. In light of the discussion above, the eigenvectors
of Q must then be same as those of C. Indeed, from Eq. (37)
one finds immediately that Q is diagonalized by setting ϕ = 0,
i.e., by taking the axes along the eigenvectors of C. The larger
eigenvalue of Q, generally referred to as the scalar order
parameter S, coincides with q22 for � > 0 and with q11 for
� < 0, and is given by

S = ± I ′
0

(
β

v
δ2�

)
I0
(

β

v
δ2�

) , (40)

where the prime denotes the derivative of I0(x), and + and −
signs refer respectively to � > 0 and � < 0. Hence, S is a
function of � such that S �= 0 if and only if � �= 0.

To determine �, the Helmholtz free energy given by
Eqs. (35) and (36) must be optimized with respect to the
crystal structure. As discussed in Sec. III A, in general this
requires minimizing F with respect to the quantities a and s
which determine the matrices A, B of the primitive vectors
of the direct and reciprocal lattices according to Eq. (19). Let
u1 and u2 be the primitive vectors of the direct lattice. If the
lattice is triangular, the vectors u1, u2, and u2 − u1 form an
equilateral triangle with a side lying along the x axis. As a
and s are changed, that triangle undergoes all the possible
deformations that keep its area constant.

In the following, inspired by the results at T = 0 summa-
rized in Sec. I, we shall select from the outset the centered
rectangular lattice as the only competitor of the triangular
lattice. Hence, we shall consider only the deformations such
that the equilateral triangle becomes isosceles, and shall take
the x axis along the direction of the odd side. For this class
of deformations, s remains fixed at the value s = 1/2 of the
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triangular lattice, and the only free parameter is the lattice
constant a. Compared to the equilateral case, the triangle
splays for a > a0, and tapers for a < a0. For both the direct
and the reciprocal lattices, the conventional unit cell is a
rectangle with sites at the vertexes and at the center, whose
sides lie along the x- and y-axes. Clearly, if (kx, ky) is a point
of the reciprocal lattice, then the same holds for the points
(−kx, ky) and (kx,−ky). Because of Eq. (31), we have then
c12 = c21 = 0, c11 = �1, c22 = �2, so that the matrix C is
diagonal from the outset, and its eigenvectors are directed
along the sides of the conventional cell, i.e., along the odd side
of the triangle and along its height. Moreover, the structural
order parameter � coincides with the quantity λ given by

λ = c22 − c11 =
∑

k

(
k2

y − k2
x

)
w̃(k), (41)

or, using again Poisson identity,

λ = v
∑

R

(
∂2

∂x2
− ∂2

∂y2

)
w(R). (42)

In the following, unless otherwise stated, we shall use λ

as defined in Eqs. (41) and (42) to refer to the order
parameter �.

C. Landau expansion

Within the quadrupole approximation introduced in
Sec. III B, the numerical minimization of the Helmholtz free
energy F and the determination of the structural and nematic
order parameters λ and S can be carried out rather straightfor-
wardly. Before doing so, further insight into the nature of the
transition can be gained by performing a Landau expansion of
F in powers of λ.

If we consider Eq. (35) for F , the terms in the second line
do not depend on λ, since they are lattice-independent. The
logarithmic term is expanded in powers of its argument via
the McLaurin expansion of I0(x) = 1 + x2/4 + x4/64 + · · · :

−1

2
ln

[
I0

(
β

v
δ2λ

)]
= −1

8

(
β

v
δ2λ

)2

+ 1

128

(
β

v
δ2λ

)4

+ · · · ,

(43)

and contains only even powers of λ, so that its first derivative
with respect to λ vanishes at λ = 0.

The expansion of the lattice sums in Eq. (35) is more
involved. Let us set

F =
∑

k

f (k), f (k) = w̃(k)

[
1 − 1

2
(kδ)2

]
. (44)

Using Eq. (19), we obtain for the derivative of the wave vector
k with respect to the lattice constant a,

d

da

(
kx

ky

)
= dB

da
B−1

(
kx

ky

)
= 1

a

(−kx

ky

)
. (45)

Differentiating with respect to a Eqs. (41) and (44) gives

dF
da

= 2

a
S1

[
d f

d (k2)

]
,

dλ

da
= 2

a
S2[w̃], (46)

where we have introduced the functionals

S1[g] =
∑

k

(
k2

y − k2
x

)
g(k), (47)

S2[g] = a

2

d

da
S1[g] =

∑
k

[(
k2

y − k2
x

)2 dg(k)

d (k2)
+ k2g(k)

]
,

(48)

g(k) being a generic spherically symmetric function such that
the sums over k are convergent. For the triangular lattice, it
is found that S2[w̃] �= 0. Hence, in the neighborhood of the
triangular lattice the mapping a → λ is invertible, and one has

dF
dλ

= S1

[
d f

d (k2)

]
1

S2[w̃]
. (49)

Moreover, Eqs. (24) and (47) imply that on the triangular lat-
tice dF/da = dF/dλ = 0. Putting together the lattice-sum
and the logarithmic contributions to F , we find

dF

dλ

∣∣∣∣
λ=0

= 0, (50)

so that the triangular lattice always represents a stationary
point of the Helmholtz free energy F , as one would expect.
Whether such a points corresponds to the absolute minimum
depends on the higher-order derivatives of F with respect to
λ. The expressions of the second, third, and fourth derivatives
of the lattice-sum term F are provided in Appendix A.

Aside of their rather involved form, what actually matters
here is the sign of those derivatives. Using Eqs. (A6)–(A8) we
find

d2F
dλ2

∣∣∣∣
λ=0

> 0,
d3F
dλ3

∣∣∣∣
λ=0

< 0,
d4F
dλ4

∣∣∣∣
λ=0

> 0. (51)

We notice that, unlike the logarithm ln[I0(βδ2λ/v)], the lattice
sum F contains a cubic term in λ. By taking into account both
contributions, we finally obtain the Landau expression of F :

�F

N
= Aλ2 − Bλ3 + Cλ4, (52)

where �F is the difference between the actual Helmholtz free
energy and the Helmholtz free energy of the triangular lattice,
and we have set

A = 1

2v

(
d2F
dλ2

∣∣∣∣
λ=0

− 1

4

β

v
δ4

)
, (53)

B = − 1

6v

d3F
dλ3

∣∣∣∣
λ=0

, (54)

C = 1

8v

[
1

3

d4F
dλ4

∣∣∣∣
λ=0

+ 1

16

(
β

v

)3

δ8

]
. (55)

Equations (51) and (53) imply that, as the temperature T
decreases, A turns from positive to negative, and vanishes at a
temperature T ′ given by

kBT ′ = δ4

4v

(
d2F
dλ2

)−1

λ=0

, (56)

whereas B and C are both positive at every T . Hence, �F has
the standard form which describes a first-order phase transi-
tion: at high T , �F displays only one minimum at λ = 0 but,
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FIG. 1. Difference β�F/N between the Helmholtz free energy
per particle and unit temperature of the dimer crystal at fixed den-
sity ρ = 1.13971R−2 and dimer length 2δ = 0.05R on a centered
rectangular lattice, and the same quantity on the triangular lattice.
β�F/N given by Eqs. (35) and (36) has been displayed as a function
of the structural order parameter λ defined in Eqs. (41) and (42).
The upper axis reports the relative difference �a/a0 of the lattice
constant a with respect to the value a0 = 1.4234837R pertaining to
the triangular lattice. The various curves refer to different temper-
atures. (a) Dotted curve, kBT/ε = 2.38938 × 10−5; dashed curve,
kBT/ε = 2.38933 × 10−5; solid curve, kBT/ε = 2.3893245 × 10−5;
dash-dotted curve, kBT/ε = 2.38932 × 10−5. (b) Dashed curve,
kBT/ε = 2.3892 × 10−5; solid curve, kBT/ε = 2.388 × 10−5.

as T is decreased, another minimum at λ �= 0 develops due to
the λ3 term. Below a certain temperature T0, this becomes the
absolute minimum, and λ jumps discontinuously from λ = 0
to the value λ = 2A/B. At the transition temperature T0, one
has A = B2/(4C), so that A is still positive, implying that T0

is higher than the temperature T ′, at which the minimum at
λ = 0 becomes unstable.

