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Limiting flux in quantum thermodynamics
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In quantum systems, entropy production is typically defined as the quantum relative entropy between two
states. This definition provides an upper bound for any flux (of particles, energy, entropy, etc.) of bounded
observables, which proves especially useful near equilibrium. However, this bound tends to be irrelevant in
general nonequilibrium situations. We propose a new upper bound for such fluxes in terms of quantum relative
entropy, applicable even far from equilibrium and in the strong coupling regime. Additionally, we compare this
bound with Monte Carlo simulations of random qubits with coherence, as well as with a model of two interacting
nuclear spins.
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I. INTRODUCTION

The concept of entropy production is pivotal in under-
standing nonequilibrium phenomena [1–17]. It is typically
associated with various types of fluxes (energy, particles,
entropy, etc.), especially near equilibrium where Onsager’s
relations are significant [18]. In quantum systems, flux is
often expressed using an observable θ̂ as φ := tr(θ̂ (ρ − σ ))
between states σ and ρ. For bounded operators, a frequent
scenario in finite size reservoirs, the absolute flux is limited
by a capacity φL,

|φ| � φL := θmax − θmin, (1)

where θmax := supn θn, θmin := infn θn and {θn} are the eigen-
values of the bounded operator θ̂ , which can also be a density
matrix in some cases, and it follows that (φ/φL )2 � 1. In-
tuitively, the maximum flux φL corresponds to an exchange
between two pure states |θmin〉 and |θmax〉. However, in prac-
tical situations, this capacity is seldom reached. In fact, if
ρ and σ are known, then a more effective upper bound for
|φ|/φL can be derived in terms of the quantum relative entropy
S(ρ||σ ) := tr(ρ(ln ρ − ln σ )), linked to quantum entropy pro-
duction [1]. Controlling such absolute flux (1) through entropy
production in quantum systems could serve as a fundamen-
tal tool, similar to the thermodynamic uncertainty relations
(TURs) [8–13,19–29].

Interestingly, thermodynamics limits the flux by means
of the entropy production in the same way that quantum
mutual information is used as a bound for connected cor-
relators [30,31]. To see this, first we define the Schatten
k − norm ||x||k := tr[(

√
x†x)k]1/k , which results in the trace

norm for the particular case k = 1. Then, we have |φ| =
|tr((θ̂ − λI )(ρ − σ ))| � ||θ̂ (ρ − σ )||1, where λ := (θmax +
θmin)/2 and I is the identity operator. Now using Hölder’s
inequality, ||(ρ − σ )(θ̂ − λI )||1 � ||ρ − σ ||1||θ̂ − λI||∞, it
finally results in

(
φ

φL

)2

� ||ρ − σ ||21
4

� S(ρ||σ )

2
, (2)

after using ||θ̂ − λI||2∞ = supn |θn − λ|2 = φ2
L/4 and the

quantum Pinsker’s inequality, S(ρ||σ ) � (1/2)||ρ − σ ||21.
The connection of relation (2) with thermodynamics goes

as follows. When system (S) and the environment (E) are
initially independent and prepared in arbitrary states, ρSE =
ρS ⊗ ρE , then a unitary dynamicsU potentially builds classic
and quantum correlation between them, resulting in the final
state ρ ′

SE = U(ρS ⊗ ρE )U†. In this notation, the quantum en-
tropy production [32–37] is defined as � := S(ρ ′

SE ||ρ ′
S ⊗ ρE ),

where ρ ′
S := trE (ρ ′

SE ) is the reduced state of the system. In this
case, we have from Eq. (2) with ρ = ρ ′

SE and σ = ρ ′
S ⊗ ρE ,

( φ

φL

)2
� �

2
. (3)

Expression (3) proves particularly useful for small values of
�, resembling Onsager’s relation near equilibrium. Onsager’s
relation, based on linear response theory, is characterized by a
quadratic form connecting fluxes and entropy production [38].
However, this quadratic expression � ∝ φ2 becomes invalid
far from equilibrium, where the relationship between en-
tropy production and fluxes is only applicable to specific
systems [39]. Notably, the bound (3) also loses its relevance
for � � 2, a scenario indicative of being far from equilibrium.
In such a region, Pinsker’s inequality becomes inapplicable,
and a more fitting bound for (3) would be the straightforward
(φ/φL )2 � 1 � �/2, as derived from Eq. (1).

