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Finite-size scaling of the high-dimensional Ising model in the loop representation
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Besides its original spin representation, the Ising model is known to have the Fortuin-Kasteleyn (FK) bond
and loop representations, of which the former was recently shown to exhibit two upper critical dimensions
(d. =4,d, = 6). Using a lifted worm algorithm, we determine the critical coupling as K. = 0.077 708 91(4)
for d = 7, which significantly improves over the previous results, and then study critical geometric properties
of the loop Ising clusters on tori for spatial dimensions d = 5 to 7. We show that as the spin representation,
the loop Ising model has only one upper critical dimension at d. = 4. However, sophisticated finite-size scaling
(FSS) behaviors, such as two length scales, two configuration sectors, and two scaling windows, still exist as
the interplay effect of the Gaussian fixed point and complete-graph asymptotics. Moreover, using the loop-
cluster algorithm, we provide an intuitive understanding of the emergence of the percolation-like upper critical
dimension d,, = 6 in the FK-Ising model. As a consequence, a unified physical picture is established for the FSS
behaviors in all three representations of the Ising model above d. = 4.
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I. INTRODUCTION

The Ising model is one of the most important models in
statistical physics and has wide applications in almost every
branch of modern physics [1,2]. Given a lattice G = (V, E)
with the vertex set V and edge set E, the partition func-
tion of the ferromagnetic Ising model with zero field can be
written as

Egn= ), et (1)

se{—1,1}V

where s; = £1 represents spin orientation up or down on
vertex i, and the coupling strength K > 0 is proportional to
the inverse temperature. For the Ising model, there is an upper
critical dimension d. = 4 above which the critical behavior
is governed by the mean-field theory. Two typical approaches
of the mean-field solution are the Gaussian fixed point (GFP)
solution and the complete-graph (CG) solution. The GFP
solution is well established in the framework of renormal-
ization group (RG) theory, and gives the RG exponents as
s yn) = 2,1 +d/2) [3]. The CG is a fully connected and
finite graph with all vertexes adjacent to each other. It focuses
on finite-size scaling (FSS) behavior and gives effective RG
exponents (y;, y;) = (d/2,3d/4) [4].

Besides the spin representation, the Ising model can be re-
formulated in geometric representations via high-temperature
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expansion techniques, including the Fortuin-Kasteleyn (FK)
bond representation [5] and loop representation (also known
as the random-current representation) [6]. The FK representa-
tion of the Ising model is the g = 2 case of the general g-state
random cluster model which is defined as follows. Given a
graph (V, E), each edge is either empty or occupied by a
bond. Each occupied bond has a statistical weight (relative
to the empty one) as v, and the fugacity of each connected
component (also called cluster) is g. The partition function of
the random cluster model then reads as

Zpk = Z gDyl )

ACE

where k(A) is the number of clusters and |A| is the number of
bonds. For ¢ = 2, the bond weight v = ¢?X — 1. The partition
function of the loop representation of the Ising model is

Zlogp = Y _(tanh K)*IL(A is even). 3)

ACE

Thus, in the loop representation, the weight of an occupied
bond is tanh K. The indicator function above means that all
vertices on (V, A) must have even degree. These two graphical
models can be mapped onto each other through the loop-
cluster (LC) joint model [7]. This means FK configurations
can be generated by placing bonds with probability tanh K
onto the empty edges of loop configurations; this process
is called the LC transformation. Geometric representations
of the Ising model offer several advantages. First, they pro-
vide a platform for designing efficient Monte Carlo (MC)
algorithms, such as the worm algorithm based on the loop
representation [8], the Swendsen-Wang algorithm utilizing the
FK representation [9], and the LC algorithm derived from

©2024 American Physical Society


https://orcid.org/0009-0006-7167-766X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.034125&domain=pdf&date_stamp=2024-03-21
https://doi.org/10.1103/PhysRevE.109.034125

XIAO, LI, ZHOU, FANG, AND DENG PHYSICAL REVIEW E 109, 034125 (2024)

TABLE I. Summaries of the two-length-scale behavior, two configuration sectors, and two scaling windows of the Ising model in the FK
representation and loop representation on high-d tori. The GFP exponents for the Ising model and percolation are (y,, y,) = (2,1 +d/2).
The RG exponents for the CG Ising model are (y;, y;) = (d/2,3d/4) and for the CG percolation model are (y;,,y;,) = (d/3,2d/3). On
high-d tori (d > 6), the thermodynamic fractal dimension of critical percolation clusters is dx = 4. We denote s and R for the size and radius
of gyration for a generic cluster, Cy, F; for the size of the largest FK cluster and for the ith-largest loop cluster, and R;, R, for the radius of
gyration of the largest and second-largest FK or loop clusters. The Giant cluster(s) represents the largest FK cluster and loop clusters with size
of the order of L for the FK and loop representations, respectively. We denote n(s, L) as the cluster-number density. For both the FK and loop
representations, there is a special sector in the configuration space, the proportion (denote as P) of which vanishes asymptotically. For d > 6,
the FK-Ising model has a CG-Ising scaling window and a high-d percolation scaling window; the latter consists of a CG-percolation window
and a GFP-percolation window. These different properties suggest that the FK-Ising model has two upper critical dimensions (4 and 6), while

the loop Ising model has only one upper critical dimension 4.

d Two length scales

The vanishing special sector Two scaling windows

Giant cluster: C; ~ L% ~ R"l."