This qualitative picture based on the Landau expansion
(52) is confirmed by the behavior of �F obtained from
Eq. (36), which we have displayed in Figs. 1 and 2 as a
function of the order parameter λ for different temperatures
and dimer length 2δ = 0.05R and 2δ = 0.25R, R being the
range of the GEM4 potential. Above the upper axis we have

FIG. 2. Same as Fig. 1, but for dimer length 2δ = 0.25R
and a different set of temperatures. (a) Dotted curve,
kBT/ε = 1.6 × 10−2; dashed curve, kBT/ε = 1.584 × 10−2;
solid curve, kBT/ε = 1.5811 × 10−2; dash-dotted curve,
kBT/ε = 1.575 × 10−2. (b) Dashed curve, kBT/ε = 1.55 × 10−2;
solid curve, kBT/ε = 1.13 × 10−2.

also reported the values of the relative difference �a/a0 of
the lattice constant a with respect to the value a0 pertaining to
the triangular lattice. Since for this lattice S2[w̃] is negative,
Eq. (46) implies that dλ/da is also negative, i.e., a positive
value of λ corresponds to a < a0, and a negative value to
a > a0.

For both values of δ, the scenario is undoubtedly that of a
first-order phase transition, albeit a rather weak one on purely
quantitative terms. In particular, in the short-dimer case 2δ =
0.05R already considered in Ref. [18], the first-order char-
acter is extremely weak: the transition temperature kBT0/ε =
2.3893245 × 10−5 is hardly distinguishable from the stabil-
ity threshold of the triangular lattice kBT ′/ε = 2.3892460 ×
10−5. At the transition, the free-energy barrier between the
two minima is just slightly above a mere β�F/N ∼ 10−10,
and the order parameter λ jumps from λ = 0 to λ/ε ∼
1.5 × 10−3, corresponding to a relative change in the lattice
constant �a/a0 ∼ −2 × 10−5. In such a situation, we expect
that telling between a first- and a second-order phase transition
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FIG. 3. (a) Schematic depiction of the structural and orienta-
tional transition. Above the transition temperature T0, the dimers
are arranged on a triangular lattice and have no orientational order.
Below T0, the equilateral triangles of the triangular lattice become
isosceles by making the horizontal side shorter than the other two,
and the dimers align along the vertical direction. (b) Depiction of the
hypothetical transition corresponding to the metastable minimum of
the free energy, which instead is not realized. The horizontal side of
the equilateral triangles becomes longer than the other two, and the
dimers align along the horizontal direction.

would prove exceedingly difficult not only in an experiment,
but also in a simulation.

Not surprisingly, the situation becomes less extreme for
longer dimers: for 2δ = 0.25R, we find kBT0/ε = 1.5811 ×
10−2, kBT ′/ε = 1.5431 × 10−2, β�F/N ∼ 6 × 10−5 for the
free-energy barrier between the two minima at the transition,
and a jump in the order parameter λ/ε ∼ 1, corresponding
to �a/a0 ∼ −1.2 × 10−2. Still, the dimer length cannot be
increased at one’s will, since in the theory it is assumed from
the outset that contact between dimers lying on neighboring
sites does not occur.

As discussed above, the negative value of �a is due to the
positive value of λ at the transition. Hence, at the transition the
equilateral triangles of the triangular lattice turn into isosceles
in such a way, that the odd side becomes shorter than the
other two, i.e., the triangles taper. Moreover, according to
the discussion carried out in Sec. III B, a positive λ implies
that the direction of nematic order is that of the eigenvector
corresponding to λ2. For the case in hand in which the matrix
C is diagonal from the outset, this is just the direction of the y
axis, namely, that orthogonal to the odd side. The transition is
depicted schematically in Fig. 3(a).

Below T ′, the triangular lattice such that λ = 0 is not a
minimum of F any more, and another minimum develops, this
time with λ < 0. Hence, below T ′ both minima are located at
λ �= 0, either positive or negative, as illustrated in Figs. 1(b)
and 2(b). Following again the discussion in Sec. III B, the
minimum with λ < 0 corresponds to a lattice with �a > 0,
and the nematic director along the x axis. In other words,
a transition to this minimum would have the triangles splay

instead of tapering, and the dimers align along the direction
of the odd side, rather than along the direction orthogonal
to it, as displayed in Fig. 3(b). Such a transition does not
occur, because the free energy of this local minimum is always
larger than that of the minimum with λ > 0. Actually, as
will be discussed in Sec. III D, the local minimum is even
revealed to be unstable as soon as the s = 1/2 constraint in
Eq. (19) is released, and one moves to the space of all possible
lattice deformations. The present scenario is consistent with
that observed at T = 0 [18], whereby the system was always
found to choose the configuration described by the minimum
with λ > 0, unlike what one would expect in a second-order
transition.

A natural question that can be addressed straightforwardly
by the Landau approach, is how the transition temperature
T0 and the order parameter at the transition λ(T −

0 ) depend
on δ. In general, determining T0 from Eq. (52) with A, B, C
given by Eqs. (53)–(55) requires solving a fourth-order degree
equation, but the results for T0 given above show that, even
for relatively long dimers such that 2δ = 0.25R, T0 remains
close to the temperature T ′ given by Eq. (56), so that the
correction to T ′ can be regarded as a perturbation. Hence, to
leading order in δ one has T0 � T ′ ∼ δ4. However, to obtain
the corresponding scaling of λ this correction must be taken
into account, since at the transition one has λ = 2A/B, and A
vanishes at T ′. By including in T0 the next-to-leading order
term, we find

T0 � T ′
[

1 + δ4

36

(
d3F
dλ3

)2

λ=0

(
d2F
dλ2

)−4

λ=0

]
∼ O(δ4), (57)

λ(T −
0 ) � − δ4

6

(
d3F
dλ3

)
λ=0

(
d2F
dλ2

)−3

λ=0

∼ O(δ4), (58)

showing that, to leading order in δ, both T0 and λ(T −
0 ) are

proportional to δ4.
The behavior of the specific heat per particle at constant

volume cV is also worth considering. Here and in the fol-
lowing, the trivial contribution to the specific heat due to the
kinetic energy will be disregarded, and we shall focus solely
on its configurational part. From Eqs. (52)–(55) we obtain for
the Landau expression of cV

cV = kB λ
θ2

δ4

(
1 − 3

2
λ2 θ2

δ4

)

× θ + λ
[

d3F
dλ3

∣∣
λ=0 + 2λ

(
1
3

d4F
dλ4

∣∣
λ=0 − θ3

4δ4

)]
d3F
dλ3

∣∣
λ=0 + 2λ

(
1
3

d4F
dλ4

∣∣
λ=0 + θ3

2δ4

) , (59)

where we have set θ = βδ4/(2v). At the transition, cV has a
discontinuity. For T > T0, λ vanishes identically, so that cV

also vanishes. For T → T −
0 , substitution of Eqs. (57) and (58)

into Eq. (59) gives

cV (T −
0 ) = 4kB + O(δ4). (60)

Therefore, the discontinuity in cV survives even for δ → 0,
attaining the interaction-independent value 4kB. This may at
first appear surprising, but it does not contradict the fact that
for δ = 0 there is no transition at all, since T0 vanishes for
δ → 0. Moreover, such a behavior is consistent with the fact
that, as discussed above, as δ decreases the first-order transi-
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tion becomes more and more similar to a second-order one,
for which Landau theory does predict a finite discontinuity
for cV .

To avoid redundancy, the behavior of the structural order
parameter λ, the nematic order parameter S, and the specific
heat cV as a function of temperature will be displayed in
Sec. V, after the effect of lattice and dimer vibrations has been
taken into account in Sec. III E.

D. Stability of the free-energy minimum

The first-order transition described in Sec. III C clearly
resembles the isotropic-nematic transition in liquid crystals,
which is also first order. However, the two systems differ in
an important respect: in liquid crystals, the nematic director
is equally likely to point in any direction, i.e., the transi-
tion entails the breaking of a continuous symmetry. Here,
by contrast, the director can point only along the direction
orthogonal to the shorter side of the triangle, so that there are
just three possible directions, depending on which side of the
triangle becomes shorter than the other two at the transition, as
illustrated in Fig. 5 of Ref. [18]. Therefore, the transition must
occur via the breaking of a discrete symmetry, specifically
a threefold one, similarly to the Potts model. This situation
bears a strong resemblance with the occurrence of nematic
states in the two-dimensional antiferromagnet Fe1/3NbS2,
which was observed experimentally and discussed theoreti-
cally in Ref. [22].

Alas, this threefold-symmetry-breaking process is not ac-
counted for by the Landau free energy obtained in Sec. III C,
because for the sake of simplicity the identity of the shorter
side of the triangle, and hence the direction of nematic or-
der, were picked out beforehand, as discussed at the end of
Sec. III B. To incorporate it, one should consider all possible
lattice deformations that keep the area of the primitive cell
constant, thereby releasing the s = 1/2 constraint in Eq. (19)
and adding one degree of freedom to the free energy. As a
consequence, the direction of the eigenvector corresponding
to the larger eigenvalue of the matrix C, which identifies the
nematic director, should be determined a posteriori. Obtaining
the expression of the Landau free energy then becomes a
much more involved problem, and we have postponed it to
a subsequent investigation.

