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Universal fluctuations of global geometrical measurements in planar clusters
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We characterize universal features of the sample-to-sample fluctuations of global geometrical observables,
such as the area, width, length, and center-of-mass position, in random growing planar clusters. Our examples
are taken from simulations of both continuous and discrete models of kinetically rough interfaces, including
several universality classes, such as Kardar-Parisi-Zhang. We mostly focus on the scaling behavior with time of
the sample-to-sample deviation for those global magnitudes, but we have also characterized their histograms and
correlations.

DOI: 10.1103/PhysRevE.109.034127

I. INTRODUCTION

Characterizing the statistical properties of rough interfaces
away from equilibrium is one of the main tasks in a variety
of scientific contexts, such as the growth of solid phases in
contact with a vapor [1], liquid-crystal turbulence [2], the
shapes of isochrone curves on rough terrains [3,4], the growth
of bacterial colonies or cell aggregates [5], or even the shape
of a city skyline [6]. One of the most relevant insights was
provided by the Family-Vicsek (FV) dynamic scaling ansatz
[7], which proposed that the width, or roughness, of a rough
interface grows with time t as a power law, W ∼ tβ , where β is
called the growth exponent, up to a saturation tsat ∼ Lz, where
z is called the dynamical exponent and L is the lateral size of
the system. The FV ansatz suggests the existence of a well-
defined correlation lengthξ ∼ t1/z, such that the roughness
at length scales � � ξ will always be saturated, w(�) ∼ �α ,
where α is the local roughness exponent, and the three expo-
nents are related as α = βz within the FV formalism [1,8].

The values of the scaling exponents β and z are typi-
cal hallmarks of the kinetic roughening universality class.
For example, for one-dimensional (1D) interfaces, β = 1/3
and z = 3/2 in the Kardar-Parisi-Zhang (KPZ) universality
class [1,8,9], which is associated with growth along the lo-
cal normal direction combined with surface tension effects
and time-dependent noise. Interestingly, the KPZ universality
class is able to also fix the one-point and the two-point (cor-
relation) statistics of the local interface or front fluctuations,
which are associated with Airy processes of different types,
depending on whether the overall symmetry of the growth
system is, e.g., flat or circular [2,8,10,11]. Additionally, the
statistical properties of global system quantities such as the
(squared) roughness W 2 have been characterized in detail
for globally flat KPZ interfaces (the case for, e.g., periodic
boundary conditions) [8,12,13]. Notably, an equivalent result
seems to be lacking for the case of growing two-dimensional
clusters, which in general remains somewhat less under-
stood in spite of its large interest for diverse contexts from

epitaxial growth [14] to cellular aggregates [15]. For instance,
as clarified in Ref. [16], the additional degrees of freedom
implied by the dynamics of 2D clusters (such as the evolution
of their center of mass) have sometimes even led to incorrect
identification of the exponent values and universality classes
for their corresponding 1D fronts. More recently [17], suitable
characterizations of the cluster dynamics have been shown
to extract correct exponent values and even the detailed time
evolution for certain measures of 2D clusters under growth or
dissolution conditions.

The aim of the present article is to characterize the global
properties defined in each case as a whole for 2D growing
clusters. Through a scaling analysis, nontrivial predictions,
such as scaling exponent values, will be derived from general
considerations on the sample-to-sample fluctuations of such
properties. Specifically, we will consider the average radius R,
the total area A, the total width W , the (suitably regularized)
length L, and the center-of-mass displacement Rcm. As we
will show, the expected values of these magnitudes and their
deviations grow as power laws of time, with exponents which
depend on the values of β and z. Previous attempts to predict
the sample-to-sample fluctuations of global variables have
been made in the past. For example, the center-of-mass dis-
placement was predicted to grow as t1/6 in KPZ clusters [17],
as we confirm here for some additional examples. Moreover,
we will also describe the correlation between these global
magnitudes and their full histograms, which in some cases is
Gaussian, and for R2

cm we will show that it corresponds to a
χ2-distribution. The case of the squared global roughness W 2,
which has been extensively studied for globally flat interfaces
[8,12,13], is more involved, but seems to share some similari-
ties with its flat counterpart.

We will apply our scaling estimates to simulations of
growing planar clusters generated by different physical sys-
tems, whose interfaces (boundaries) are known to follow FV
scaling. We will start by discussing neighborhoods (balls)
in the first-passage percolation (FPP) model, whose bound-
aries present 1D KPZ universality in the asymptotic regime
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FIG. 1. Typical profiles for the different physical examples con-
sidered in this article (see definitions in Sec. III). In all cases,
different colors represent different growth times. (a) FPP ball with
dc = 1, (b) FPP ball with dc = 20, (c) isochrone curves in the
random-metrics problem, (d) consecutive snapshots of the time evo-
lution of the interface in the shadowing model of bacterial colony
growth.