Vanishing rate: P ~ LY~ Width: O(L™7)

4<d<6 Other clusters: s ~ R, In the sector: s ~ R O(L™1)
~ g (d/yy)
FK representation nis, L)~ s
Giant cluster: C; ~ L% ~ R?/ 2 Vanishing rate: P ~ L¥h» % Width: O(L™7)
d>6 Other clusters: s ~ R*, In the sector: s ~ R* O(L ™)

n(s, L) ~ s~ +40ie) O(L™)
Giant clusters: n(s, L) ~ L™¢s™! Vanishing rate: P ~ L~ Width: O(L™7)

Loop representation d>4 Fio~ Lt~ R, In the sector: Fj o ~ LYt ~ R‘l'fz O(L™1)

Other clusters: n(s, L) ~ s~ (+4/5

Values of RG exponents Oy =2, 1+d/2),

O ) =1(d/2,3d/4),  Of i) =(d/3,2d/3)

the LC joint model [7]. These algorithms enhance computa-
tional efficiency and facilitate simulations of the Ising model.
Second, geometric representations play a significant role in
conformal field theory [10] and stochastic Loewner evolu-
tion [11,12], enabling a deeper understanding of the spin Ising
model. Notably, using the random-current representation, it
was proved that the three-dimensional (3D) Ising model ex-
hibits a continuous-phase transition [13].

Recently, based on theoretical intuition and numerical re-
sults, the authors in Refs. [14,15] argued that the FK-Ising
model has two upper critical dimensions d. = 4 and d, =
6, depending on which quantities are considered. They fur-
ther found, as long as d > 4, the FK-Ising model exhibits
two-length-scale behavior, two configuration sectors, and two
scaling windows. The scaling behaviors are simultaneously
governed by the CG asymptotics and the GFP asymptotics
for 4 < d < 6, but with the GFP asymptotics replaced by the
high-dimensional (high-d) percolation behavior for d > 6, as
summarized in Table I. This finding significantly enriches the
understanding to the Ising model from a geometric perspec-
tive. Thus, one natural question is whether one can observe
two upper critical dimensions in the loop Ising model, and
whether the loop Ising model exhibits similar rich phenomena
as the FK-Ising model.

Before discussing the loop Ising model on tori, we first
review known results on the CG, since it is believed that
the scaling behaviors on high-d tori follow the CG asymp-
totics. In Ref. [16], it was numerically found that in contrast
to the FK-Ising model, the different properties such as the
two-length-scale behavior, two configuration sectors, and two
scaling windows cannot be explicitly observed in the loop
Ising model on the CG. The sizes of the first- and second-
largest loop clusters scale similarly as Fy, F, ~ V!/2 at the

critical point K, = 1/V. The cluster-number density n(s, V)
was observed to behave as

n(s, V)= W=l s /VV), 4)

where the scaling function 7i(x — 0) = 1. It follows that the
total number of loop clusters, Ny =V [ n(s, V)ds =< %ln vV,
which is confirmed numerically. Further, they found loop con-
figurations are asymptotically empty (bond density tends to 0
as V — 00), and after the LC transformation, many large loop
clusters are merged together to form the largest FK cluster.
Combining with the fact that tanh K. ~ 1/V, which is the
critical point of bond percolation on the CG, one can see that
other FK clusters are basically generated by placing bonds
onto an almost empty graph, which is a critical percolation
process. This perfectly explains the percolation effects ob-
served in the FK-Ising model [17].

In this work, we employ the lifted worm algorithm [18]
to simulate the loop Ising model on high-d tori from d =5
to 7. We find there are also two-length-scale behavior, two
configuration sectors, and two scaling windows for the loop
Ising model, while it only has one upper critical dimension
d. = 4. The main results are summarized in Table 1.

In Ref. [15], it was observed that for the 7D FK-Ising
model, some quantities suffer unusually strong finite-size
corrections at the estimated critical point, and this may be
attributed to the insufficient precision of the estimate of the
critical point. Thus, we first simulate the 7D loop Ising model
and obtain a more precise estimate K. = 0.07770891(4)
through a systematic FSS analysis, which improves over the
previous best estimate 0.077 708 6(8) by 20 times.

At criticality, we first study the sizes of the largest and
second-largest loop clusters, F; and F;. The finite-size fractal
dimensions (d,,, d,,) and the thermodynamic fractal dimen-
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sions (d.,, d.,) are defined via F} ~ L% ~R‘f” and F, ~

L4 ~ R¥? where R, and R, are the unwrapped radii of
gyration for the two clusters. We numerically find that d,, =
d, = d/2, following the CG asymptotics V'!/> by matching
the volume V = L%, and d,, =dp, =2 =y,, following the
GFP asymptotics. Thus, in contrast to the FK-Ising model, the
two largest clusters in the loop Ising model exhibit the same
scaling behavior. For other loop clusters, our data suggest that
the scaling s ~ R? also holds. In addition, it follows directly
from the scaling of fractal dimensions that Ry , ~ L%/#, which
means that loop clusters wind around the torus extensively
for d > 4. This is also different from the FK-Ising model,
in which the extensive winding does not happen until d > 6.
Namely, in terms of winding, 6 is a special dimension for the
FK-Ising model, but not for the loop Ising model.

We then investigate the cluster-number density n(s, L) of
the loop Ising model, and our data suggest that for d > 4, it
should be written as

n(s, L) ~ nos~ 50 (s/L*) 4+ nysT L4, (s/LY?). (5)

Here, 7ig(x) and 7i; (x) are the scaling functions and ng, n; are
two constants. Clearly, two length scales can be observed from
n(s, L). For loop clusters with size s < O(L?), n(s, L) ~ s~ °
with the Fisher exponent t = 1 4 d/dy and di = 2 from the
GFP asymptotics, while for large loop clusters with size s >
O(L?), n(s, L) follows the CG behavior shown in Eq. 4).
Since the scaling s ~ R? holds for all loop clusters, the two
length scales can also be interpreted as whether the radius
of a cluster exceeds the system size L (spanning or not).
The number of spanning clusters, Ny, can be obtained as
N, ~ L4 Ji2n(s, L)ds ~ InL.