In this paper, we explore whether entropy production can
still be a tool for controlling fluxes in conditions far from equi-
librium. We affirmatively answer this with our main result,

(
φ

φL

)2

� B

(
S(ρ||σ ) + S(σ ||ρ)

2

)
� 1, (4)

where B(x) := (x/g(x))2 and g(x) is the inverse of h(x) =
x tanh(x/2) for x > 0. Expression (4) means that, even ar-
bitrarily far from equilibrium, the quantum relative entropy
can be used as bound for limiting fluxes. In quantum ther-
modynamics, setting again ρ = ρ ′

SE and σ = ρ ′
S ⊗ ρE , we

get � = S(ρ||σ ) and we define the dual �∗ := S(σ ||ρ) =
S(U†σU||ρS ⊗ ρE ). Note that �∗ is uniquely defined from
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the same states used in � [40]. In this case, keep in mind that
the bound might depend on the system and the environment
as well.

Moreover, relation (4) is specially useful for systems ar-
bitrarily far from equilibrium, where Eq. (3) fails to bring
any information (for � � 2) and Eq. (4) always produces a
nontrivial bound. In this case, we also obtain a relationship
between the entropy production and any flux from Eq. (4),

� + �∗

4
� φ

φL
tanh−1

(
φ

φL

)
�

(
φ

φL

)2

, (5)

which is our second main result, valid for bounded oper-
ators θ̂ , including for the entropy flux (when θ̂ = log ρE ).
Expression (5) is also easily adjustable to account for other
definitions of entropy production [for instance, the “both re-
set” protocol would replace ρ ′

S for ρS in Eq. (5)]. Particularly,
in the “both reset” protocol, ρ = ρ ′

SE and σ = ρS ⊗ ρE , it
makes the dual �∗ = S(σ ||ρ) physically meaningful as it is
the entropy production of the backwards process.

The paper is organized as follows: First, we establish the
formalism and prove the main results (4) and (5). We also test
Eq. (4) in a simulation involving two interacting qubits, with
one acting as the system and the other as the environment. As
an example, we demonstrate how the energy flux is controlled
by the quantum relative entropy in a model of two interacting
nuclear spins-1/2.

II. FORMALISM

We prove our main result (4) using a recently proposed
quantum thermodynamic uncertainty relation (qTUR) [40].
For any Hermitian operator ω̂ and states ρ, σ (with 〈ω̂〉ρ 
=
〈ω̂〉σ ), the qTUR states that

〈ω̂2〉ρ − 〈ω̂〉2
ρ + 〈ω̂2〉σ − 〈ω̂〉2

σ

(1/2)(〈ω̂〉ρ − 〈ω̂〉σ )2
� f

(
S(ρ||σ ) + S(σ ||ρ)

2

)
,

(6)

where f (x) = 1/ sinh(g(x)/2)2 and the notation 〈ω̂〉ρ :=
tr(ω̂ρ). Now we consider a specific operator ω̂ and calculate
the averages 〈ω̂〉ρ,σ , 〈ω̂2〉ρ,σ in the left-hand side of Eq. (6).
The idea is to select ω̂ such that the trace norm ||ρ − σ ||1
appears naturally.