[4,18] if discrete lattice effects are suitably taken into account
[19]. Typical FPP balls are shown in Figs. 1(a) and 1(b),
depending on the level of disorder. The continuous analog
of FPP is called the random-metric problem, where we con-
sider isochrone curves on a two-dimensional manifold with
a random (disordered) metric field which is flat on average,
with only short-range correlations [3]. Typical isochrones are
shown in Fig. 1(c). Interestingly, different types of one-point
and two-point correlation functions are obtained depending
on whether the underlying manifold is a plane, a cone, or a
cylinder [20], although all these cases belong to the 1D KPZ
universality class.

Additional interesting examples of rough interfaces with
overall circular geometry are provided by the fronts of grow-
ing bacterial colonies [21], for which the most relevant
physical parameters are the motility and the nutrient con-
centration. For many values of these parameters, 1D KPZ
scaling can be observed, but other behaviors are also possible.
Specifically, for low motility and low nutrient concentration,
shadowing effects—whereby the growth rate at each interface
point depends on the angle under which the exterior of the
cluster can be seen [5]—dominate the interfacial dynamics.
In Fig. 1(d), we show a typical time evolution for an interface
described by this shadowing model.

This article is organized as follows. In Sec. II, we discuss
our theoretical framework in order to determine the scal-
ing exponents for global magnitudes of clusters following
FV scaling. Our predictions are then tested on FPP clusters,
random-metrics isochrones, and bacterial colonies in Sec. III.
Additional results for the histograms and the correlations be-
tween magnitudes are reported in Sec. IV. The article ends

with a summary of our conclusions and some proposals for
further work.

II. FLUCTUATIONS OF GLOBAL
GEOMETRICAL OBSERVABLES

Let us consider a growing planar cluster whose boundary is
described by a polar curve advancing in time, r(θ, t ), subject
to a stochastic evolution law which we may assume (along
with the initial condition) to be isotropic. Let us also consider
a local observable u which is a function of r, of r′ ≡ dr/dθ ,
and of θ itself, which we will denote by u[r(θ ), r′(θ ), θ ] or
just u(θ ) for short when it is convenient. Its two-point corre-
lation function can be defined as

Cu(θ̂ ) ≡ 〈u(θ )u(θ + θ̂ )〉 − 〈u(θ )〉〈u(θ + θ̂ )〉, (1)

where we will denote the angular distance between the two
points by θ̂ . In the asymptotic regime, we assume the follow-
ing scaling form for the correlation function:

Cu(θ̂ ) ≈ Aut2φu g2(But1−ζ θ̂ ), (2)

where φu is the corresponding scaling exponent, Au and Bu are
constants, ζ = 1/z is the inverse of the dynamical exponent,
and g2(x) is a continuous function such that g(x) ∼ 1 for x �
1, and g(x) → 0 sufficiently fast for x → ∞.

The reason behind the form of Eq. (2) is as follows. As-
suming that the expected value of the radius grows as 〈r〉 ∼ t
and that the correlation length grows as ξ ∼ t ζ , as is the case
in the Family-Vicsek ansatz [7], then the angular aperture of
each correlated patch along the front will be δθ0 ∼ t ζ−1. Then,
the argument of the g2(x) function should be δθ/δθ0, as shown
in Eq. (2).

As a first example, let us consider a cluster family cor-
responding to the KPZ universality class [9] and the local
observable u = r. In that case, we have φu = β = 1/3, and
Cr (θ̂ ) ∼ t2βg2(Brt1−ζ θ̂ ), where ζ = 1/z = 2/3. Assuming
that our cluster ensemble possesses a well-defined correla-
tion length, it seems appropriate to assume that all scaling
observables will present a similar structure in their correlation
functions.

Let us now consider the statistical distribution of the values
of a global measure of geometric origin, such as the area or
the length, which can be written as

U =
∫ 2π

0
dθ u(r, r′, θ ). (3)

This work is devoted to evaluating the sample-to-sample fluc-
tuations of any global measure U , which will be quantified
through their deviation �U or their variance,

Var(U ) ≡ (�U )2 ≡ 〈U 2〉 − 〈U 〉2. (4)

The first two moments can be written as

〈U 〉 =
∫ 2π

0
dθ 〈u(θ )〉,

(5)

〈U 2〉 =
∫ 2π

0
dθ

∫ 2π

0
dθ ′ 〈u(θ )u(θ ′)〉,
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thus allowing us to use a more compact notation for the
variance of U ,

Var(U ) =
∫

dθdθ ′ 〈u(θ )u(θ ′)〉 − 〈u(θ )〉〈u(θ ′)〉

=
∫

dθdθ ′ Cu(θ − θ ′), (6)

where Cu(θ − θ ′) is again the correlation function for the
observable u, defined in Eq. (1). Thus, we can compute the
variance of U :

Var(U ) =
∫

dθdθ ′ Cu(θ̂ ) = 2π

∫ 2π

0
d θ̂ Cu(θ̂ )

= 2πAut2φu

∫ 2π

0
d θ̂ g2(But1−ζ θ̂ )