The FK-Ising model on tori above 4D was found to have a
special sector in the configuration space, in which quantities
exhibit the GFP behavior for 4 < d < 6 and the high-d perco-
lation behavior for d > 6 [15,17]. For the loop Ising model,
our data suggest that there also exists a special configuration
sector which consists of loop configurations with the size
of the largest loop cluster less than L. This sector exhibits
the GFP behavior, and vanishes asymptotically with the rate
L'=4/% for all d > 4. Moreover, we argue that similar to the
spin representation, the Ising model in the loop representa-
tion also has two scaling windows near the critical point;
the narrow one is the CG-Ising window with width O(L~%/?)
and the wide one is the GFP window with width O(L~?). In
the CG-Ising scaling windows, all quantities have the same
scaling behaviors as at the critical point, while in the GFP
scaling window, the CG asymptotics of quantities are absent.
For example, the average value of the first- and second-largest
clusters F; ~ F> ~ R% P L?, and the cluster-number density
n(s, L) only has the first term in the right-hand side of Eq. (5).

From above, although there are also two-length-scale be-
havior, two configuration sectors, and two scaling windows
in the loop Ising model on high-d tori, unlike the FK-Ising
model, d, = 6 is not a special dimension for the loop Ising
model. Specifically, the loop Ising model has only one upper
critical dimension d, = 4, which is the same as the spin Ising
model. However, since the FK and loop Ising models are
connected via the LC joint model, one would wonder why
the FK-Ising model has two upper critical dimensions d. = 4

and d, = 6, and especially why percolation behavior emerges
above 6D. From the LC algorithm, an FK bond configuration
can be generated by placing bonds with probability tanh K on
the empty edges of a loop configuration. Our data show that
after placing bonds, the loop clusters with sizes larger than
O(L?) are merged together and form the largest FK cluster.
This explains why, in the FK-Ising model, the largest cluster
is much larger than other clusters. For dimensions d > 6, after
large loop clusters are connected after placing bonds, other
loop clusters are relatively small, and thus the bond placing
process is like a percolation process and generates a large
amount of FK clusters with no loop clusters involved, which
explains why, above 6D, the FK clusters, except the largest
one, exhibit high-d percolation behavior.

The remainder of this paper is organized as follows. In
Sec. II, the simulation details and sampled quantities are de-
scribed. Section III presents our numerical results. Finally,
we sum up these results and provide a unified understanding
of the scaling behaviors of the high-d Ising model in three
representations in Sec. [V.

II. SIMULATION AND OBSERVABLE
A. Algorithm

In this section, we introduce the algorithms used in this
work. We first employ the lifted worm algorithm [18] to gen-
erate the loop configurations. Given a loop configuration, we
use the LC algorithm [7] to generate a FK bond configura-
tion, i.e., independently place bonds on the empty edges with
probability tanh K.

The worm algorithm is a type of Metropolis algorithm,
which can efficiently update loop configurations via local
moves. Given a loop configuration, a worm 1is located at a
uniformly chosen vertex. Then, the worm tail is fixed at the
vertex and the worm head performs a random walk on the
lattice. At each step, the worm head proposes to walk through
a uniformly chosen adjacent edge. If the edge is empty (not
occupied by a bond), the proposal is accepted with probability
tanh K, and the edge becomes occupied after the worm head
walks past. If the edge is occupied, the proposal is accepted
with probability 1 and the edge becomes unoccupied after the
worm head walks through. It can be seen that if the head and
tail are not on the same vertex, the bond configuration is not
a loop configuration since the worm head and tail have odd
degrees. Once the worm head hits the tail, a loop configuration
is obtained.

In Ref. [18], the authors proposed a lifted worm algorithm
which is an irreversible Markov process. The idea of the
lifted worm algorithm is to introduce an auxiliary variable A €
{+, —}. When 1 = +(—), only the proposal of adding (remov-
ing) a bond is allowed. The parameter A flips whenever the
proposal is rejected. It was shown in Ref. [18] that the lifted
worm algorithm is generally more efficient than the standard
worm algorithm, especially in high dimensions and on the
complete graph. According to Refs. [18,19], as the spatial
dimension increases, the improving factor of the irreversible
algorithm over the standard worm algorithm increases. The
integrated correlation time of the lifted worm algorithm (in
units of sweep) is already smaller than one sweep, and exhibits

034125-3



XIAO, LI, ZHOU, FANG, AND DENG

PHYSICAL REVIEW E 109, 034125 (2024)

TABLE II. The critical points K. and the largest simulated sys-
tem volume V,,,, for d = 5, 6, 7. For each system, no less than Ny,
independent samples are generated.

d K(.‘ Vmax N%am

5 0.113 915 0(4) [20] 325 ~ 107 6 x 10°
6 0.092 298 2(3) [21] 20° ~ 108 3% 10°
7 0.077 708 91(4) (this work) 187 ~ 10° 3 x 10°

critical speeding-up on the complete graph—i.e., Ty ~
1/ V'V, with V the total number of vertices.

B. Sample quantities

We simulate the Ising model on high-d tori with d =
5, 6, 7. The critical points K., the largest system volume Viy,x,
and the number of independent samples, Ngm, are summa-
rized in Table II. For each system, the following observables
are sampled:

(a) The indicator P,, = 1 when the worm head hits the
worm tail, i.e., a loop configuration is obtained, otherwise
P = 0.

(b) The sizes of the first- and second-largest loop clusters
denoted as F; and F>.

(¢) The number of loop clusters, A (s), with size s, defined
as the number of loop clusters with size in [s, s + As) with an
appropriately chosen interval size As.

(d) For a loop cluster F, its unwrapped radius of gyration
R(F) is defined as

(Xu - X)Z
R(F) = —_—
\ ; |F]

where X = Y, X, /|F|. Here, x, € 74 is defined algorith-
mically as follows. First, choose the vertex, say, o, in F' with
the smallest vertex label according to some fixed but arbi-
trary labeling. Set x, = 0. Start from the vertex o and search
through the cluster F' using breadth-first growth. Iteratively
set x, = X, + e;(—e;) if the vertex v is traversed from u along
(against) the ith direction, where e; is the unit vector in the
ith direction. The radii of the largest and the second-largest
clusters are denoted as R and R,.