Nevertheless, we acknowledge that it could be questioned
whether the scenario described in Sec. III C would still hold,
once this extra degree of freedom is taken into account. Since
the nematic state was obtained as a minimum of the free
energy in a one-dimensional space, how can one be sure
that such a state would remain a minimum also in the two-
dimensional space of all possible lattices? Dismissing this
question would clearly be inappropriate, even assuming that
one does not undertake the task of obtaining the general form
of the Landau free energy.

To tackle this point, we studied the stability of the minima
at λ �= 0 discussed in Sec. III C in the two-parameter space
spanned by a and s. In the more general situation where s is
not locked at s = 1/2, the directions of the eigenvectors of C
do not necessarily coincide with those of the coordinate axes.
Similarly, the order parameter �, i.e., the difference between
the eigenvalues of C, does not generally coincide with λ as de-

fined in Eqs. (41) and (42), but is given by � = ±
√

λ2 + μ2,
with μ defined by

μ = 2
∑

k

kxkyw̃(k) = −2v
∑

R

∂2

∂x∂y
w(R). (61)

Following the lines laid out in Sec. III C, we switch from the
variables (a, s) to the variables (λ,μ). Let us denote by λ+
the minimum at λ > 0 which becomes the absolute minimum
below the transition temperature T0, and by λ− the local min-
imum at λ < 0 which develops below the temperature T ′, at
which the triangular lattice at λ = 0 becomes unstable. Since
these minima were obtained in the subspace μ = 0, one has

∂F

∂λ

∣∣∣∣
λ,0

= dF

dλ
(λ,μ = 0) = 0, (62)

∂2F

∂λ2

∣∣∣∣
λ,0

= d2F

dλ2
(λ,μ = 0) > 0, (63)

for both λ = λ+ and λ = λ−. Whether such states will corre-
spond to minima of F also in the two-dimensional space of all
possible lattices hinges on the derivatives of F with respect to
μ. The expressions of those derivatives have been provided
in Appendix B. By evaluating them at λ = λ+, μ = 0 and
λ = λ−, μ = 0, the following results are obtained: as far as
the first derivatives are concerned, we find

∂F

∂μ

∣∣∣∣
λ+,0

= ∂F

∂μ

∣∣∣∣
λ−,0

= 0, (64)

so that the states in hand are indeed stationary points of F . For
the second derivatives, we find

∂2F

∂λ∂μ

∣∣∣∣
λ+,0

= ∂2F

∂λ∂μ

∣∣∣∣
λ−,0

= 0, (65)

∂2F

∂μ2

∣∣∣∣
λ+,0

> 0,
∂2F

∂μ2

∣∣∣∣
λ−,0

< 0. (66)

Equations (65) and (66) show that the state at λ = λ+,
μ = 0 which, below T0, gives the absolute minimum of F
in the subspace μ = 0, remains a minimum even in the two-
dimensional (λ,μ) space. Interestingly, they also show that
this does not apply to the state at λ = λ−, μ = 0, which
instead is revealed to be a saddle point as soon as one moves
away from the μ = 0 subspace.

Besides the study described above, we checked the stability
of the minimum obtained in Sec. III C also by minimizing
numerically Eq. (36) for F in the (a, s) space of all possible
two-dimensional lattices compatible with the constant-area
requirement. Above the transition temperature T0, we found
that the minimum of F is given by the triangular lattice with
a = a0 and no orientational order. Below T0, we did find that
the absolute minimum is reached at three degenerate states
with nematic order: one of them is located at s = 1/2 and
a = a such that λ = λ+, and coincides with the one consid-
ered here. The other two correspond respectively to s = s′,
a = a′ and s = 1 − s′, a = a′, where a′ and s′ are given by

a′ = a

2

[
1 + 3

(a0

a

)4
]1/2

, s′ =
[

1 − 3

4

(a0

a′
)4
]1/2

(67)

and are obtained by deforming the equilateral triangle of the
triangular lattice along either of its sides which are not aligned
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with the x axis. This analysis leads us to conclude that the
centered rectangular lattice considered here is the bona fide
minimum of F at sufficiently low temperature.

E. Inclusion of lattice and dimer vibrations

In Secs. III A–III D we have focused only on the orienta-
tional degrees of freedom of the dimers. However, the main
feature of Q± potentials such as the GEM4 interaction con-
sidered here is that cluster crystals are formed spontaneously
at low temperature. Hence, to make contact with the actual
system, we should not regard the position or the length of the
dimers as given a priori, but should instead take into account
that both of them are actually state-dependent quantities, to
be determined by thermal averages of the microscopic particle
configurations.

Since the temperature T0 of the nematic transition is much
lower than that at which the dimer crystal forms, we can safely
assume that, in the temperature regime pertaining to this study,
both the position of the dimer center and the separation be-
tween the dimer particles consist in small displacements from
their equilibrium values at T = 0. In the absence of a hard
core, a thorough study of lattice and intracluster oscillations in
Q± potentials was carried out in Ref. [20]. Here, instead, we
do not aim at a detailed description of the phonon spectrum,
but just at including the main consequences of regarding the
dimer position and length as dynamical variables into the
present mean-field description.

If neither the position of the dimer center nor its length are
fixed, Eq. (4) for the position xi,σ of the dimer particles at site
i is replaced by

xi,σ = Ri + ξi + σηi, σ ± 1, (68)

where ξi denotes the displacement of the dimer center from
its equilibrium position at Ri, and ηi is the vector connecting
the dimer center with particle 1. The orientation of ηi with
respect to the x axis is still specified by the angle ϑi, while
its length η does not necessarily coincide with the hard-core
radius δ. Equation (5) for the potential energy of the sys-
tem corresponding to a given microscopic configuration then
becomes

U = 1

2

∑
i �= j,σ,σ ′

w(Ri − R j + ξi − ξ j + σηi − σ ′η j )

+ N

2
w(2η). (69)

We now consider the probability distribution
P(ξ1, η1 . . . ξN/2, ηN/2) of the dimer configurations and make
again use of Gibbs’ variational principle by representing it as
the product of N/2 independent contributions:

P(ξ1, η1 . . . ξN/2, ηN/2) = p(ξ1, η1) × · · · × p(ξN/2, ηN/2).
(70)

Moreover, also the one-dimer probability distribution p(ξ, η)
is factorized as the product of three independent distributions
via the assumption

p(ξ, η) = pD(ξ) pL(η) p(ϑ ), (71)

where pD(ξ) is the probability distribution of the position of
the center of the dimer with respect to the lattice site at R,
pL(η) is the probability distribution of the dimer length, and
p(ϑ ) is the probability distribution of the dimer orientation as
before. We then have

〈ln P〉 = N

2

[∫
dξ pD(ξ) ln pD(ξ) +

∫ +∞

δ

dη η pL(η) ln pL(η)

+
∫ 2π

0
dϑ p(ϑ ) ln p(ϑ )

]
, (72)

where the integral with respect to ξ is extended over the whole
plane. For the thermal average 〈U 〉 of the potential energy, we
switch again to Fourier space and obtain

〈U 〉 = N

v

∑
k

〈〈cos(k · η)〉〉2 p̃ 2
D (k)w̃(k)

− N
∫

dq
(2π )2

〈〈cos(q · η)〉〉2 p̃ 2
D (q)w̃(q)

+ N

2
〈w(2η)〉L, (73)

where p̃D(q) is the Fourier transform of pD(ξ), 〈. . .〉L denotes
the average over η performed by the distribution pL(η), and
〈〈. . .〉〉 denotes the average over η performed by the distribution
pL(η) p(ϑ ).

We now make the following ansatz for pD(ξ) and pL(η):

pD(ξ) = α

π
e−αξ 2

, (74)

pL(η) = γ 2

1 + γ δ
e−γ (η−δ), η � δ, (75)

where α and γ are variational parameters to be determined
by minimizing the Helmholtz free energy, and the prefactors
in front of the exponentials are the normalization constants
of the probability distributions. Equation (74) is equivalent
to representing the local dimer density as a superposition of
Gaussians centered at the lattice sites, which has been shown
to be an accurate expression for Q± potentials [4,5]. In Ref. [5]
it was shown that, at low temperature, this representation is
equivalent to Einstein model of crystals, in which the same
frequency is assigned to all vibrational modes. As for Eq. (75),
the argument of the exponential is linear in η − δ, so it does
not have a Gaussian form, at variance with Eq. (74). The
reason for this choice will be discussed later in Sec. V.