≈ 2πAu

Bu
t2φu+ζ−1

∫ ∞

0
dx g2(x). (7)

Assuming that g2(x) decays fast enough for large values of
its argument, the last integral is finite and does not affect the
scaling behavior, thus leading to an estimate for the sample-
to-sample deviation of U ,

�U ∼ tφu+(ζ−1)/2. (8)

This expression can be motivated in a heuristic way as
follows. The variance of the average of N independent iden-
tically distributed (i.i.d.) random variables {ui} is Var(ū) =
Var(u)/N . Yet, if these random variables are strongly corre-
lated among themselves, with NP independent groups, then
it is straightforward to prove that Var(ū) = Var(u)/NP. If the
system radius grows approximately as t and the correlation
length grows as t ζ , then each profile possesses NP ∼ t1−ζ

independent patches. Therefore, the variance of a global vari-
able U must be given by

�U ∼ �u√
NP

∼ tφu+(ζ−1)/2, (9)

which coincides with the result shown in Eq. (8).
The rest of this section is devoted to the theoretical analysis

of the sample-to-sample fluctuations of several global geomet-
rical observables, such as the (average) radius, area, width,
center of mass position, and interfacial length.

A. Radius

As it has been discussed above, the sample-to-sample fluc-
tuations of the average radius of the cluster,

R =
∫ 2π

0
dθ

r

2π
, (10)

can be obtained by applying our formalism to the observ-
able u(r, r′, θ ) = r, which has the associated scaling exponent
φr = β, thus yielding the prediction �R ∼ tβ+(ζ−1)/2. For
example, in the 1D KPZ case, �R ∼ t1/6, which has been
numerically verified for balls in random metrics [3].

B. Area

Let us now consider the cluster area, which is given by

A =
∫ 2π

0
dθ

r2

2
. (11)

Within our formalism, its sample-to-sample fluctuations can
be obtained choosing u(r, r′, θ ) = r2. The associated scaling
exponent can be found through classical uncertainty propa-
gation, �(r2) ∼ r�r ∼ t1+β . Thus, �A ∼ tβ+(ζ+1)/2. For 1D
KPZ, our prediction is �A ∼ t7/6.

C. Width

In our next example, we will consider the sample-to-
sample fluctuations of the interface width, defined as

W 2 =
∫ 2π

0
dθ

(r − R)2

2π
, (12)

so that the fluctuations in W 2 can be obtained using our rule.
The integrand (r − R)2 has fluctuations of the order of t2β .
Thus, its variance scales as t4β , and we have

Var(W 2) ∼ t4β−1+ζ , (13)

which yields �(W 2) ∼ t2β−1/2+ζ/2. Yet, we have �(W 2) ∼
W �W and W ∼ tβ , leading us to predict

�W ∼ tβ−1/2+ζ/2. (14)

For example, in 1D KPZ, we have �W ∼ t1/6.

D. Center-of-mass position

In the absence of fluctuations, the center of mass (CM) of
a growing cluster starting out as a tiny circle must remain at
the origin. But, even though the statistical properties of the
cluster are isotropic, each sample presents unbalances which
will give rise to fluctuations in the CM position [16,17],

Xcm = 1

A

∫ 2π

0
dθ

r3

2
cos(θ ),

Ycm = 1

A

∫ 2π

0
dθ

r3

2
sin(θ ). (15)

Each of them presents an expectation value of zero, and a
nonzero variance, which shows up in the expected value of
the squared displacement,

R2
cm = X 2

cm + Y 2
cm � 0. (16)

Let us evaluate the sample-to-sample fluctuations of the fol-
lowing associated magnitude, which neglects the explicit
angular dependence:

U =
∫ 2π

0
dθ

r3

2
, (17)

and analyze the local fluctuations of u(r, r′, θ ) = r3/2, i.e.,
�u ∼ t2+β . Thus, we have Var(U ) ∼ t4+2β+ζ−1. Now, we
may guess that the scaling behavior of U is the same as
that for XcmA or YcmA. Thus, employing the usual uncertainty
propagation techniques,

�Xcm ≈ �U

A
+ U

�A

A2
. (18)
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Both terms scale in the same way, as tβ+(1−ζ )/2. Thus,

R2
cm ∼ t2β+ζ−1. (19)

Thus, the center of mass fluctuates with the same exponent as
the average radius. For 1D KPZ, this leads to Rcm ∼ t1/6 [17].