(e) The largest unwrapped extension for each cluster in the
first coordinate direction &/ = max, yer (X, — Xy)1-

(f) The average radius of gyration for loop clusters with
sizein [s, s + As),

Y FiFleistas) RUF)
N(s)

(2) The number of spanning loop clusters, N;. A loop
cluster F is spanning if U(F) > L. We also sample N and
N>, which are the number of loop clusters with size larger
than L? and 2L, respectively.

(h) The total mass of large loop -clusters S;2 =
ZF:\F|>L2 |F].

(i) The indicator P = 1 when F; < L? is satisfied, other-
wise P = 0.

From these observables, we can measure the following
ensemble averages (-):

R(s) =

0.77
090 - 0.75
0.73
071 5 S
q 0.80 0.0777086 0.0777089
~
Q
070 F A58
L=12 ——
L=14
L=16 —o—
L=18 —E— .
0.60 Il Il I 1 1
0.0777006 0.0777046 0.0777086 0.0777126 0.0777166
K

FIG. 1. Plot of the rescaled returning probability P,.L7/? of the
7D Ising model near the critical point and for various system sizes.
The solid vertical line indicates the central value of the new estimate
of K. = 0.077 708 91(4), while the dashed vertical line is the central
value of the previous estimate of K. = 0.077708 6(8). The inset
clearly shows that our new estimate has higher precision.

(a) The returning probability P, = (Py,).

(b) The mean sizes of the largest and the second-largest
loop clusters F; = (Fi), F2 = (F2).

(c) The radius of gyration R(s) = (R(s)) with given cluster
size s. The mean radius of the gyration of the largest and the
second-largest loop clusters R = (R), Ry = (R»).

(d) The mean number of spanning loop clusters, Ny =
(N;), and N,,, = (N,,) withm € {1, 2}.

(e) The cluster-number density n(s, L) = ﬁ (N (s)).

(f) The probability of the configurations satisfying F; <
L? denoted as P = (P).

In addition to sample quantities in the loop configurations,
we also sample the FK clusters. Denote Sc, the total size
of large loops (with size > L?) that enters the largest FK
cluster Ci, i.e., S¢; = X r.ree, . sz [F |- We are interested

. S L . . .

inng = %, which is the fraction of vertices in the large
L

loop clusters merged into the largest FK cluster, after the LC

transformation.

III. RESULTS
A. Estimate of the critical point for d =7

We first estimate the critical point K, for the 7D Ising
model by studying the FSS behavior of the returning proba-
bility P,,, which is expected to suffer from weaker finite-size
corrections. For the worm algorithm, P, is identical to the
reciprocal of the susceptibility, i.e., P, = 1/x [22]. Since
x ~ L%/%2[23,24] above 4D, it follows that P,, ~ L~9/2.

In Fig. 1, we plot the rescaled returning probability P,,L7/2
versus the coupling strength K with various system sizes. We
find that the data from each studied system intersects around
K = 0.0777089, which slightly deviates from the previous
estimate K, = 0.077708 6. The inset zooms into this region
and clearly shows this deviation.

To systematically estimate the critical point K., we perform
least-squares fits of the MC data for the returning probability
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TABLE III. Fitting results for the returning probability P,, using
the ansatz given by Eq. (6) with m = 2, and by, by, ¢; = 0.

Luin ¥ K. 4o q ¢ x*/DF
10 3.51(1) 0.077 708 906(5) 0.712 1(3) 6.6(2) 16(3) 19/15
12 3.51(3) 0.077708907(7) 0.7118(5) 6.6(5) 18(5) 17/11
14 3.51(7) 0.07770892(1) 0.710(1)  6(1) 178) 117

10 7/2 0.077708906(4) 0.712 1(3) 6.74(2) 17(2) 19/16
12 7/2 0.077708907(7) 0.7118(5) 6.73(4) 193) 17/12
14 7/2 0.07770892(1) 0.710(1) 6.73(6) 18(3) 11/8

P,, via the ansatz

m

PuL’? =" qil(Ke — K)L' 1 4 by L
k=0

+ bl + ey (Ko — K)L™, (6)

where m is the highest order we keep in the fitting ansatz, y; is
the thermal scaling exponent, and y, < y; < O are finite-size
correction exponents. The last term accounts for the crossing
effect between the corrections and scaling variables.

As a precaution against correction-to-scaling terms that we
missed including in the fitting ansatz, we impose a lower
cutoff L > Ly, on the data points admitted in the fit and
systematically study the effect on the residuals x2 value by
increasing Ly,. In general, the preferred fit for any given
ansatz corresponds to the smallest Ly,;, for which the goodness
of the fit is reasonable and for which subsequent increases in
Liin do not cause the x? value to drop by vastly more than
one unit per degree of freedom. In practice, by “reasonable”
we mean that x2/DF = 1, where DF is the number of degrees
of freedom. The systematic error is estimated by comparing
estimates from various sensible fitting ansatz.

First, we try to fit by setting m = 2 and leaving all other pa-
rameters free, but it gives unstable results. Then, by fixing b,
by, ¢; = 0, the fitting shows that x?/DF = 1 when Ly, = 10
and gives K, = 0.077 708 906(5) and y, = 3.51(1), consistent
with the expected value 7/2. This implies that finite-size cor-
rections for P, are indeed quite weak. Including higher-order
terms to Eq. (6) gives that the coefficients g; are consistent
with zero when k > 3. Thus, in the following, we fix y, = 7/2
and m = 2.