With Eqs. (74) and (75), Eq. (72) becomes

〈ln P〉 = N

[
G(α, ν) + 1

2

∫ 2π

0
dϑ p(ϑ ) ln p(ϑ )

]
, (76)

where we have set ν = γ δ, and G(α, ν) is defined as

G(α, ν) = 1

2

[
ln
(α

π

)
+ 2 ln

(ν

δ

)
− ln(1 + ν)

− 1

1 + ν
− 2

]
. (77)

Finally, we resort again to the quadrupole approximation
(26) by expanding cos(k · η) and cos(q · η) in Eq. (73) to
second order in η. For this approximation to make sense,
it is required not only that the hard-core radius δ is small

034128-11



PINI, ROVELLI, MAMBRETTI, AND GALLI PHYSICAL REVIEW E 109, 034128 (2024)

with respect to the interaction range, but also that the average
deviation of η from δ is small with respect to δ. This can be
verified a posteriori as a consistency check of the approxima-
tion, see Sec. V. We also note that, for the GEM4 interaction
considered here, the first, second, and third derivatives of w(r)
at r = 0 are all vanishing. Hence, for small η we have

〈w(2η)〉L = w(0) + O(δ4), (78)

where the O(δ4) term can be disregarded at the level of
the quadrupole approximation. Therefore, in the following
〈w(2η)〉L in Eq. (73) will be replaced by w(0).

Because of Eq. (71), the degrees of freedom corresponding
to ξ, η, and ϑ can be traced out independently of one another,
and Eq. (7) gives

βF

N
= β

v

∑
k

e−k2/(2α) w̃(k)[1 − 〈(k · δeff )2〉]

−β

∫
dq

(2π )2
e−q2/(2α) w̃(q)

[
1 − 1

2
(qδeff )2

]
+ G(α, ν) + 1

2
〈ln p〉 + β

2
w(0), (79)

where 〈. . .〉 denotes as usual the average over the dimer orien-
tation performed via p(ϑ ), and δeff is a vector with the same
direction as δ and modulus given by

δeff =
[∫ +∞

δ

dη η3 pL(η)

]1/2

= δ

[
1 + 2

ν2 + 3ν + 3

ν2(ν + 1)

]1/2

.

(80)

Functional minimization of Eq. (79) with respect to p(ϑ )
leads to

βF

N
= β

v

∑
k

e−k2/(2α)w̃(k)

[
1 − 1

2
(kδeff )2

]

− β

∫
dq

(2π )2
e−q2/(2α)w̃(q)

[
1 − 1

2
(qδeff )2

]
− 1

2
ln

[
I0

(
β

v
δ2

effλeff

)]
+ G(α, ν) + β

2
w(0)

− 1

2
ln(2π ). (81)

As discussed at the end of Sec. III B, here we have restricted
ourselves to lattice deformations such that the lattice parame-
ter s remains fixed at s = 1/2. In that case, the order parameter
� coincides with λ given by Eq. (41), and λeff is defined as

λeff =
∑

k

(
k2

y − k2
x

)
e−k2/(2α)w̃(k). (82)

By comparing Eq. (81) with Eq. (35) we see that,
aside of the substitution w(2δ) → w(0) consistent with the
quadrupole approximation and the G(α, ν) term that accounts
for the entropic contribution due to lattice vibrations and
fluctuations of the dimer length, the two expressions for
βF/N are formally identical, provided w̃(k) is replaced by
e−k2/(2α)w̃(k), and δ is replaced by δeff . Similarly, the equi-
librium probability distribution p(ϑ ) is still given by Eq. (37)
with the substitutions δ → δeff and � → λeff , and the same

applies to the nematic order parameter S given by Eq. (40).
Hence, the qualitative features of the structural and nematic
transition, including its first-order character, remain the same
as those discussed in Sec. III C, as will be shown in Sec. V.

Because of the low temperature of the transition, we expect
the width ∼1/

√
α of the oscillations of the lattice sites to be

much smaller than the lattice constant a. In Eqs. (81) and (82)
we can then set

e−k2/(2α) � 1 − k2

2α
, (83)

and by resorting to Poisson identity we obtain
βF

N
= β

∑
R �=0

w(R) + β

2
δ2

eff

∑
R �=0

∇2w(R)

+ β

2α

∑
R �=0

∇2w(R) + β

4α
δ2

eff

∑
R �=0

∇2∇2w(R)

− 1

2
ln

[
I0

(
β

v
δ2

effλeff

)]
+ G(α, ν) + β

2
w(0)

− 1

2
ln(2π ), (84)

λeff = v
∑

R

(
∂2

∂x2
− ∂2

∂y2

)[
w(R) + 1

2α
∇2w(R)

]
. (85)

to be compared with Eqs. (36) and (42). In numerical calcula-
tions, Eqs. (84) and (85) have been chosen over Eqs. (81) and
(82) for the same accuracy reasons explained in Sec. III B.

Equation (84) has been minimized numerically with re-
spect to the lattice constant a and the additional parameters
α, ν. The minimization with respect to a was carried out by
direct evaluation of βF/N via Brent’s method [23]. At each
minimization step, α and ν were determined by solving itera-
tively the equations ∂F/∂α = ∂F/∂ν = 0, whose expressions
have been reported in Appendix C.

IV. MONTE CARLO

As stated in Sec. I, the mean-field method described above
has been complemented by Monte Carlo simulations to study
the behavior of the specific heat for T → 0. The Monte Carlo
code employed is largely based on the one we published in
Ref. [18]. It performs a Metropolis [24] Monte Carlo (MC)
simulation in the canonical ensemble. We have N particles
disposed in M × M dimer units onto the sites of a regular tri-
angular lattice within a parallelogram-shaped simulation cell.
MC moves include single particle and dimer rigid translations,
dimer rotations around their own center of mass, and modifi-
cations of the intradimer particle-particle distance. Moreover,
we added angle moves, which allow for small changes of
the cell angle, and aspect ratio moves, which alters the ra-
tio between the height and the basis of the box, bounded
to a fixed density value. All the amplitudes of such moves
are tuned to obtain satisfactory acceptance ratios. Following
Ref. [18], we have replaced the hard core of the HCGEM4
potential with a finite-amplitude repulsive potential as fol-
lows: ε exp[−(r/R)4] + K for r < δ, with K = 5ε, to have
a regularized HCGEM4 potential. We have checked that, in
the temperature range investigated, this does not change the
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FIG. 4. Effective structural order parameter λeff (a) and nematic
order parameter S (b) of the dimer crystal with dimer length 2δ =
0.05R as a function of temperature. In panel (a), the right axis reports
the relative difference �a/a0 of the lattice constant a with respect
to the value a0 = 1.4234837R pertaining to the triangular lattice. In
both panels, the inset is an enlargement of the transition region to
make the discontinuity in the order parameter more conspicuous. The
dotted line marks the discontinuity at the transition.

behavior of the system, since the configurations with mutually
overlapping particles can safely be discarded. We have exe-
cuted all simulations at the density ρ = 1.13971R−2. Note
that our code naturally exploits a simple MPI-parallelized
approach on high-performance multiprocessor architectures.

V. RESULTS AND DISCUSSION

Here we present the results obtained by the numerical min-
imization of the Helmholtz free energy of Eq. (84). Figures 4
and 5 display the effective structural order parameter λeff and
the nematic order parameter S for the cases 2δ = 0.05R and
2δ = 0.25R already considered in Figs. 1 and 2. The transi-
tion temperature T0 amounts to kBT0/ε = 2.4076 × 10−5 for
2δ = 0.05R and kBT/ε = 1.8600 × 10−2 for 2δ = 0.25R, to
be compared with the values reported in Sec. III C kBT0/ε =
2.3893 × 10−5 and kBT0/ε = 1.5811 × 10−2 in the absence
of lattice sites and dimer length vibrations. Hence, the inclu-
sion of these degrees of freedom leads to an increase of the
transition temperature, which is mostly due to the fact that,
because of the hard-core part of the intradimer interaction,
the effective dimer length δeff must necessarily exceed δ, see
Eq. (80). Not surprisingly, the effect is stronger for longer
dimers.

At any rate, T0 remains much smaller than the temperature
T× of the transition from the fluid to the cluster crystal, as
it should for the whole description to be consistent. T× can
be estimated from its value for a 2D fluid of particles inter-

FIG. 5. Same as Fig. 4 for dimer length 2δ = 0.25R. Notice the
much larger values of λeff and S at the transition compared to Fig. 4.

acting via a purely GEM4 potential with no hard core, since
at the density ρ = 1.13971R−2 considered here the packing
fraction πρδ2 amounts to just � 2.2 × 10−3 for 2δ = 0.05R
and � 5.6 × 10−2 for 2δ = 0.25R, so the effect of the hard-
core repulsion on T× should be small. For ρ = 1.13971R−2, a
calculation similar to that carried out for a 3D GEM4 fluid in
Ref. [5] gives kBT×/ε � 0.2. Hence, even for 2δ = 0.25R, T×
is more than one order of magnitude larger than T0.