E. Length

The length of a cluster, L, is a different type of observable.
First of all, its measure may depend on the UV cutoff if
the interface presents a nontrivial fractal nature. Yet, we will
assume that the interface is always smooth at the microscopic
level and that the total length increases linearly in time, L ∼ t .
If the (radial) slopes are small, i.e., r′/r � 1, we may write

L =
∫ 2π

0
dθ

√
r2 + r′2 =

∫ 2π

0
dθ r

√
1 +

(
r′

r

)2

≈
∫ 2π

0
dθ

(
r + 1

2

r′2

r

)
, (20)

which forces us to consider the fluctuations of the local deriva-
tive of the radius with respect to the angle, r′(θ ). In order to do
that, let us consider a small angle difference δθ and evaluate

r′ ≈ r(θ + δθ ) − r(θ )

δθ
, (21)

so we have

Var(r′) = 〈r′2〉 − 〈r′〉2 = 2

δθ2
[Var(r) − Cr (δθ )]

= 2t2β

δθ2
[g2(0) − g2(t1−ζ δθ )]

≈ −2g′
2(0)

t2β+1−ζ

δθ
− g′′

2(0)t2(β+1−ζ ). (22)

The first term in Eq. (22) diverges as δθ → 0+ unless we
can ensure g′

2(0) = 0, which seems a reasonable assumption
within our framework. In that case, the second term provides
the complete scaling,

�(r′) ∼ tβ−ζ+1, (23)

which becomes �(r′) ∼ t2/3 in the 1D KPZ case. Indeed, we
have r′/r ∼ t−1/3, so this ratio becomes negligibly small for
large times, as expected.

Let us provide an intuitive explanation for this scaling
form. Once we have ensured that the interface is smooth, we
may estimate the derivative r′ by assuming that the radii will
span the full range of W within each correlated patch of size
ξ . Thus, we expect �(r′) ∼ �r/δθ0 ∼ W/(ξ/R) ∼ tβ−ζ+1.

The scaling form for the slopes allows us to evaluate the
sample-to-sample fluctuations of the cluster length, employ-
ing Eq. (8). Indeed,

Var(L) ∼ t2(β−ζ+1)t ζ−1 = t2β−ζ+1, (24)

which for 1D KPZ is just �L ∼ t1/2.
As a curiosity, we may define the length-to-radius ratio

of any cluster family or the generalized value of 2π̂ . Of
course, this 2π̂ value may, in general, depend on the measure-
ment scale if the interface is fractal, but, assuming a smooth

TABLE I. Scaling exponent values for the time evolution of the
sample-to-sample average and the deviation of different global geo-
metrical observables, as functions of the β and ζ = 1/z exponents of
the corresponding universality class.

Observable Average Fluctuations

R 1 β + (ζ − 1)/2
A 2 β + (ζ + 1)/2
W β β + (ζ − 1)/2
Rcm β + (ζ − 1)/2
L 1 β − (ζ − 1)/2

behavior below the UV cutoff, we may describe the sample-
to-sample fluctuations of the π̂ value for the 1D KPZ case,

�(2π̂ ) ∼ �L

R
+ L

�R

R2
. (25)

The first term scales as tβ−ζ/2−1/2, while the second one scales
as tβ+ζ/2−3/2. The first term will be dominant whenever ζ � 1,
which is the case in all the considered universality classes.
Therefore, we may conjecture that

�(2π̂ ) ∼ tβ−ζ/2−1/2, (26)

which for 1D KPZ leads to �(2π̂ ) ∼ t−1/2. Therefore, we
see that the length-to-radius ratio of different samples will
converge to a common value in the long run.

F. Summary of scaling predictions

The theoretical predictions from the scaling analysis dis-
cussed in this section are summarized in Table I, which shows
the scaling exponent with time for the sample-to-sample fluc-
tuations of each observable as functions of the β and ζ = 1/z
exponents of the corresponding universality class.

Thus, the following predictions can be made:
(i) The scaling exponent values for the sample-to-sample

variation of the average radius, the width, and the CM dis-
placement coincide.

(ii) The scaling exponent for the sample-to-sample varia-
tion of the area equals the previous exponent plus one.

(iii) We may obtain both the growth and the dynamical
exponents using, e.g., the fluctuations of the average radius
and the interface length.

III. NUMERICAL RESULTS

In this section, we will compare our theoretical predictions,
collected in Table I, with numerical simulations of different
models which are known to follow FV scaling. As examples
of systems in the KPZ universality class, we will discuss
first-passage percolation (FPP) and random-metrics models.
Both of them (with the latter in particular) happen to display
the expected behavior with relative ease. As examples of non-
KPZ universality classes, we will consider a shadowing model
and, in Appendix A, two flavors of the random deposition
model [1] for circular clusters.
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FIG. 2. Deviation of some global magnitudes for FPP isochrones
with dc = 1: average radius, area, and center-of-mass deviation. The
straight lines in each panel represent the corresponding theoretical
expectation for 1D KPZ behavior; see Table II.