First, note that ρ − σ is Hermitian and it has a decomposi-
tion with real eigenvalues, ρ − σ = ∑

k wk|wk〉〈wk|. Now we
define ω̂ as

ω̂ :=
∑

k,wk 
=0

sgn(wk )|wk〉〈wk|, (7)

where sgn(x) = 1 (−1), for x > 0 (x < 0). Then, we write the
trace-norm ||ρ − σ ||1 in terms of ω̂ from Eq. (7),

〈ω̂〉ρ − 〈ω̂〉σ = tr[ω̂(ρ − σ )] =
∑

k

|wk| = ||ρ − σ ||1, (8)

which meets the condition for the qTUR (6), 〈ω̂〉σ 
= 〈ω̂〉σ , for
ρ 
= σ . Then, we observe that

ω̂2 =
∑

k,wk 
=0

sgn(wk )2|wk〉〈wk| = I − ε̂, (9)

where I is the identity operator and ε̂ := ∑
k,wk=0 |wk〉〈wk|,

with averages

〈ε̂〉ρ = 〈ε̂〉σ := ε, (10)

obtained from 〈ε̂〉ρ − 〈ε̂〉σ = tr[ε̂(ρ − σ )] = ∑
k,wk=0 wk =

0. We also have 0 � ε � 1, because ρ, σ are positive definite
and tr(ρ) = tr(σ ) = 1. From Eqs. (9) and (10), we get

〈ω̂2〉ρ = 〈ω̂2〉σ = 1 − ε. (11)

Using the averages (8) and (11) in the qTUR (6), we obtain

2 − 2ε − 〈ω̂〉2
ρ − 〈ω̂〉2

σ

(1/2)||ρ − σ ||21
� f (S̃(ρ, σ )), (12)

with the notation S̃(ρ, σ ) = (S(ρ||σ ) + S(σ ||ρ))/2. As third
and final ingredient, check that

(1/2)||ρ − σ ||21 � 〈ω̂〉2
ρ + 〈ω̂〉2

σ , (13)

directly from Eq. (8) and the expression (1/2)(x − y)2 �
(1/2)(x − y)2 + (1/2)(x + y)2 = x2 + y2, for x = 〈ω̂〉ρ , y =
〈ω̂〉σ . In this case, we obtain from Eq. (13),

2 − 2ε − (1/2)||ρ − σ ||21
(1/2)||ρ − σ ||21

�
2 − 2ε − 〈ω̂〉2

ρ − 〈ω̂〉2
σ

(1/2)||ρ − σ ||21
. (14)

Combining Eqs. (14) and (12) results in

2 − 2ε − (1/2)||ρ − σ ||21
(1/2)||ρ − σ ||21

� f (S̃(ρ, σ )). (15)

Expression (15) is easily inverted to

||ρ − σ ||21
4

� (1 − ε)

1 + f (S̃(ρ, σ ))
= (1 − ε)B

(
S̃(ρ, σ )

)
, (16)

with B(x) := (x/g(x))2. Finally, using the first inequal-
ity of Eq. (2), we obtain (φ/φL )2 � (1 − ε)B(S̃(ρ, σ )) �
B(S̃(ρ, σ )), which is our main result (4). Check that B(x) =
(x/g(x))2 � 1, for x > 0, because x tanh(x/2) = h(x) � x =
h(g(x)), which makes x � g(x), because h is a increasing
function.

III. DISCUSSION

We proved a stronger result in terms of ε in Eq. (16) that
reproduces the main result (4) in case ε = 0. Although we
used the qTUR (6) in the proof, a similar reasoning was used
in recent classic results [41–43], connecting the total variation
distance (TV) and the symmetric Kullback-Leibler (KL) di-
vergence. Actually, if [ρ, σ ] = 0, then relation (16) reduces
to a upper bound for the TV in terms of the symmetric KL
divergence. In this sense, our quantum result (4) generalizes
previous classic results in information theory and stochastic
thermodynamics.

As in the classic case, the bound in Eq. (16) is
saturated for a specific minimal two-level system.
Consider ρ = [ea/2|1〉〈1| + e−a/2|0〉〈0|]/(2 cosh(a/2)),
σ = [e−a/2|1〉〈1| + ea/2|0〉〈0|]/(2 cosh(a/2)). In this case,
one has ||ρ − σ ||1/2 = S̃ := [S(ρ||σ ) + S(σ ||ρ)]/2 =
tanh(|a|/2) and S̃2/g(S̃)2 = tanh(a/2)2 and ε = 0. Therefore,
||ρ − σ ||21/4 = S̃2/g(S̃)2 = B(S̃) saturates (16).