For both δ values, λeff and S have a similar behavior, and
display the jump at T0 which is the signature of a first-order
transition. However, in line with the discussion of Sec. III C,
for short dimers the first-order character of the transition is
very weak, as testified by the very small size of the jump for
2δ = 0.05R.

According to Eqs. (57) and (58), based on the Landau
expansion of the free energy, both λ at the transition and T0 are
proportional to δ4 to leading order in δ. We expect a similar re-
sult to hold even in presence of lattice and dimer oscillations,
provided λ and δ are replaced by λeff and δeff . This prediction
has been tested in Fig. 6, where T0 and λeff (T −

0 ) have been
plotted as a function of δ4

eff for several values of δ ranging
between 0.05R and 0.25R. Clearly, the prediction is satisfied
within a very good accuracy. We checked that use of the
effective quantities instead of the “bare” λ and δ considerably
improves the agreement with the expected scaling, especially
for longer dimers.

For T → 0, the argument of I0(x) and I ′
0(x) in the expres-

sion of S goes to +∞, see Eq. (40). In this limit, I0(x) ∼
I ′
0(x) ∼ ex/

√
2πx, so that S goes to 1 irrespective of δ, as

expected for perfect nematic order. In the same limit, one has
λeff ∼ λ but, at variance with S, the value reached by λ for
T → 0 is not the same for dimers of different length, since λ is
basically a measure of the deviation �a of the lattice constant
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FIG. 6. Open circles: transition temperature T0 (a) and effective
order parameter at the transition λeff (T −

0 ) (b) as a function of (2δeff )4,
2δeff being the effective dimer length. Notice the linear behavior of
both T0 and λeff (T −

0 ). Lines are a guide for the eye.

a from its value a0 for the triangular lattice, whose extent
increases on increasing δ, as can be appreciated by comparing
the values of �a/a0 reported on the right axis of Figs. 4(a)
and 5(a). We found that at small δ, λ is a linear function of a.
As δ increases some deviations from linearity appear which,
however, remain small.

At T = 0, the mean-field free energy of Eq. (17), with no
quadrupole approximation, gives the exact potential energy U
of the perfectly ordered nematic state. By comparing the lat-
tice constant and the potential energy obtained by the present
calculation at T = 0 with the exact calculation of Ref. [18],
we can obtain an assessment of the accuracy of the quadrupole
approximation used here. The comparison is made in Table I
for 2δ = 0.05R and 2δ = 0.25R. Clearly, the discrepancies are
larger for the longer dimers, but even in that case are still
below 1%.

As stated in Sec. III E, the treatment of the degrees of
freedom describing the dimer position and length assumes
that these quantities deviate little from their equilibrium val-
ues. To check this assumption, in Fig. 7 we have plotted the

TABLE I. Exact lattice constant a and potential energy per
particle U/N at T = 0 and corresponding values predicted by the
quadrupole approximation for 2δ = 0.05R and 2δ = 0.25R.

2δ/R (a/R)exact (a/R)quad U/(Nε)exact U/(Nε)quad

0.05 1.4211105 1.4210841 0.6019478 0.6019481
0.25 1.3729536 1.3603179 0.6701436 0.6679406

FIG. 7. Effective dimer length 2δeff (a) and root-mean-square
displacement ξRMS of the dimer center from its equilibrium position
(b) as a function of temperature for 2δ = 0.25R. The arrows mark
the position of the transition temperature. Notice the kink of δeff at
the transition.

effective dimer length δeff and the root mean square displace-
ment ξRMS = 1/

√
α of the dimer center from its equilibrium

position as a function of temperature for 2δ = 0.25R. The
larger deviations are observed for δeff , but still (δeff − δ)/δ
does not exceed 6% at the transition. For shorter dimers,
the deviations are even smaller: for 2δ = 0.05R, we find
(δeff − δ)/δ � 0.2% at the transition. We also note that the
transition manifests in a small kink in the plot of δeff , whereas
it is hardly detectable in the plot of ξRMS.

We now turn to the discussion of the configurational spe-
cific heat per particle cV . In Figs. 8 and 9 cV has been plotted
as a function of temperature for 2δ = 0.05R and 2δ = 0.25R
respectively. Unlike in the situation considered in Sec. III C,
where only the rotational degrees of freedom of the dimers
were taken into account, now there is a contribution to cV

due to lattice and dimer vibrations, so that cV is not zero even
above the transition temperature T0. Aside of that, the overall
qualitative behavior of cV at the transition is the same. At
T0, cV exhibits the expected discontinuity, featuring a peak
for T → T −

0 . For 2δ = 0.05R the peak is extremely sharp,
although the enlargement of the peak region displayed in the
inset to Fig. 8 shows that cV remains regular all the way up
to the discontinuity. For longer dimers the peak behaves more
smoothly, as evidenced in Fig. 9.

The only instance in which we found the inclusion of lattice
and dimer vibrations to entail a qualitative difference with
respect to the dimer crystal with purely rotational degrees
of freedom concerns the discontinuity of �cV ≡ cV (T −

0 ) −
cV (T +

0 ), which according to Eq. (60) is predicted to behave
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FIG. 8. Configurational specific heat at constant volume cV of
the dimer crystal with dimer length 2δ = 0.05R as a function of
temperature. The inset is an enlargement of the transition region. The
dotted line marks the discontinuity of cV at the transition.

as �cV ∼ 4kB + O(δ4) for δ → 0. This prediction is tested
in Fig. 10 both with and without the additional lattice and
dimer degrees of freedom. Figure 10(a) shows that, when only
rotational degrees of freedom are present, �cV does tend to
4kB for δ → 0, and that in this limit it behaves linearly when
plotted as a function δ4. However, this is no longer true
when lattice and dimer vibrations are taken into account: in
that case, �cV is not a linear function of δ4

eff , nor of δ4 for
that matter. Clearly, the inclusion of these degrees of freedom
must imply the presence of additional contributions to �cV ,
which affect its dependence on δ. In this respect we observe
that, unlike the internal energy, cV depends explicitly on the
derivatives of the variational parameters α and ν with respect
to T , and that the kink in the plot of δeff as a function of
T observed in Fig. 7 indicates a discontinuity of dδeff/dT
and consequently of dν/dT at the transition. We did not
pursue an analytical study of �cV similar to that carried out
in Sec. III C for the crystal with only rotational degrees of

FIG. 9. Same as Fig. 8 for dimer length 2δ = 0.25R.

FIG. 10. (a) Discontinuity of the specific heat at constant volume
�cV ≡ cV (T −

0 ) − cV (T +
0 ) at the transition for the dimer crystal with

fixed positions of the dimer centers and dimer length as a function
of (2δ)4 (circles), and with the inclusion of lattice and dimer length
vibrations as a function of (2δeff )4 (squares). The lines are cubic
splines interpolating the data points. (b) Same as panel (a), but as
a function of (2δ)2 (circles) and (2δeff )2 (squares).

freedom, but Fig. 10(b) strongly suggests that, when lattice
and dimer length vibrations are considered, �cV behaves as
a linear function of δ2

eff , and that for δ → 0 the limit 4kB is
recovered. We also note that in both cases �cV is a decreasing
function of δ, so that the peak of cV decreases on increasing δ,
as could be surmised by comparing Figs. 8 and 9.

A feature of cV which is not directly related to the tran-
sition, but nevertheless should be addressed, concerns its
low-temperature behavior. Figures 8 and 9 show that for
T → 0, cV reaches the value 1.25 kB. This is corroborated
by MC simulations performed at kBT/ε = 10−6, 7.5 × 10−7,
5 × 10−7, 2.5 × 10−7, 10−7, each consisting of 2.5 × 106

steps, after as many devoted to equilibration. The comparison
between the theoretical and simulation predictions for cV is
shown in Fig. 11, which displays an expanded view of the
low-temperature region in semi-logarithmic scale. Despite the
slight offset between the theoretical and the simulation data,
simulations are fully consistent with cV saturating at 1.25 kB

for T → 0.
The above result is at odd with the equipartition principle,

according to which each configurational degree of freedom
should contribute kB/2 to the thermal capacity at constant
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FIG. 11. Configurational specific heat at constant volume cV for
dimer length 2δ = 0.05R in the low-temperature region, with T
in logarithmic scale. Solid curve: theoretical prediction. Dots: MC
simulation. The dashed curve is a guide for the eye. The errorbars are
obtained from blocking the data in five groups of 5 × 105 MC steps
each. The dotted line marks the limiting value 1.25 kB for T → 0.

volume, thereby giving a configurational specific heat equal
to kB in a two-dimensional crystal with two positional degrees
of freedom per particle. In the present situation particles are
arranged into dimers, resulting in four degrees of freedom
per dimer. Of course, the degrees of freedom describing the
normal modes do not correspond to the positions of the in-
dividual particles of the dimer. Rather, two of them specify
the position ξ of the dimer center, one gives the distance η

between the dimer particles, and the remaining one fixes the
dimer orientation ϑ in the plane. Still, this should have no
effect on the final result, since the total number of degrees of
freedom remains unchanged, leading to 4 × kB/2 = 2 kB for
the specific heat per dimer, i.e., to kB for the specific heat per
particle. One may then wonder where the extra 0.25 kB comes
from.