A. First-passage percolation

Our first example will be first-passage percolation (FPP)
on a square L × L lattice, which is defined as follows. Each
lattice link k has an associated crossing time {tk}, which are
independently identically distributed (i.i.d.) random variables
extracted from a certain probability distribution, with cumula-
tive probability function F (t ) such that F (0) = 0. Employing
Dijkstra’s algorithm [22], we find the minimal arrival time at
every vertex i starting from the lattice center [4], {Ti}. Then
we determine the ball of radius R as the set of vertices for
which Ti � R. We have chosen uniform distributions for the
crossing times with mean μ and deviation σ . The balls are
then characterized by the crossover length dc ≡ μ2/(3σ 2). In
Figs. 1(a) and 1(b), we can see typical profiles using dc ≈ 1
and dc = 20. Notice that the average shape is nearly circular in
the first case and similar to a diamond in the second case. Yet,
the fluctuations are known to correspond to KPZ for all values
of dc [19,23]. Note that the boundaries of the balls, which
are called isochrone curves or isochrones, are not circular in
average [19]. Therefore, an analysis of the width and length
of the interfaces lies beyond the scope of this work.

We have run 104 simulations on L = 2401 FPP lattices,
using uniform time distributions with μ = 5 and different dc.
The time evolution of the average and deviation of the area
and the CM displacement are shown in Fig. 2 for dc = 1.04
and in Fig. 3 for dc = 20. Notice that for this discrete model
in particular, the aforementioned global magnitudes are easier

TABLE II. Same as Table I, but for the specific case of the 1D
KPZ universality class, in which βKPZ = 1/3 and ζKPZ = 2/3.

Observable Average Fluctuations

RKPZ 1 1/6
AKPZ 2 7/6
WKPZ 1/3 1/6
Rcm,KPZ 1/6
LKPZ 1 1/2

FIG. 3. Deviation of some global magnitudes for FPP isochrones
with dc = 20: average radius, area, and center-of-mass deviation. The
straight lines in each panel represent the corresponding theoretical
expectation for 1D KPZ behavior; see Table II.

to obtain because they are measured in the bulk. The solid
black lines show the theoretical predictions, extracted from
Table II (1D KPZ behavior), and show good agreement with
the simulation data.

B. Random metrics

The FPP problem is a discrete analog of the more general
random-metrics problem [3]. In the latter, we consider a ran-
dom two-dimensional manifold, flat in average, whose metric
tensor presents only short-distance correlations, and obtain the
isochrone curves by integrating Huygens’ equation,

∂t �r = �ng(�r), (27)

where �ng(�r) denotes the local normal to the isochrone at posi-
tion �r, according to the metric tensor g. Interestingly, both the
isochrones and the times of arrival present very accurate 1D
KPZ scaling from the beginning [3].

We have performed 1280 simulations of Huygens’ equa-
tion, given by Eq. (27). The details regarding the simulations
can be found in Appendix B. Each simulation starts out with
a very small ball, with initial radius 0.05, and propagates
it through a random-metric field with uniformly distributed
eigenvalues λ ∈ [1/20, 1], using a time step �t = 5 × 10−3.
We have obtained the full set of global observables: average
radius, area, width, CM displacement, and length, whose time
evolutions are shown in Fig. 4, along with the theoretical
predictions extracted from Table II. Notice that in all the
considered cases, the theoretical lines accurately describe the
simulation data.

Furthermore, we have checked the length-to-radius ratio,
i.e., the value of 2π̂ , and the results are shown in Fig. 5.
Indeed, the theoretical predictions are once more correct, with
the ratio converging to a fixed value whose fluctuations decay
as t−1/2, as predicted by Eq. (26).
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FIG. 4. Expected values and deviations for the global magni-
tudes for random-metric isochrones: (a) radius, (b) area, (c) width,
(d) center-of-mass displacement, and (e) length. The straight lines
in each panel represent the corresponding theoretical expectation for
1D KPZ behavior; see Table II.

C. Shadowing model

Motivated by the morphological instabilities of the fronts
of growing planar bacterial colonies, shadowing effects may

FIG. 5. Expected values and variances of the length-to-radius ra-
tio, or 2π̂ , for random-metric isochrones, along with the comparison
to the theoretical prediction, given by Eq. (26), for 1D KPZ behavior.

be introduced phenomenologically into the radial KPZ equa-
tion, such that each point at the interface moves along the
normal direction with a velocity which is proportional to the
local aperture angle, i.e., the fraction of rays emanating from
the point which does not intersect the interface [5,24]. The
resulting continuum model is given by the following equation:

∂t �r = [A0 + A1K (�r) + Aa�a(�r) + Anη]�n, (28)

where �r is any interface point, �n is the local exterior nor-
mal, K (�r) denotes the curvature of the interface at that point,
�a(�r) is the local aperture angle, and η is a zero-average
and unit variance, Gaussian, uncorrelated space-time noise.
Furthermore, A0, A1, Aa, and An are positive parameters which
quantify, respectively, the relative strengths of the average
growth velocity of a planar front, surface tension, dependence
on the aperture angle, and fluctuations. For a convex smooth
shape, the aperture angle is uniformly equal to π . The subse-
quent dynamics tends to make peaks grow faster than valleys,
thus giving rise to morphological instabilities. Indeed, in the
long run, the typical cluster is composed of a set of correlated
lobes separated by deep crevices whose angular distance is
nearly constant in time. An example can be seen in Fig. 1(d).