We then perform the fits by leaving by, b, yi, y, free, and
again it fails to produce stable fits. Fixing y; = —1, y, = -2
or y; = —2, y, = —3 produces consistent estimates of K, =
0.07770894(3) and K, = 0.077 708 94(2), respectively. In all
scenarios above, inclusion of the crossing-effect term to the
ansatz shows that c; is consistent with zero, and its effect on
the estimates of other parameters is negligible. Fitting results
without any correction terms are shown in Table III. By com-
paring estimates from various ansatz, we conclude that K. =
0.07770891(4). Figure 2 shows the data of P,L"? versus
the scaling variable (K — K.)L7/?, and all data collapse nicely
onto the curve which corresponds to our preferred fitting to
the ansatz given by Eq. (6). Furthermore, the inset displays
P,L7? versus L at our estimated K., which converges to a
constant as L increases. This is consistent with the expected
scaling P,, ~ L~7/2 at the critical point.

0.90 {on
e S 0.71113
9
=070
S 0.80 Il Il 1 1 Il 1
~ 8 10 12 14 16 18
s L
<8
L:g —e—i
L L=1
0.70 L=12 —5—
L=14
L=16 —o—
1 Il Il \L: 18
-0.010 0.000 0.010 0.020 0.030

(K(‘ _ K)L7/2

FIG. 2. Plot of P,,L"? vs (K. — K)L"/* to show the scaling func-
tion. The black curve corresponds to our preferred fit of the P, data to
the ansatz given by Eq. (6). The inset shows, at the estimated K., the
data of P,,L7/? converge to a constant, which supports the accuracy
of our estimate of K.

B. The fractal dimensions of loop clusters

In this section, we study the fractal dimensions of loop
clusters for d = 5, 6, 7. Inspired by the FK-Ising model [15],
we consider the finite-size fractal dimensions (d,,, d,) and
the thermodynamic fractal dimensions (d;,, d,,) for the largest
and the second-largest loop clusters, which are defined as
Fi ~ L% ~ R”II‘El and F, ~ L%h2 ~ Rg” with the loop cluster
sizes Fi, F> and their unwrapped radii Ry, R;.

For the finite-size fractal dimensions, we first recall that the
authors in Ref. [16] found that on the CG, both the first- and
second-largest loop clusters have the same scaling behavior
Fi, F, ~ V2 By matching V = L¢, we expect Fy, F» ~ L/?
on high-d tori. In Fig. 3(a), we plot loop clusters F; and F;
versus the system volume L¢. In the log-log scale, both the
data of F| and F, from various spatial dimensions collapse
onto lines with slope 1/2, which indicates d,, = d,, = d/2,
following the CG asymptotic.

As for the thermodynamic fractal dimensions, we consider
the unwrapped radii of the largest and the second-largest clus-
ters Ry and R,. In Fig. 3(b), we plot the loop clusters F; and
F, versus their radii in the log-log scale. Data from various
dimensions collapse well onto a straight line with slope 2,
which implies d;, = d., = 2. We note that these two exponents
are equal to the GFP exponent y; = 2, which can be under-
stood as follows. In high dimensions, one can expect that large
loop clusters are mostly self-avoiding polygons (or unicycles),
as on the complete graph [16]. For self-avoiding polygons,
which is in the same universality as the self-avoiding walk,
it is known that for d > 4, the size scales as the square of
the radius of gyration [25]. Thus, the same scaling behavior is
expected for the loops in the loop Ising model.

Since Fi,F> ~LY?, F, ~R3, and F, ~ R3, we expect
R ~ R, ~ L%*, which is larger than the system size L for
d > d. = 4. In Fig. 4, the plot of cluster sizes Fj, F, versus
their radii Ry, R, collapses well onto straight lines, with slope
consistent with 1/4. This scaling behavior indicates that large
loop clusters wind around the boundary many times for d > 4.
This is different from the observation in the FK-Ising model,
in which R ~ L ford < 6 and Ry ~ L%® ford > 6 [15].
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FIG. 3. The log-log plot of the largest loop cluster F; and second-
largest loop cluster F, vs (a) system volume L¢ and (b) their radii R, ,
ford =5 (blue), d = 6 (green), and d = 7 (red). It implies the finite-
size fractal dimensions d,, = d, = d /2 and thermodynamic fractal
dimensions di; = dp, = 2.

We also investigate the thermodynamic fractal dimensions
for all loop clusters and plot their sizes s versus their radii R
in Fig. 5. It can be seen that the scaling s ~ R? holds for both
small and large loop clusters, with a crossover happening in
between. We argue that the fractal dimension of all clusters is
dr. = 2, and the scaling behavior of these medium-size clusters
in the crossover region is due to the boundary effect. Namely,
this region is the crossover between the CG asymptotics for
large clusters and the GFP asymptotics for small clusters, and
loops of size O(L?) or smaller start to merge together and form
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FIG. 4. The log-log plot of the radii of the largest and the second-
largest clusters R; and R, vs L? ford = 5 (blue),d = 6 (green), and
d =7 (red). It implies the scaling behavior Ry, R, ~ L%/4,
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FIG. 5. The log-log plot of the cluster size s vs its radii R(s)
for all loop clusters and d > 5. It implies that the scaling behavior
s ~ R? holds for small and large loop clusters, with a crossover in
between.

large loop clusters. Nevertheless, the power-law dependence
of loop-cluster size s on gyration radius R still satisfies s ~ R?.

Therefore, for d > 4, the finite-size fractal dimensions of
the first- and the second-largest loop clusters are consistent
with d/2, following the CG asymptotics, and the thermody-
namic fractal dimensions of all loop clusters are consistent
with 2, following the GFP asymptotics. From the perspective
of fractal dimensions, d,, = 6 is not a special dimension for
the loop Ising model.