To clarify the origin of the anomaly, we determined numer-
ically the effective separation potential of a dimer: we picked
up a dimer at random in the simulation box and, while keeping
the remaining N − 2 particles frozen, progressively separated
its particles along the direction of the nematic director, so
that their mutual distance exceeds the equilibrium distance 2δ

by ζ . We then measured the difference Veff (ζ ) = U (ζ ) − U0

between the total potential energy U of the system, and the
potential energy at equilibrium U0. The resulting Veff (ζ ) is
plotted in Fig. 12(a), and is clearly a linear function of ζ ,
instead of being a quadratic function as generally expected.
This behavior is due to the hard-core part of the interaction,
which implies that, as soon as ζ �= 0, the restoring force be-
tween the two dimer particles jumps to a finite value, instead
of increasing continuously from 0.

As a consequence, the contribution Z to the partition func-
tion due to the intradimer separation has the form

Z =
∫ +∞

0
dζ (ζ + 2δ)e−βuζ =

(
kBT

u

)2

+ 2δ
kBT

u
, (86)

where we have set Veff (ζ ) = u ζ , u being a constant. At
low temperature, this expression behaves as Z ∼ kBT , giv-
ing a contribution to cV equal to kB, twice that obtained

FIG. 12. (a) Effective separation potential of a dimer Veff (ζ ) as
a function of the difference ζ between the separation of the dimer
particles and the separation at equilibrium for the HCGEM4 potential
considered in this paper. (b) Same as panel (a) for the smooth-core
SCGL6 potential. For the HCGEM4 potential, Veff (ζ ) is a linear
function of ζ , whereas for the SCGL6 potential it is a quadratic
function of ζ , as evidenced by the linear behavior of Veff (ζ ) when
plotted as a function of ζ 2 displayed in the inset to panel (b).

for a quadratic Veff . Therefore, we have the following dimer
contributions to the specific heat: kB/2 + kB/2 from the trans-
lational degrees of freedom, kB/2 from the orientational
degree of freedom, and kB from to the dimer length degree
of freedom, resulting in 2.5 kB per dimer, i.e., 1.25 kB per
particle.

This picture is in agreement with the study of the theoreti-
cal cV presented in Appendix D, where the low-temperature
limit 1.25 kB is obtained analytically, and the anomaly is
traced back to the dimer length fluctuations described by the
probability distribution pL(η), with η half the dimer length.
The exponential form pL(η) ∼ e−γ (η−δ) of Eq. (75) was
preferred to a Gaussian, because we deemed it more appro-
priate to describe the linear dependence of Veff on the dimer
stretching ζ = 2(η − δ). Indeed, we checked that a Gaus-
sian pL(η) ∼ e−γ ′(η−δ)2

leads to an increase of the Helmholtz
free energy. At the same time, we should point out that the
anomaly of cV does not hinge on the ansatz of Eq. (75) for
pL(η). In fact, having pL(η) assume a Gaussian form would
imply that, at low temperature, the Gaussian width parameter
γ ′ would scale as γ ′ ∼ β2, at variance with the dependence
γ ∼ β obtained in the same limit with the present pL(η); see
Appendix C. This is also different from the scaling α ∼ β of
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the width α of the Gaussian which describes the oscillations
of the dimer center according to Eq. (74). As a result, the
contribution to the specific heat per dimer due to the dimer
length fluctuations would still amount to kB, as is found here.
Therefore, the specific form of pL(η) is not crucial to recover
the anomaly of cV within the present description. What really
matters to that end, is that the potential energy obtained from
Eq. (84) at low temperature is a linear, rather than quadratic,
function of the deviation of the dimer length from its equilib-
rium value 2δ. This holds irrespective of δ, except in the trivial
case δ = 0.

In Ref. [18] we considered also a pair potential referred to
as “smooth core plus generalized Lorentzian with exponent
6” (SCGL6) originally introduced in Ref. [25], which again
gives dimer formation and a nematic state at low temperature,
but where the hard core is replaced by a smooth repulsion di-
verging as ∼1/r6 for r → 0. Figure 12(b) displays Veff for the
SCGL6 interaction: in that case, Veff has the usual quadratic
dependence on ζ , leading to Z ∼ √

kBT at low temperature
and to the expected contribution to cV equal to kB/2. Indeed,
the MC simulation of a dimer crystal of particles interacting
via the SCGL6 potential gives cV → kB for T → 0, in agree-
ment with equipartition [26].

With hindsight, the anomalous behavior of cV displayed
in Figs. 8 and 9 is somewhat deceptive, because above the
transition temperature T0, where there is no contribution from
the rotational degrees of freedom, cV assumes the value kB

expected on the basis of equipartition. One might then be led
to attribute the anomaly to the onset of nematic ordering below
T0, where rotational degrees of freedom contribute to cV . In-
stead, the rotational contribution does fulfill equipartition, and
the anomaly is already there above T0, where the apparently
regular value kB, i.e., 2 kB per dimer, is in fact due to just three
dimer degrees of freedom.

VI. CONCLUSIONS

We have presented a mean-field theory to describe the
occurrence of orientational order in a 2D crystal of dimers
resulting from association of particles interacting via a hard-
core–soft-shell potential. In the model discussed here the soft
shell consists of a GEM4 interaction, but the same analysis
would hold for any Q± interaction other than the GEM4.

According to the present description, at a temperature
much lower than that at which the crystal forms, the system
undergoes a structural transition from the triangular lattice,
where the dimers display no orientational order, to the cen-
tered rectangular lattice, where the dimers form a nematic
phase. Hence, the structural and orientational transitions co-
incide, as evidenced by the mutual dependence of their order
parameters brought forth by this treatment.

The transition is of first-order type, similarly to that from
the isotropic to the nematic phase in liquid crystals. This is
reflected in the appearance of a cubic term in the Landau
expansion of the free energy in powers of the order parameter.
However, unlike in liquid crystals, not every direction of ne-
matic order is equally acceptable. In fact, the nematic director
can assume only a discrete set of orientations: specifically,
those orthogonal to the three possible directions along which
the lattice may shrink, to turn from triangular to centered

rectangular. Moreover, the first-order character of the tran-
sition is very weak, especially for large shell-to-core ratio.
In this regime the discontinuity of the order parameter is so
small, that it would be probably very difficult to distinguish
this transition from a second-order one, both in experiments
and in simulations.

The theory has also been generalized to account for lat-
tice vibrations and fluctuations of the distance between the
dimer particles. Formally, this is achieved by introducing an
effective order parameter and an effective dimer length, and
does not lead to significant differences in the qualitative pic-
ture of the transition. The most notable effect entailed by the
inclusion of these degrees of freedom concerns the behavior of
the specific heat cV in the nematic phase in the T → 0 limit,
which we have studied also by MC simulations. Simulation
and theory agree in predicting that, in this limit, the contribu-
tion of each dimer to cV exceeds by kB/2 the value expected on
the basis of the equipartition principle. This is due to the fact
that, because of the singular hard-core part of the interaction,
the potential energy of the dimer is not a quadratic function of
its length. Of course, we should keep in mind that the above
result is based on a classical calculation. According to it, for
the anomaly in cV to become evident one has to move below
the transition temperature T0, where quantum effects might be
relevant in actual systems.

Recently, dendrimers interacting via Q± potentials have
been synthesized, and the formation of cluster crystals in so-
lutions of such dendrimers has been observed experimentally
[27]. In 2D, systems of superparamagnetic particles trapped
in a thin cell have been shown to provide an experimental
realization of the hard-core–soft-shell interaction, leading to a
host of different mesophases [28]. One may then ask whether
the transition described here would be detectable in these
systems.

In this respect, its very low temperature represents a ma-
jor hindrance: as discussed in Sec. V, even for the longest
dimers which we considered, such that 2δ = 0.25R, T0 is more
than one order of magnitude smaller than the temperature at
which the dimer crystal forms. Given that in both systems
mentioned above the particles are dispersed in water, freezing
of the solvent would intervene well before T0 is reached, even
assuming that the crystal can be realized at temperatures at
which the solvent is still liquid. T0 could be increased by
considering even longer dimers, hence further decreasing the
shell-to-core ratio, but besides the fact that in this regime the
quadrupole approximation used here would become inaccu-
rate, one has to take into account that at small shell-to-core
ratios the system would probably not form dimers at all, as
evidenced in the study of minimum energy configurations of
the hard-core–square shoulder potential [13,14]. In light of the
above considerations, soft-matter cluster crystals are unlikely
to lend themselves to the experimental observation of dimer
nematic ordering, or the related structural transition.