Before moving to the applications, it is worthy to mention
that the choice λ = |θmax + θmin|/2 in the derivation of Eq. (2)
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FIG. 1. Monte Carlo simulation of the the flux φ for random
observables θ̂ and states ρ, σ as a function of the symmetric quan-
tum relative entropy S̃(ρ, σ ) = [S(ρ||σ ) + S(σ ||ρ )]/2, for n = 104

draws of (θ̂ , ρ, σ ). The dashed line represents the bound (φ/φL )2 �
S̃(ρ, σ )/2 which works particularly well near equilibrium, but it
starts to depart significantly from the blue points for S̃ � 0. The solid
line represents the bound (φ/φL )2 � B(S̃(ρ, σ )), which is our main
result. Note that the solid line manages to produce a nontrivial bound
arbitrarily far from equilibrium and, for S̃(ρ, σ ) � 2, the dashed
line fails to produce a meaningful bound, as it hits the maximum
(φ/φL )2 = 1.

was selected for a reason. If we introduce a shift in the oper-
ator given by θ̂ → θ̂ − λI , where I is the identity and λ ∈ R,
then we note that φ = tr((θ̂ − λI )(ρ − σ )) = tr(θ̂ (ρ − σ )). It
means that the flux is invariant under the shift. In this case,
one could rewrite Eq. (4) for any λ and we could search the
optimal value λ∗ for a given observable θ̂ so that the left-hand
side of Eq. (2) is tighter. In other words, we want to minimize
||θ̂ − λI||∞. Formally, we obtain

inf
λ∈R

||θ̂ − λI||∞ = 1

2
(θmax − θmin) = φL

2
. (17)

The proof of Eq. (17) follows from ||θ̂ − λI||∞ =
supn |θn − λ| = max(|θmax − λ|; |θmin − λ|), then using
infλ max(|θmax − λ|; |θmin − λ|) = (θmax − θmin)/2 and the
optimal value λ∗ = (θmax + θmin)/2. In this case, we conclude
that the bound (2) is actually the tightest for any shift,

φ2

4||θ̂ − λI||2∞
�

(
φ

φL

)2

� ||ρ − σ ||21
4

, (18)

for any λ ∈ R, which makes Eqs. (3) and (4) particularly
useful because they are now invariant under shifts of the
operator θ̂ .

IV. SIMULATIONS

We now test numerically our main result (4) for a very
simple system: two random qubits ρ, σ including quantum
coherence. For each run, we draw random states ρ, σ and a
random operator θ̂ . We compute the flux φ = tr(θ̂ (ρ − σ ))
and φL using Eq. (1). We also compute the quantum relative
entropies S(ρ||σ ) and S(σ ||ρ). Then, we plot (φ/φL )2 versus
S̃(ρ, σ ) := [S(ρ||σ ) + S(σ + ρ)]/2. In Fig. 1, we compare
two bounds: the second inequality of Eq. (2) in the dashed
line (quadratic relationship, similar to Onsager’s) and our
main result (4) in the solid line. The draws were realized

as follows [40]. Let X ∼ Ix be a random variable uniformly
distributed in the interval Ix. We consider the decomposition
ρ = (1 − p1)|0〉〈0| + p1|1〉〈1|, where p1 ∼ [0, 1] for each
run. We independently draw a random σ = (1 − q1)|0〉〈0| +
q1|1〉〈1| + C|0〉〈1| + C∗|1〉〈0|, where q1 ∼ [0, 1], with C :=
|C| exp(φ1i), where |C|2 ∼ [0, q1(1 − q1)], φ1 ∼ [0, 2π ), so
that σ is completely positive. Finally, we draw a ran-
dom Hermitian operator θ̂ = ω(|1〉〈1| − |0〉〈0|) + D|0〉〈1| +
D∗|1〉〈0|, where ω̂ ∼ [0, 4] and D := |D| exp(φ2i), with
|D|2 ∼ [0, 1], φ2 ∼ [0, 2π ). The pairs [(φ/φL )2, S̃(ρ, σ )] are
depicted as blue points for n = 104 runs. Note that the dashed
curve becomes innocuous for S̃(ρ, σ ) = 2, where the solid
line produces a useful bound arbitrarily far from equilibrium.