C. The cluster-number density

In this section, we study the cluster-number density n(s, L).
In Fig. 6, we plot n(s, L) versus cluster size s in log-log scale
and find it exhibits two scaling behaviors for each studied
spatial dimension, which is similar to the bridge-free config-
urations of the high-d percolation model [26]. For small s,
n(s, L) shows a power-law decay with exponents consistent
with —7/2 at 5D, —4 at 6D, and —9/2 at 7D. We note that
these power-law exponents are consistent with 1 4+ d/2 for
d =5,6, and 7. For large s, at each dimension, the data
of n(s, L) fail to collapse for various systems. For a given
dimension and system size, n(s, L) still exhibits the power-law
behavior, but with a constant exponent —1.

How can one understand the two scaling behaviors of the
cluster-number density n(s, L)? Generally, for n(s, L), it is
believed that it follows

n(s,L) = nos_ffz(s/LdF) [7i(x — 0) = 1], (7)

where np is a positive constant, T is the Fisher exponent,
fi(-) is the scaling function, and dy is the fractal dimension
of the largest cluster. Usually, the Fisher exponent obeys the
hyperscaling relation

t=1+d/d:. (8)

Equation (7) has been observed for the loop Ising model in
two and three dimensions [27,28]. For d > 4, we find that
if dp =2, taking the GFP prediction, then it follows that
T =1+ d/2, consistent with the small s behavior in Fig. 6.
The power-law exponent governing the scaling of n(s, L) for
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FIG. 6. The log-log plots of the cluster-number density n(s, L) for (a) d = 5, (b) d = 6, and (c) d = 7. The inset in each subfigure displays
the plot of n(s, L)s'+%/? vs s/L? for each studied dimension. It indicates that there are two length scales in n(s, L). The scale corresponding to

small loop clusters [s < O(L?)] follows the GFP asymptotics.

large s is —1, which is consistent with the CG case [16]. Thus,
we conjecture that the scaling behavior n(s, L) follows Eq. (5).
Namely, the scaling behavior of n(s, L) is simultaneously
governed by the GFP prediction and the CG asymptotics; the
former controls the power-law decay of small loop clusters,
while the latter controls the power-law decay of large loop
clusters. It follows from Eq. (5) that the crossover happens
at s = O(L?). Thus, although n(s, L) exhibits the two-length-
scale behavior, it suggests for the loop Ising model only d. =
4 is the upper critical dimension.

To verify Eq. (5), we plot n(s, L)s versus s/L%, as
shown in the inset of Fig. 6. It follows from Eq. (5) that

A s \4/2 K
s1+d/2n(s, L)~ no”o(g) + ny (17) ny <L_d/2>'

Thus, s'7¢/?n(s, L) equals the constant ng if s < O(L?) and
increases as a power law with exponent d/2 if s > O(L?).
This is consistent with the data shown in the inset of Fig. 6.
To clearly show that the large loop clusters follow the CG
asymptotics, in Fig. 7 we plot the data of n(s, L)V’ versus
s'/V1/2 for each dimension and also for the CG to compare
with. Here, s’ = s/a with « depending on d so that the data
of each dimension can collapse together. As Fig. 7 shows, the
data of n(s, L) on high-d tori collapse nicely onto the CG data
when s'/+/V is large. The discrepancy in the small s'/+/V part

14d/2

d increases

1000 N e,
)
=
= 102+ .
V=245 L
V=32% 4 %
104 L v=16° V=220 LES
V=200 y=222 ad
1 1 1
1072 107! 100
syv12

FIG. 7. The log-log plot of rescaled cluster-number density
n(s, L)Vs' vss'/V/2, where s' = s/ is the rescaled cluster size with
o =1.2,1.1,1.05,1 for d =5, 6,7 and the CG, respectively. The
good data collapse indicates n(s, V') obeys the CG asymptotics for
large loop clusters.

is due to the existence of the Gaussian length scale, in which
typical large loops have size of the order of L?. We expect such
a discrepancy vanishes with the rate L?~%/2, decaying faster
for larger d, as shown in the figure. This can also be seen
from the Gaussian Fisher exponentt = 14+ d /2. Asd — oo,
T tends to infinity, such that the Gaussian part vanishes to zero
and the system completely follows the CG asymptotics.

To further confirm our conjecture, we study N,,, the num-
ber of loop clusters with size s > mL?. Since the large loop
clusters follow the CG asymptotics, it follows that N,, can be
calculated as

1472 142

Ld/ l’l(S,L)dS’\’/
mL? mL?

In simulations, we sample N; and N,, and the data are plotted
in Fig. 8. Clearly, it strongly suggests that both N} and N, scale
as In L for each studied dimension.

Finally, we study the number of spanning clusters, Nj, for
d > 5. Recall that a cluster is called spanning if its unwrapped
extension U/ > L. It can be expected that the unwrapped ex-
tension and the unwrapped radius exhibit the same scaling
behavior. From Fig. 5, we know that a loop cluster is spanning
if its size is larger than O(L?). Thus, it follows from n(s, L)
that N; ~ In L, the same scaling as N; and N,. In Fig. 9, the
data of N, are plotted versus L in the semilogarithmic scale

s i(s/LY*)ds ~ In L.

2.0 1.6
(a) (b)
1.6 112
= 12 i O.SZN

0.8

i
B

U A
o

5
6
0.4 7

4 8 16 32 4 8 16 32
L L

FIG. 8. The semilogarithmic plot of (a) N, and (b) N, vs system
size L for d > 5, where the cluster number N,,(m = 1, 2) are the
number of clusters that satisfies s > mL?. The straight lines indicate
that both N; and N, diverge logarithmically.
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FIG. 9. The semilogarithmic plot of the number of spanning
clusters, N, vs the system size L for d > 5. It indicates N; has the
same scaling behavior with Ny and N,, i.e., Ny, N;, N, ~ InL.

and, clearly, it suggests that N; ~ In L. Recall that for the FK-
Ising model, the number of spanning clusters is of constant
order for d < 6 and diverges as LY~ for d > 6. But for the
loop Ising model, N, diverges logarithmically for d > 4, again
implying that 6 is not a special dimension for the loop Ising
model.