We have performed 500 simulations of Eq. (28) using
the same numerical scheme as in Ref. [5], for initial radius
1, A0 = 0, A1 = 0.1, Aa = 1, An = 0.1, and time step �t =
10−4. The technical details are discussed in Appendix B. We
have measured the full set of global magnitudes: average
radius, area, width, CM displacement, and length. The time
evolution of their average and deviation can be found in Fig. 6.
Previous work [5,24] was able to unambiguously rule out KPZ
scaling for this model, even finding traces of nonuniversality
both in experiments and in simulations, and very precise val-
ues of the critical exponents could not be ascertained for the
FV behavior that could nevertheless be confirmed. Yet, our
present global measurements agree with the scaling behavior
predicted in Sec. II and summarized in Table I, but now
compatible with (non-KPZ) values for the scaling exponents
β ≈ 5/6 and ζ = 1/z ≈ 1/3, implying α = βz ≈ 5/2.

We would like to stress that in some cases, our data show
scaling ranges below one decade. A more careful analysis of
the scaling exponents is provided in Appendix C, where local
fits to moving time windows are employed. Yet, we would
like to stress that the final aim of our numerical simulations is
to check the validity of our theoretical predictions regarding
the scaling exponents of the fluctuations of global geometrical
magnitudes.

IV. OTHER STATISTICAL PROPERTIES

A. Histograms

We may also provide some predictions for the full his-
tograms of some of the global observables that are considered.
Indeed, if the number of patches, NP, is large, the average
radius, the area, and the length can be considered to be the sum
or average of a series of i.i.d. random variables. The central
limit theorem then predicts that under very broad circum-
stances, the probability distribution for the global observables
must be Gaussian. In the random-metrics case, we have con-
sidered the full set of values of the average radius, area, and
length, for a given time t , subtracted their (time-dependent)
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FIG. 6. Expected values and deviations for the global magnitudes
for the shadowing model: (a) radius, (b) area, (c) width, (d) center-
of-mass displacement, and (e) length.

average, and divided by their (time-dependent) deviation so
that their average becomes zero and their variance becomes
one, i.e., we have defined

ρi = Ui − 〈U (t )〉
σU (t )

. (29)

Then we have plotted the histograms of the full set of values
ρi in Fig. 7(a), along with the unit Gaussian, showing their
correspondence. The prediction is especially good for the
length, with some deviation for the radius and area.

In Fig. 7(b), we show the histogram for the ρi values
corresponding to the square of the global width, which need
not be Gaussian. In fact, results associated to the KPZ class in
band geometry after saturation show a very skewed histogram
with a large-deviation exponential decay [8], which can be
accounted for by considering the behavior of random walks
[12,13]. Our case, which corresponds to circular geometry
and is not saturated, also shows a large-deviation exponential
decay, as we can see in Fig. 7(b).

FIG. 7. Probability density for the standardized global mag-
nitudes, given by Eq. (29), considered for the random-metrics
system. (a) Radius, area, and length, along with the unit Gaussian.
(b) Squared width, along with an exponential decay, as predicted in
other cases in the literature [8,12]. (c) Squared CM displacement R2

cm,
along with the χ 2-distribution for k = 2 degrees of freedom (i.e., an
exponential decay).

Furthermore, Fig. 7(c) shows the histogram for the squared
CM displacements, R2

cm, merely normalized to have variance
one. In this case, the theoretical prediction is not Gaussian.
Indeed, R2

cm = X 2
cm + Y 2

cm, where Xcm and Ycm can be, in turn,
considered to be Gaussian. Therefore, the sum of squares must
follow a χ2-distribution for two degrees of freedom, which
is an exponential distribution, as we can indeed observe in
the plot.

B. Correlations between global magnitudes

It is interesting to consider whether the sample-to-sample
fluctuations of different global magnitudes present correla-
tions. Indeed, it is natural to expect that the fluctuations of
the average radius and the area must be strongly correlated,
with a smaller (yet positive) correlation between the CM dis-
placement and the interface width.

In order to obtain a theoretical prediction, we consider any
two global magnitudes U and V , and define their correlation
coefficient,

rUV ≡ 〈UV 〉 − 〈U 〉〈V 〉
σU σV

. (30)
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FIG. 8. Correlation coefficients, given by Eq. (30), between
some pairs global magnitudes as a function of time, for the random-
metrics system: width vs radius, area, length, and center-of-mass
displacement.

If we assume that the correlator between different magnitudes
behaves as [recall Eq. (2)]

Cuv (θ, θ ′) = Auvtφa+φb g2(Buvt1−ζ θ̂ ), (31)

then

〈UV 〉 − 〈U 〉〈V 〉 =
∫

dθdθ ′ Cuv (θ, θ ′)

∼ 2πAuv

Buv

tφu+φv+ζ−1
∫ ∞

0
dx g2(x), (32)

whose time dependence is the same as that for the prod-
uct σU σV , thus concluding that the correlation coefficients
approach time-independent values. This is indeed what we
observe in Fig. 8, where we have considered the correlation
coefficients between the width and the other four global ob-
servables in the random metrics simulations. Notice that the
curves for the average radius and the area overlap almost
perfectly, because the correlation coefficient between them is
close to one.