V. APPLICATION: LOCAL OPERATORS
AND ENTROPY FLUX

Now we apply Eq. (4) for a specific choice of local oper-
ator θ̂ acting on the environment. The choice θ̂ = log ρE in
Eq. (4) results in φ = � := trE ((ρE − ρ ′

E ) log ρE ), which is
the quantum entropy flux [1], with ρ = ρ ′

E and σ = ρE . A
direct application of Eq. (4) yields

(
�

�L

)2

� B(S̃(ρ ′
E , ρE )) � 1, (19)

where Eq. (19) is valid for bounded environments
|| ln ρE ||∞ < ∞. From Eq. (19), after using B(x) =
(x/g(x))2 = [tanh(g(x)/2)]2 and the data processing
inequality S(ρ||σ ) � S(ε(ρ)||ε(σ )), where ε is a CPTP
map, we also obtain

� + �∗

2
� S̃(ρE , ρ ′

E ) � 2
�

�L
tanh−1

(
�

�L

)
� 2

(
�

�L

)2

,

(20)

a general relation between entropy production and flux that
resembles Onsager’s relations for small fluxes (�/�L ≈ 0,
last inequality), but it contains higher order terms in � for
|�| → �L. It is valid arbitrarily far from equilibrium in the
strong coupling regime and for nonthermal environments (as
long as they are bounded, || ln ρE ||∞ < ∞). The same reason-
ing is valid for any flux (not only entropy flux), thus we also
have Eq. (18) in general. In the case of thermal environments,
ρE = exp(−βHE )/Z (β ), with Z (β ) := tr(exp(−βHE )), then
� = βtr((ρ ′

E − ρE )HE ) and �L = β|Emax − Emin| in Eq. (5),
where β = 1/(kBT ), T is the temperature, {En} are the eigen-
values of HE .

Similarly, in terms of a bounded operator θ̂S that acts lo-
cally on the system, we have φ = tr[θ̂S (ρS (t ) − ρS (0))] and
one could write Eq. (20) in terms of the reduced state of the
system

S̃(ρS (t ), ρS (0)) � 2
φ

φL
tanh−1

(
φ

φL

)
� 2

(
φ

φL

)2

, (21)

where ρS (t ) = trE (ρ(t )), for t > 0. Now let us verify Eq. (21)
in a physical system. The goal is to show that, even when the
last inequality in Eq. (21) is still useful (S̃(ρ, σ ) � 2), the first
one might be significantly better.
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FIG. 2. Simulation of two interacting qubits initially uncorre-
lated. The dynamics builds correlation over time, but it preserves
the total energy of the system. An energy flux φ (where φL = 1) is
observed between S and E , whose absolute value is displayed in two
different forms: quadratic (2φ2, in red) and our result (2φ tanh−1(φ),
in blue). We also show the symmetric quantum relative entropy
S̃(ρS (0), ρS (t )) in terms of the reduced states as a function of time
(dotted line). We see that the quadratic form (red) and our result
(blue) are initially close, because the flux is small. Over time, as the
flux is not negligible, the quantum relative entropy approaches the
blue line.