D. Probability distribution of the largest loop cluster

In this section, we study the probability density function
of the largest loop-cluster size F; on high-d tori, which is
denoted as fr,(s), and compare it with the CG case. Since
Fy ~ L% we define X; = Fi/ (aL??) with a nonuniversal
constant a for each studied dimension d and its probability
density function as fx, (x). It follows that

fr(s)ds = fx, (x)dx,

where dx =a 'L%%ds and thus fx, (x) = al??fz (s).
Figure 10(a) plots fy,(x), and it shows that when x = 0.2,
data from various spatial dimensions collapse well onto the
CG data. Here the parameter a is chosen to be 1, 0.90, 0.85,
and 0.8, respectively, for d = 5, 6, 7 and the CG.

However, as Fig. 10(a) shows, when x is small, the data
cannot collapse well and deviate from the CG data. But it
seems that as d increases, the deviation becomes smaller.
This is similar to the observation in the FK-Ising model on
high-d tori and CG [15,17], which is due to the existence of a
special sector in the configuration space. Thus, we conjecture
that there is also a special sector in the loop Ising model
on high-d tori. From the behavior of n(s, L) in Eq. (5), we
know that small loop clusters with size < O(L?) obey the
GFP asymptotics. Thus, we conjecture that the average size
of the loop clusters in the special sector is O(L?). We define
Y; = F/(bL?) with some d-dependent constant b. Similarly,
we have

fFl (S)dS = fY1 (y)dy’

where dy = b~'L=2ds and thus fy,(y) = bL? fr, (s). We then
plot fy,(y) versus y, but the data show that it decays as a
power law as the system size increases. This implies that this
special sector vanishes to 0 as L — o0. To find the power-law
exponent, we assume that the probability P(F; < bL?) on
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FIG. 10. Plots of probability density functions of the largest loop
cluster F;. In (a), the variable is defined as X; = F;/ (aL?’?), where
the constant a is chosen to be 1, 0.90, 0.85, 0.8 for d = 5 (blue), 6
(green), 7 (red), and CG (orange), respectively. In (b), the variable
Y, = F;/(bL*) withb = 1,1.52,and 2.12, and § = 1/20, 1/12,3/28
ford =5, 6, and 7, respectively. It illustrates that there is also a spe-
cial vanishing sector in the configuration space and the probability
distribution of the largest loop cluster obeys the CG asymptotics for
V — 0.

high-d tori has the same scaling as P(F; < V?/?) on the CG;
the latter can be calculated explicitly as

2
Vd ,

fr(s)ds ~ Vi3, ©)

where, on the CG, it was obtained in Ref. [16] that fp, (s) ~
V=is2 fr (s/V1/2), with f(-) the scaling function. Thus,
we conjecture that the special sector in the loop Ising model
vanishes with the rate V1/4=1/4,

In Fig. 10(b), we plot V/4=1/4 £, (y) versus y. Indeed, the
data from various spatial dimensions collapse well for small y.
To verify our conjecture, we numerically study the probability
P=P(F <L?» ford=5,6,7 In Fig. 11, the data are
plotted versus the system volume V in the log-log scale, and
the slopes are consistent with —1/20, —1/12, and —3/28
for d =5, 6, and 7, respectively, which supports the conjec-
ture P ~ V/4=1/4 In addition, one notes that as d — oo,
the vanishing rate P ~ V~!/4, consistent with the observation
on the probability of the empty graph in the CG loop Ising
model [16].

As shown in Table I, the vanishing sector in the FK-Ising
model decays as L'~%/* for 4 < d < 6, but as L=%/12 for d >
6. For the loop Ising model, our data show that the vanishing
rate is L'~%/* for alld > 4. Note that the exponents | — d /4 =
yu — ¥y and —d /12 =y} —y; with the GFP exponent y;, =
14+d/2, CG-Ising expoﬁent ¥, = 3d /4, and CG-percolation
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FIG. 11. Log-log plot of the probability of P = P(F; < L?) vs
the system volume V ford = 5,6, 7. Itl inllplies that the special sector
of the loop Ising model vanishes as V@~ %.

exponent y; . = 2d /3. Again, it suggests that 6 is a special
dimension for the FK-Ising model, but not for the loop Ising
model.

E. Transformation from the loop representation
to the FK representation

In this section, the connections between the loop rep-
resentation and the FK representation in high dimensions
are demonstrated. In the FK representation, the largest
and second-largest clusters scale as C; ~ L**/* and C, ~
L'™42(In L)~ [15]; both are much larger than the sizes of
the two largest loop clusters in the loop Ising model, which
are F, F, ~ L%/?. Since a typical FK bond configuration can
be generated by placing bonds with probability tanh K onto a
loop configuration, it is interesting to study how loop clusters
are merged into FK clusters. Inspired by the two-length-scale
behavior observed in n(s, V'), we conjecture that loop clusters
with size s > L? are merged into the largest FK cluster after
those extra bonds are placed. To check this numerically, we
sample ny, which is the percentage of loop clusters merged
into the largest FK cluster, conditioned on that loop clusters
have size larger than L?. In Fig. 12(a), we plot Ny VErsus
V for d > 5 with semilogarithmic plot, which shows that
ny increases as V. To confirm n; converges to 1, we plot
1 —ny versus V in the log-log scale in Fig. 12(b), which
clearly shows that 1 —ny decays as a power law and thus
indeed n; converges to 1. It suggests that all loop clusters
with size > L? are merged together to form the largest FK
cluster asymptotically. We note that the power-law exponents
in Fig. 12(b) are consistent with —0.31, —0.29, and —0.26,
for d =5, 6, and 7, respectively. As d — oo, we expect it
converges to the observed value —0.225 on the CG [16].