V. CONCLUSIONS

In this work, we have presented a scaling approach to
the sample-to-sample fluctuations of global geometrical ob-
servables measured on random planar clusters whose fronts
display statistical properties satisfying the Family-Vicsek
ansatz. The chosen observables were the average radius, area,
width, center-of-mass displacement, and length of the clus-
ters. The sample-to-sample deviations of these observables
are thus predicted to present power-law dependences with
time, with exponent values that can be determined from the
Family-Vicsek exponents β (growth exponent) and z (dynam-
ical exponent).

We have tested our predictions against several different
growth systems: random deposition in two different ver-
sions (see Appendix A), first-passage percolation clusters and
random metrics isochrones (both belonging to the KPZ uni-
versality class), and shadowing dynamics (which does not). In
all the considered cases, the predictions met the actual scaling
found in the simulations.

We have also addressed the full histogram of the sample-to-
sample fluctuations of these global variables. Some of them,

such as the radius, area, and length, are seen to be Gaus-
sian. However, and in analogy to the case of KPZ growth
in a band geometry [8,12,13], the histogram of the width or
roughness is not Gaussian and this remains beyond our present
scaling arguments. The center-of-mass displacement follows a
χ2-distribution with k = 2 degrees of freedom, as predicted.
Also, the sample-to-sample correlation coefficients between
these magnitudes approach time-independent, limiting values,
also as predicted.

In principle, our work enables alternative characterizations
of the universality class in terms of exponent values, for rough
interfaces with an overall, circular symmetry, by employing
sample-to-sample fluctuations of global magnitudes associ-
ated to the clusters. Indeed, it is possible to obtain both the
growth and the dynamical exponents using the fluctuations in
two complementary global magnitudes, such as the average
radius and the total length. Methodologically, this may turn
out to be advantageous in the analysis of, e.g., experimental
and/or simulation data.
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APPENDIX A: RANDOM DEPOSITION

The simplest growth model is, indeed, random deposi-
tion (RD), which always yields β = 1/2 [1]. In a circular
framework, we may consider two flavors of the RD class

FIG. 9. Profiles for the random deposition models discussed in
Appendix A: (a) Model RD-1 has a fixed angular cutoff; (b) model
RD-2 has an adaptive cutoff, and thus the number of points along the
interface grows with time.
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FIG. 10. Time evolution of the average and sample-to-sample deviation of global magnitudes from numerical simulations of (a1)–(d1)
model RD-1 and (a2)–(d2) model RD-2. The straight lines in each panel represent the corresponding theoretical expectation; see Table III. The
largest deviations between the numerical data and our scaling predictions are for (a2) the radial deviations and (d2) the CM displacement of
the RD-2 model. In both cases, the expected exponent is zero, while the measured value is approximately 0.13.

(additional formulations are possible; see, e.g., [25] and re-
lated references), depending on the discretization scheme and
the treatment of the UV cutoff. In what we will call model
RD-1, we set up a fixed angular discretization with a UV
cutoff �θ = 2π/N , where N is the number of points. Now,
the interface is described by a set of N radial values, {ri}N

i=1,
with ri = r(θi ). At each time step, we allow each ri to grow
independently of the others. In practice, we are imposing that
each wedge �θ remains completely correlated. Therefore,
ξ ∼ t , i.e., the correlated patches grow as fast as the interface
itself and ζ = 1.

Model RD-2, on the other hand, includes a UV cutoff for
length instead of an angular one [3,26,27]. Therefore, the
length of the correlated patches remains time independent, and
ζ = 0. The differences between both RD models can be seen
in the profiles shown in Fig. 9.

The predictions for the sample-to-sample fluctuations of
global magnitudes vary for the two models. We discard the
cluster length because our calculation assumed that the in-
terface was smooth enough at the cutoff scale, which is not
the case here. The remaining scaling exponents are shown
in Table III and have been measured in the numerical sim-
ulations shown in Fig. 10. In our simulations, we have run
1000 samples with a growth velocity v = 1, �t = 0.01, and
unit adaptive UV cutoff for the RD-2 model. The largest
discrepancy between the theoretically expected exponents and
those measured in the simulations is found in model RD-2 for
the deviations of the average radius and for the CM devia-

tion; in both cases, we expect a zero exponent value, but we
measure 0.13 approximately, possibly due to limitations in our
longest simulation times. Other than this, the predictions seem
accurate.

APPENDIX B: NUMERICAL DETAILS

This section provides further details regarding the numeri-
cal simulations discussed in the text, specifically the random
metrics and the shadowing model discussed in Secs. III B and
III C, respectively. Both of them are continuous models which
are simulated following the adaptive and intrinsic-geometry
principles discussed in [26]. Indeed, the interface is repre-
sented as a (periodic) doubly linked list of points on the plane
in C++, which follows a resolution condition: the distance
between any two neighboring points must lie in the interval

TABLE III. Scaling behavior of different geometric global ob-
servables for the RD-1 and RD-2 models. The growth exponent
β = 1/2 for both models, but ζ = 1 for RD-1 and ζ = 0 for RD-2.