Nevertheless, there are other systems belonging to the
realm of atomic or molecular crystals where these effects
could be detected. As mentioned in Sec. III D, a scenario
very similar to that considered here occurs in the antiferro-
magnetic transition of Fe1/3NbS2 studied in Ref. [22]. This
compound features planes of Fe atoms arranged on a trian-
gular lattice intercalating between NbS2 planes. Despite the
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antiferromagnetic coupling between neighboring Fe atoms,
the frustration due to the triangular lattice would prevent the
onset of a magnetically ordered state. However, below the
Néel temperature TN = 43 K the lattice experiences a defor-
mation along one of the three directions of the Fe-Fe bonds,
which relieves the frustration and leads to an antiferromag-
netic phase via a first-order transition. The atomic spins are
mainly oriented along the direction perpendicular to the lat-
tice planes, but they still present a small in-plane component
which, interestingly, undergoes an isotropic-nematic transi-
tion at TN. This in-plane component of the spins plays then
the role of the dimers in the system considered here.

Another class of materials which is more closely related to
the present model and could display the same kind of transi-
tion is represented by plastic crystals. Indeed, irrespective of
the details of the mechanism which leads to dimer formation,
our system can be regarded as a simple model of a 2D plas-
tic crystal. Generally, when plastic crystals are cooled their
orientational degrees of freedom eventually freeze forming a
disordered, glassy-like arrangement [29]. It would be interest-
ing to investigate if 2D films of plastic crystals could present
a transition to an ordered nematic phase via a mechanism
similar to that which we have discussed.

In this paper the main emphasis was given to the discus-
sion of the theory, with little contribution from simulations.
A more extended comparison between the simulation results
and the theoretical predictions involving both thermody-
namic and structural quantities will be presented in the
future.
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APPENDIX A: DERIVATIVES OF THE LATTICE SUM
WITH RESPECT TO THE ORDER PARAMETER λ

Here we report the expressions of the second, third, and
fourth derivatives of the lattice sum F defined in Eq. (44) with
respect to λ evaluated on the triangular lattice such that λ = 0.
We start from Eqs. (47) and (48), which we rewrite below for
completeness:

S1[g] =
∑

k

(
k2

y − k2
x

)
g(k), (A1)

S2[g] =
∑

k

[(
k2

y − k2
x

)2 dg(k)

d (k2)
+ k2g(k)

]
. (A2)

These are generalized via the recurrence relation

Sn[g] = a

2

d

da
Sn−1[g], (A3)

thereby yielding

S3[g] =
∑

k

[(
k2

y − k2
x

)3 d2g(k)

d (k2)2

+ (k2
y − k2

x

)(
3k2 dg(k)

d (k2)
+ g(k)

)]
, (A4)

S4[g] =
∑

k

[(
k2

y − k2
x

)4 d3g(k)

d (k2)3
+ 2
(
k2

y − k2
x

)2
×
(

3k2 d2g(k)

d (k2)2
+ 2

dg(k)

d (k2)

)
+k2

(
3k2 dg(k)

d (k2)
+g(k)

)]
.

(A5)

A tedious but straightforward calculation gives for the higher-
order derivatives of F

d2F
dλ2

∣∣∣∣
λ=0

= S2

[
d f

d (k2)

]
1

{S2[w̃]}2 , (A6)

d3F
dλ3

∣∣∣∣
λ=0

=
{

S2[w̃] S3

[
d f

d (k2)

]
− 3S3[w̃] S2

[
d f

d (k2)

]}
× 1

{S2[w̃]}4 , (A7)

d4F
dλ4

∣∣∣∣
λ=0

=
{
{S2[w̃]}2S4

[
d f

d (k2)

]
− 6S2[w̃]S3[w̃] S3

[
d f

d (k2)

]
− 4S2[w̃]S4[w̃] S2

[
d f

d (k2)

]
+ 15{S3[w̃]}2S2

[
d f

d (k2)

]}
1

{S2[w̃]}6 , (A8)

where f (k) is given by Eq. (44), and it is understood that all
functionals Sn are calculated on the triangular lattice.

APPENDIX B: DERIVATIVES OF THE FREE ENERGY
WITH RESPECT TO μ

Here we determine the first and second derivatives of
the Helmholtz free energy F with respect to the variable
μ defined in Eq. (61) evaluated at μ = 0. According to
Eq. (35), the lattice-dependent part of F contains the lattice
sum F =∑k f (k) defined in Eq. (44), and the logarithmic
term ln[ I0(βδ2�/v) ], with � = ±

√
λ2 + μ2. The deriva-

tives with respect to μ of the latter contribution are obtained
straightforwardly. Let us then focus on the derivatives of F .
We first consider the derivatives with respect to the variables
a and s which determine the matrix of the primitive vectors
given by Eq. (19).

The derivative of F with respect to the lattice constant
a has already been determined in Eqs. (46) and (47). The
derivative with respect to s of the wave vector k is given by

∂

∂s

(
kx

ky

)
= ∂B

∂s
B−1

(
kx

ky

)
= − a2

v

(
0
kx

)
. (B1)

This yields

∂F
∂s

= −2a2

v
Q1

[
d f

d (k2)

]
, (B2)

where the functional Q1 is defined by

Q1[g] =
∑

k

kxky g(k). (B3)
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The derivatives with respect to λ and μ can be determined via
the relation (

∂F
∂λ

∂F
∂μ

)
=
(

∂λ
∂a

∂μ

∂a

∂λ
∂s

∂μ

∂s

)−1( ∂F
∂a

∂F
∂s

)
, (B4)

where ∂λ/∂a is given by Eq. (46), and the remaining deriva-
tives ∂λ/∂s, ∂μ/∂a, ∂μ/∂s are similarly determined by the
definitions of λ and μ in Eqs. (41) and (61) via Eqs. (45) and
(B1). This gives(

∂F
∂λ

∂F
∂μ

)
= 1

BG − CE

(
G −C

−E B

)(
S1
[ d f

d (k2 )

]
Q1
[ d f

d (k2 )

]), (B5)

where the functional S1 is defined in Eq. (A1), the quantity
B coincides with S2[w̃], S2 being the functional defined in
Eq. (A2), and the quantities C, E , G are given by

C =
∑

k

2kxky
(
k2

y − k2
x

)dw̃(k)

d (k2)
, (B6)

E =
∑

k

kxky

[(
k2

y − k2
x

)dw̃(k)

d (k2)
+ w̃(k)

]
, (B7)

G =
∑

k

k2
x

[
2k2

y

dw̃(k)

d (k2)
+ w̃(k)

]
. (B8)

For a centered rectangular lattice whose unit cell sides
lie along the x and y axes, one has Q1[g] = C = E = 0.
Equation (B5) then gives back Eq. (49) for ∂F/∂λ, whereas

for ∂F/∂μ we find

∂F
∂μ

= 1

G
Q1

[
d f

d (k2)

]
= 0. (B9)

To determine the second derivatives, we replace F in
Eq. (B4) with ∂F/∂μ to obtain⎛⎝ ∂2F

∂λ∂μ

∂2F
∂μ2

⎞⎠ =
(

∂λ
∂a

∂μ

∂a

∂λ
∂s

∂μ

∂s

)−1
⎛⎝ ∂2F

∂a∂μ

∂2F
∂s∂μ

⎞⎠. (B10)

To simplify the notation, we introduce the differential op-
erators ∂/∂u and ∂/∂t defined as follows: we consider a
lattice-dependent quantity G of the form G =∑k g(k). We
then express the derivatives of G with respect to a and s as

∂G
∂a

= − 2

a

∂G
∂u

,
∂G
∂s

= − a2

v

∂G
∂t

, (B11)

where we have set

∂G
∂u

= 1

2

∑
k

(
kx

∂

∂kx
− ky

∂

∂ky

)
g(k), (B12)

∂G
∂t

=
∑

k

kx
∂g(k)

∂ky
. (B13)

We now take ∂F/∂μ given by Eq. (B5), differentiate it
with respect to a and s via Eqs. (B11)–(B13), and insert the
result into Eq. (B10) to obtain

∂2F
∂λ∂μ

= 1

BG − CE

{
G

[
∂

∂u

[
1

BG − CE
(E − B)

](
S1

Q1

)
+ 1

BG − CE
(E − B)

(
∂S1
∂u
∂Q1
∂u

)]

+ C

2

[
∂

∂t

[
1

BG − CE
(E − B)

](
S1

Q1

)
+ 1

BG − CE
(E − B)

(
∂S1
∂t

∂Q1
∂t

)]}
, (B14)