VI. EXAMPLE

Consider two qubits interacting as proposed in Ref. [44] in
a experimental realization of two interacting nuclear spins-
1/2. This system is interesting because, depending on the
initial correlations, it might exhibit a reverse heat flow. In
our case, we consider the system initially uncorrelated. The
local Hamiltonians are Hi = �|e〉〈e|i, i = S, E , and the sys-
tem is initially prepared in a product state of the form
ρSE = ρS (0) ⊗ ρE (0), where ρS (0) = (1 − p)|g〉〈g| + p|e〉〈e|
and ρE (0) = (1 − q)|g〉〈g| + q|e〉〈e|. At t = 0, the system
interacts with an energy preserving unitary dynamics U =
exp{−iγ t (eiω0 |g, e〉〈e, g| + e−iω0 |e, g〉〈g, e|)}, where γ is the
strength of the interaction and ω0 is an arbitrary phase. We
consider the following absolute flux |φ(t )| = |tr{HS[ρS (t ) −
ρS (0)]}| = sin(γ t )2|p − q| [1], where ρS (t ) = trE {ρ(t )}. In
Fig. 2, we observe S̃(ρS (t ), ρS (0)) in the dotted line as a
function of time for p = 0.9, q = 0.1, � = 1 (which makes
φL = 1), γ = 2, ω0 = 0. In this case, note that Eq. (21) is
satisfied for all t � 0. Particularly, the function 2φ tanh−1(φ)
approaches the quantum relative entropy S̃(ρS (0), ρS (t )) over
time, saturating the bound at γ t = π/2 (t ≈ 0.79), where the
quadratic function 2φ2 misses the quantum relative entropy by
some margin when the flux increases. This is not always the
case, as depending on the choices of the parameters, we could
have a very small flux φ ≈ 0, which makes both functions
indistinguishable, 2φ2 ≈ 2φ tanh−1(φ).

VII. APPLICATION: CORRELATION FUNCTION

Consider again the framework of quantum thermodynam-
ics, now with a general bounded observable of the form

θ̂ = θ̂S ⊗ θ̂E , such that θ̂S and θ̂E act on the system and the
environment, respectively. We are interested in the following
correlation function:

tr(θ̂ (ρ − σ )) = C(θ̂S, θ̂E ) := 〈θ̂S ⊗ θ̂E 〉ρ ′
SE

− 〈θ̂S〉ρ ′
S
〈θ̂E 〉ρE ,

(22)

for ρ = ρ ′
SE and σ = ρ ′

S ⊗ ρE . A proper correlation func-
tion [30,31] would consider ρ ′

E instead of ρE , but we keep
this form of the “bath reset” protocol to match the definition
of the entropy production �. As intuition, check that ifU = I ,
then we are left with the initial conditions, ρ ′

SE = ρS ⊗ ρE

and ρ ′
S = ρS , which makes C(θ̂S, θ̂E ) = 0. But for a general

dynamicsU, correlation will build up over time. Correlations
are important as they are typically related to thermodynamic
properties in classic systems [45]. For this choice of operator,
our main result (4) reads

C(θ̂S, θ̂E )2

(θmax − θmin)2
� B

(
� + �∗

2

)
� 1. (23)

VIII. CONCLUSIONS

We have studied the flux φ of bounded operators in quan-
tum thermodynamics. We believe that limiting the flux in
terms of information theoretic quantities is in the same spirit
of the TURs. To address this task, we defined the maximum
flux (φL) and analyzed the ratio |φ|/φL. As it turns out, this
ratio is limited by the quantum relative entropy (3) (which
is associated with the entropy production in quantum ther-
modynamics), as a consequence of the quantum Pinsker’s
inequality, but we argued that this bound is not very useful
far from equilibrium.

In this context, we showed an upper bound (4) for (φ/φL )2

in terms o the quantum relative entropy that is relevant
in nonequilibrium situations. The result was obtained as a
consequence of a recently proposed quantum TUR and it gen-
eralizes classic results from stochastic thermodynamics. We
verified the bound in Monte Carlo simulations of two random
qubits and random bounded operators. We also applied the
main result for local operators, obtaining a relation between
entropy production and a local flux (for instance, the entropy
or energy fluxes). As an example, we tested the result in a
model of two interacting nuclear spins-1/2 system, where the
the local energy flux of the system is limited by a function
of the (symmetric) quantum relative entropy as expected from
our main result.

Flux limitations by information theoretic quantities pro-
vide new insights into the nature of quantum thermodynamic
processes. We believe the results of this paper might impact
design and understanding of quantum systems, particularly in
contexts like quantum computing, quantum heat engines, or
other areas where energy transfer is plays a major role.
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