Observable Scaling exponent RD-1 RD-2

�R β + (ζ − 1)/2 1/2 0
�A β + (ζ + 1)/2 3/2 1
�W β + (ζ − 1)/2 1/2 0
Rcm β + (ζ − 1)/2 1/2 0
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[l0, l1]. If points separate too much, a new point is created in
the middle, following a suitable (usually linear) interpolation.
If points approach too much, one of them is removed. This
procedure requires a dynamical data structure, which is easily
implemented in C++. Moreover, all operators appearing in
the discretized version of the evolution equation must ful-
fill a intrinsic-geometry condition, i.e., they must be chart
independent.

The random-metrics problem is thoroughly discussed in
[3], and the simulation protocol is again the one discussed
in [26], using adaptive cutoffs l0 = 0.01 and l1 = 0.05. The
initial condition is a small circumference of radius r0 = 1.
In this case, the metric tensor at every point is simulated
as a random matrix field. The metric matrix at each point
is sampled in the following way. First, the two eigenvalues
are selected from a uniform distribution in [λ0, λ1], where
λ0 = 0.05 and λ1 = 1. Then, we perform a random rotation
of an angle θ uniformly sampled in [0, 2π ). In this case, the
time evolution follows Huygens equation, given by Eq. (27),
which is a stochastic differential equation in which the noise
term is hidden in the ng(�r) vector, i.e., the choice of normal to
the interface at each point. In order to find this normal vector,
we estimate the tangent vector to the curve as the vector
joining the two nearest neighbors, and the normal vector is
then obtained as perpendicular to the tangent vector according
to the local metric tensor.

The shadowing model, which is thoroughly discussed in
[5], is performed on an Euclidean plane and thus presents
no subtleties related to Riemannian geometry. The evolution
equation, given by Eq. (28), contains a normal growth term,
a local curvature term, and a noise term, which are simulated
according to the principles from [26], using adaptive cutoffs
l0 = 0.01 and l1 = 0.1. The initial condition is a small cir-
cumference of radius r0 = 1. The new term is the shadowing
term, which links the local growth rate to the local aperture
angle. We can define this local aperture angle in simple terms
as the probability that a ray emanating from the interface point
will touch any other point in the interface. This term is highly
nonlocal and its efficient evaluation is discussed in [5].

APPENDIX C: EFFECTIVE EXPONENTS

In this Appendix, we provide further details regarding
the measurements of the scaling exponents associated to the
fluctuations of the global geometrical observables. Following
Refs. [16,24], we have performed fits to a scaling law of
the raw data over temporal windows of a fixed width, and
varying the initial time. The results are shown in Fig. 11. The
width of the temporal window has been fixed to T = 4 for the
random-metrics case and to T = 0.2 for the shadowing case.
Notice that the different windows overlap, and the initial times
are separated �T = 0.2 and �T = 0.01, respectively.

Figure 11(a) shows the effective exponents measured as a
function of time for the fluctuations of the radius, area, width,
length, and center-of-mass displacement for the random-
metrics problem from the data discussed in the main text,
along with the theoretically predicted value. We can ob-
serve that all the exponents present small fluctuations around
their theoretical value, presenting a very short transient. The

FIG. 11. Effective exponents for selected global geometric ob-
servables as a function of time for two of the models discussed
in the main text. (a) The time evolution of the effective exponents
for the fluctuations of the radius, area, width, and length, along
with the center-of-mass displacement for the random-metrics model.
The horizontal bars mark the theoretical predictions. (b) The time
evolution of the effective exponents for the fluctuations of radius,
area, and width, along with the center-of-mass displacement for the
shadowing model, in a similar way. (c) The raw data for the length
fluctuations in the shadowing model, along with the best fit. Inset:
The corresponding effective exponents as a function of time.

shadowing case is subtler. Figure 11(b) presents the effective
exponents measured as a function of time for the same ob-
servables, excluding the cluster length, along with our best
theoretical estimate. We observe a clear transient in the ef-
fective exponent associated to the area, which is not apparent
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in the other observables. The scaling exponent for the length
fluctuations is detailed in Fig. 11(c), which shows the raw
data, along with the best fit. The inset shows the effective
exponent, along with the theoretical value, and we can observe
very large fluctuations.

We should stress that our values for the scaling expo-
nents in the random-metrics case are completely determined

from the theory, and the numerical simulations provide con-
firmation for their values. In the shadowing case, the scaling
exponent β is obtained from the growth of the global width,
thus allowing us to obtain an accurate estimate for ζ when
we measure the sample-to-sample fluctuations of the global
radius. The measurements of the other global exponents thus
provide a consistency check for our theoretical predictions.
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