In what follows, we term the largest FK cluster and the loop
clusters with size of order L%/? as giant clusters, and the FK
clusters with size of order L'*%/? and the loop clusters with
size of order L? as medium-size clusters. All other clusters
are called small-size clusters. We next discuss the connection
between medium-size clusters in the loop and FK repre-
sentations. The Fisher exponent governing the cluster-size
distribution of the medium-size clusters is T = 1 4+ d/2 for
the loop Ising model with d > 4, and for the FK-Ising model
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~
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| |
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FIG. 12. (a) Plot of ny, the percentage of large loop clusters (with
size > L?) in the largest FK cluster, as the system size V increases.
(b) Log-log plot of 1 — ny vs V. It implies that as V — oo, 1 —ny
decays as a power law with slopes approximately consistent with
—0.31, —0.29, and —0.26, respectively. This suggests that almost all
the large loop clusters are merged into the largest FK cluster.

t=1+4p ford <d <6andt =5/2ford > 6[14,15].
Denote Nioop and Neg as the number of medium-size loop
and FK clusters, respectively. It can be shown that both N oop
and Npg are O(1) for 4 < d < 6. Thus, we conjecture that on
average, each medium-size FK cluster contains O(1) number
of medium-size loop clusters. In other words, the medium-size
FK clusters are mainly generated from the medium-size loop
clusters, and thus both of them exhibit the GFP behavior.
However, for d > 6, NLogp is still O(1), but Npx diverges as
L@=6/4 So on average, the medium-size FK clusters contain
no medium-size loop clusters. Namely, for d > 6, almost all
medium-size FK clusters are generated by the percolation-like
process, and thus exhibit high-d percolation behavior. We
expect this argument can also be used to explain the con-
nection between smaller FK and loop clusters (smaller than
medium-size clusters). Thus, we argue that for d > 6, all FK
clusters except the largest cluster exhibit the same behavior
as high-d percolation clusters, such as the thermodynamic
fractal dimension dr = 4 and the number of spanning clusters,
N ~ LI=6,

As Fig. 6 shows, the loop Ising model has two length
scales; giant loop clusters follow the CG asymptotics, but
other clusters follow the GFP asymptotics. After the LC trans-
formation, as shown in Fig. 12, all giant loops are merged
together to form the largest FK cluster, and other loop clusters
are transformed into other FK clusters. Thus, it is natural to
expect there are two length scales in the FK-Ising model [15].

Finally, we discuss the special configuration sectors. For
the loop Ising model with d > 4, our data suggest that the
special sector, consisting of loop configurations in which the
largest loop cluster has size O(L?), accounts for a proportion
~L'=4/* of the whole configuration space. By our conjecture,
these medium-size loop clusters (size of order L?) will become
the medium-size FK clusters (size of order L'*t4/?), after the
LC transformation. Since for 4 < d < 6, all medium-size FK
clusters are generated by medium-size loop clusters, it is
natural to expect there exists a special configuration sector
in the FK-Ising model, which also vanishes with the rate
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L'=4/4 This was numerically confirmed in Ref. [15], and in
the special sector, all FK clusters were found to exhibit the
GFP behavior. However, the scenario is more complicated for
d > 6. On the CG (the d — oo case), it was found that [16]
the FK-Ising model has a special configuration sector in which
FK clusters exhibit the CG-percolation clusters’ behavior, and
this sector corresponds to the sector of loop configurations
with the largest loop size of the order of V!/3; both sec-
tors asymptotically account for V /12 of their own whole
configuration space. Assume the CG results hold also on a
high-dimensional torus. Then, since L'~%/* « L=%/'2 when
d > 6, it follows that loop configurations with the largest loop
cluster of the order of L? are not enough to generate the special
sector in the FK-Ising model for d > 6. Thus, for d > 6,
one can expect that the loop configurations with the largest
loop cluster of the order of L/ correspond to the special
configuration sector in the FK-Ising model.

IV. DISCUSSION

In this work, we perform a large-scale Monte Carlo sim-
ulation of the Ising model in the loop representation on
high-dimensional tori for d = 5, 6, 7. Our data suggest that
the finite-size scaling (FSS) behaviors of the loop Ising model
are simultaneously governed by the Gaussian fixed point
(GFP) asymptotics and the complete-graph (CG) asymptotics.
Moreover, although the loop Ising model exhibits two length
scales, two configuration sectors, and two scaling windows,
as the Fortuin-Kasteleyn (FK)-Ising model, we find that there
is only one upper critical dimension d. = 4 for the loop Ising
model, rather than two upper critical dimensions d. = 4, d, =

6 as observed in the FK-Ising model. The rich FSS behavior in
the loop Ising model, together with the loop-cluster transfor-
mation, provide an explanation to the existence of two upper
critical dimensions in the FK-Ising model.

It is worth noting that for the Ising model in the three
representations, i.e., the spin representation, the FK represen-
tation, and the loop representation, there is a common upper
critical dimension d, = 4. Above d., scaling behaviors are
simultaneously governed by the CG and GFP asymptotics,
which provides a unified picture for the high-dimensional
Ising model. In the spin representation, the GFP asymptotics
account for the FSS of distance-dependent observables includ-
ing the short-distance behavior of the two-point correlation
function and the nonzero Fourier modes of the susceptibil-
ity, etc. On the other hand, the CG asymptotics acts as the
“background,” contributing to the leading FSS behavior of the
conventional macroscopic observables, such as the magneti-
zation, energy, susceptibility, and the specific heat. In the loop
representation, the GFP and the CG asymptotics, respectively,
describe the FSS behavior of loop clusters with radii less than
and exceeding the system size L. For the FK representation,
the largest cluster follows the CG asymptotics for all d > 4,
but other clusters follow the GFP-Ising asymptotics for 4 <
d < 6, but follow GFP-percolation behavior for d > 6.
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