∂2F
∂μ2

= 1

BG − CE

{
−E

[
∂

∂u

[
1

BG − CE
(E − B)

](
S1

Q1

)
+ 1

BG − CE
(E − B)

(
∂S1
∂u
∂Q1
∂u

)]

− B

2

[
∂

∂t

[
1

BG − CE
(E − B)

](
S1

Q1

)
+ 1

BG − CE
(E − B)

(
∂S1
∂t

∂Q1
∂t

)]}
, (B15)

where it is understood that the functionals S1, Q1 and their
derivatives are evaluated at df /d (k2) as in Eq. (B5). By taking
again into account the relation Q1[g] = C = E = 0 which
holds for the centered rectangular lattice, Eq. (B14) simplifies
to

∂2F
∂λ∂μ

∣∣∣∣
λ,0

= 1

BG

(
S1

B

∂E

∂u
− ∂Q1

∂u

)
. (B16)

By applying ∂/∂u defined in Eq. (B12) to Q1 and E given
respectively by Eqs. (B3) and (B7), it is found that for the
centered rectangular lattice both ∂E/∂u and ∂Q1/∂u vanish.
We then have

∂2F
∂λ∂μ

∣∣∣∣
λ,0

= 0. (B17)

Similarly, Eq. (B15) becomes

∂2F
∂μ2

∣∣∣∣
λ,0

= 1

2G2

(
− S1

B

∂E

∂t
+ ∂Q1

∂t

)
, (B18)

which, unlike Eq. (B16), does not vanish, since neither ∂E/∂t
nor ∂Q1/∂t do. Specifically, we get

∂Q1

∂t
=
∑

k

k2
x

[
d f (k)

d (k2)
+ 2k2

y

d2 f (k)

d (k2)2

]
, (B19)

∂E

∂t
=
∑

k

k2
x

[
w̃(k) + (5k2

y − k2
x

)dw̃(k)

d (k)2

+ 2k2
y

(
k2

y − k2
x

)d2w̃(k)

d (k2)2

]
. (B20)
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By adding to F the logarithmic term ln[ I0(βδ2�/v) ], we
finally obtain for the derivatives of the Helmholtz free energy
per particle F/N evaluated at μ = 0

∂2

∂λ∂μ

(
F

N

)
λ,0

= 0, (B21)

∂2

∂μ2

(
F

N

)
λ,0

= 1

v

[
∂2F
∂μ2

∣∣∣∣
λ,0

− δ2

2|λ|
I ′
0

(
β

v
δ2|λ|)

I0
(

β

v
δ2|λ|)

]
. (B22)

APPENDIX C: DERIVATIVES OF THE FREE ENERGY
WITH RESPECT TO THE VARIATIONAL

PARAMETERS α, ν

Here we report the equations for the variational parameters
α, ν = γ δ which determine the probability distributions re-
spectively of the position of the dimer center and of the dimer
length according to Eqs. (74) and (75).

We differentiate Eq. (81) for the Helmholtz free energy F with respect to α and ν and subsequently use Eq. (83) and Poisson
identity to express the lattice sums in real space as in Eq. (84). By requiring that the resulting expressions of ∂F/∂α and ∂F/∂ν

be zero, we obtain the following equations:

α = β

⎧⎨⎩∑
R �=0

∇2w(R) + δ2
eff

2

∑
R �=0

∇2∇2w(R) + 1

2α

∑
R �=0

∇2∇2w(R) + δ2
eff

4α

∑
R �=0

∇2∇2∇2w(R)

− δ2
eff

2

I ′
0

(
β

v
δ2

effλeff
)

I0
(

β

v
δ2

effλeff
) ∑

R �=0

(
∂2

∂x2
− ∂2

∂y2

)[
∇2w(R) + 1

2α
∇2∇2w(R)

]⎫⎬⎭, (C1)

ν = 2βδ2

[
1 + 4ν2 + 11ν + 6

ν(1 + ν)2

]⎧⎨⎩∑
R �=0

[
∇2w(R) + 1

2α
∇2∇2w(R)

]
− λeff

v

I ′
0

(
β

v
δ2

effλeff
)

I0
(

β

v
δ2

effλeff
)
⎫⎬⎭− ν(1 + 2ν)

(1 + ν)2
, (C2)

with δeff and λeff given, respectively, by Eqs. (80) and (85).
Equations (C1) and (C2) were solved iteratively for α and ν

at fixed lattice constant a. As initial guess, we took the α and
ν obtained from these equations by disregarding the terms of
order 1/α and 1/ν.

APPENDIX D: SPECIFIC HEAT AT LOW TEMPERATURE

Here we determine the behavior of the configurational
specific heat per particle at constant volume cV at low tem-
perature. By differentiating with respect to β the expression
of βF/N given by Eq. (84) we obtain the internal energy per
particle E/N ,

E

N
= S − 1

2v
δ2

effλeff
d

dψ
ln [I0(ψ )] + 1

2
w(0), (D1)

where for ease of notation we have set

S =
∑
R �=0

w(R) + δ2
eff

2

∑
R �=0

∇2w(R)

+ 1

2α

∑
R �=0

∇2w(R) + δ2
eff

4α

∑
R �=0

∇2∇2w(R), (D2)

ψ = β

v
δ2

effλeff . (D3)

We observe that Eq. (84) depends on temperature both ex-
plicitly and implicitly via the variational parameters λ, α,
ν, but those parameters do not contribute to the tempera-
ture derivative of F because of the optimization conditions
∂F/∂λ = ∂F/∂α = ∂F/∂ν = 0. However, they do contribute
to the temperature derivative of E needed to obtain cV , since
we have

dE

dβ
= ∂E

∂β
+ ∂E

∂λ

dλ

dβ
+ ∂E

∂α

dα

dβ
+ ∂E

∂ν

dν

dβ
. (D4)

We now turn to the optimization conditions on λ, α, ν.
They read

∂S
∂λ

= 1

2v
δ2

eff
∂λeff

∂λ

d

dψ
ln [I0(ψ )], (D5)

∂S
∂α

= 1

2v
δ2

eff
∂λeff

∂α

d

dψ
ln [I0(ψ )] − 1

β

∂

∂α
G(α, ν), (D6)

∂S
∂ν

= 1

2v
λeff

dδ2
eff

dν

d

dψ
ln [I0(ψ )] − 1

β

∂

∂ν
G(α, ν), (D7)

with G(α, ν) given by Eq. (77). We differentiate Eq. (D1) with
respect to λ, α, ν, and express the partial derivatives of S via
Eqs. (D5)–(D7). This gives

d

dβ

(
E

N

)
= −

[
1

v
δ2

effλeff + β

v
δ2

eff
∂λeff

∂λ

∂λ

∂β

+ β

v
δ2

eff
∂λeff

∂α

∂α

∂β
+ β

v
λeff

dδ2
eff

dν

dν

dβ

]
× 1

2v
δ2

effλeff
d2

dψ2
ln [I0(ψ )]

− 1

β

∂

∂α
G(α, ν)

dα

dβ
− 1

β

∂

∂ν
G(α, ν)

dν

dβ
. (D8)

Let us consider the low-temperature behavior of Eq. (D8):
Eqs. (C1) and (C2) imply that for β → ∞ one has α ∼ β,
ν ∼ β, so both α and ν diverge in this limit, whereas λ tends
to a finite value determined by the lattice constant at T = 0.
From Eqs. (77), (80), (82), and (D3) we find in the same
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limit

λeff → λ, δeff → δ,
d2

dψ2
ln [I0(ψ )] → 1

2ψ2
,

∂λeff

∂λ
→ 1,

∂λeff

∂α
∼ 1

α2
,

dδ2
eff

dν
∼ 1

ν2
,

∂

∂α
G(α, ν) = 1

2α
,

∂

∂ν
G(α, ν) → 1

2ν
. (D9)

From Eq. (D9) it is found that in the summation inside the
square brackets in Eq. (D8), only the first term survives for
T → 0. Putting everything together we obtain

cV = −kBβ2 ∂

∂β

(
E

N

)
→ kB

(
1

4
+ 1

2
+ 1

2

)
= 1.25 kB,

(D10)

corresponding to a thermal capacity per dimer

cdimer
V = 2cV → kB

(
1
2 + 1 + 1

)
= 2.5 kB, (D11)

where the kB/2 contribution comes from the rotational de-
gree of freedom, accounted for by the term containing
d2 ln[I0(ψ )]/dψ2 in Eq. (D8), one of the kB contributions
comes from the two degrees of freedom describing the oscil-
lations of the dimer center of mass, accounted for by the term
containing ∂G/∂α, and the other kB comes from the degree of
freedom determining the distance between the dimer particles,
accounted for by the term containing ∂G/∂ν. The last contri-
bution is twice that expected on the basis of equipartition of
energy, as discussed in Sec. V.
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