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Exact fluctuation and long-range correlations in a single-file model under resetting
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Resetting is a renewal mechanism in which a process is intermittently repeated after a random or fixed
time. This simple act of stop and repeat profoundly influences the behavior of a system as exemplified by the
emergence of nonequilibrium properties and expedition of search processes. Herein we explore the ramifications
of stochastic resetting in the context of a single-file system called random average process (RAP) in one
dimension. In particular, we focus on the dynamics of tracer particles and analytically compute the variance,
equal time correlation, autocorrelation, and unequal time correlation between the positions of different tracer
particles. Our study unveils that resetting gives rise to rather different behaviors depending on whether the
particles move symmetrically or asymmetrically. For the asymmetric case, the system for instance exhibits a
long-range correlation which is not seen in absence of the resetting. Similarly, in contrast to the reset-free RAP,
the variance shows distinct scalings for symmetric and asymmetric cases. While for the symmetric case, it decays
(towards its steady value) as ∼e−rt/

√
t , we find ∼te−rt decay for the asymmetric case (r being the resetting rate).

Finally, we examine the autocorrelation and unequal time correlation in the steady state and demonstrate that they
obey interesting scaling forms at late times. All our analytical results are substantiated by extensive numerical
simulations.
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I. INTRODUCTION

Deciphering the behavior of complex systems consisting
of many interacting units is a fundamental problem often
encountered in statistical physics [1,2]. A classic example
of an interacting particle system in nonequilibrium statisti-
cal mechanics is the single-file system, in which particles in
a one-dimensional line move alongside each other, strictly
obeying the constraint of nonovertaking, wherein one particle
cannot pass another [3–5]. Due to this nonovertaking con-
straint (also referred to as single-file constraint), the dynamics
of different particles become strongly correlated [6,7]. For ex-
ample, in a collection of diffusing particles in one dimension
with single-file constraint, the mobility of a tracer particle is
drastically reduced and as a result, the mean-squared displace-
ment grows subdiffusively as ∼√

t at late times, instead of
the linear growth for a freely diffusing particle [8–11]. The
coefficient of this subdiffusive growth, in turn, depends on
the particle number density, the precise interaction among
the particles, and the statistical properties of the initial state
of the system [9,12–15]. In fact based on hydrodynamic ap-
proach, a recent work showed that this subdiffusive scaling
holds true only for short-range interactions and changes to
an interaction-dependent exponent for long-range interactions
[16]. Beyond diffusion, such slowing down effects have also
been studied for Hamiltonian systems [17–19] as well as for
other stochastic systems like randomly accelerated process
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[20] and active processes [21–24]. In this paper we set out
to study the tracer dynamics for a single-file model in the
presence of a renewal mechanism called resetting that has
garnered significant attention in the last decade [25].

Stochastic resetting is a simple and natural mechanism
in which a dynamical process is intermittently interrupted
after some random time, after which it again starts anew.
A quintessential example of this phenomenon is the reset-
ting Brownian motion, which was first studied in [25]. In
this model a particle undergoing free diffusion is returned
to its starting position at a certain rate r, after which it
recommences diffusion until the next resetting event. As a
result of this, the particle experiences an effective confine-
ment around its initial position. However, it is important to
note that this confinement arises solely from the dynamics of
the system and does not stem from any physical potential.
Indeed, as time progresses, the system eventually reaches a
nonequilibrium steady state, which is characterized by the
presence of a nonzero probability current. Another notable
aspect of this model is that, unlike in free diffusion, the par-
ticle exhibits a finite mean first-passage time. Remarkably,
this mean time depends nonmonotonically on the resetting
rate r which indicates its optimisation for an optimal rate
r∗ [26]. Beyond the standard Brownian motion, resetting
has also been explored within a broader spectrum of other
stochastic processes [27–41] as well as in cross-disciplinary
fields such as search theory [42,43], computer science [44,45],
chemical and biological processes [46–49]. Furthermore, rig-
orous studies have been made to comprehend non-Poissonian
strategies [29,50,51] and the implications of resetting in quan-
tum settings [52–56]. On the experimental side, resetting was
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recently realized in experiments involving a single particle in
optical traps [57–59]. We refer to [41,60–63] and references
therein for recent reviews on the subject.

While most of the aforementioned studies primarily fo-
cused on single-particle dynamics, there has also been a
substantial surge of interest in understanding the effects of
resetting for interacting particles. Examples include exclusion
processes [64–67], the Ising model [68], fluctuating interfaces
[69,70], and predator-prey models [71–73], among numerous
others [see [62] and references therein for a review of stochas-
tic resetting in interacting systems]. These studies investigated
the scenario where multiple particles are reset simultaneously
after a random duration (global resetting). This is contrary
to some other studies where particles reset independently of
the other particles (local resetting) [74–76]. In a recent work
involving independently diffusing particles, but undergoing
global resetting at a rate r, the authors showed that the si-
multaneous resetting induces a strong long-range correlation
in the system [77]. Despite this correlation, the model still
possesses analytical solvability based on the renewal formula,
and many results on the joint probability distribution of the
positions and extremal statistics were derived. Similar long-
range correlation is also observed in noninteracting quantum
spin system [78]. However, to the best of our knowledge, the
implications of stochastic resetting on the dynamics of tracer
particles in an interacting multiparticle system still remains
unexplored. A natural question particularly arises: Does one
still get a resetting induced long-range correlation in such
interacting scenarios? In this paper we present an example of a
single-file model (called the random average process) [79,80]
where these questions can be thoroughly addressed through
exact analytic computations.

Our system consists of a collection of particles moving
in an infinite line and distributed with density ρ. We denote
the position of ith particle at time t by xi(t ) where i ∈ Z and
xi(t ) ∈ R. Initially, the particles are located at a fixed distance
a = 1

ρ
apart:

xi(0) = ia = i/ρ, for all i ∈ Z. (1)

For simplicity, we take ρ = 1 without any loss of general-
ity. Starting from this configuration, each particle performs
the random average process interspersed by resetting events,
during which the entire system is (globally) reset to the con-
figuration in Eq. (1). This means that at any small time interval
[t, t + �t], two events can occur: (1) either particles globally
reset their positions to xi(0) in Eq. (1) with probability r�t
or (2) they perform the random average motion with the re-
maining probability (1 − r�t ). In the case of the latter event,
the ith particle can jump to its right with probability p�t and
to its left with probability q�t . With remaining probability
[1 − (p + q)�t], the position xi(t ) does not change. The suc-
cessful jump, either to the left or to the right, is by a random
fraction ηi of the space available between the particle and its
neighbor. This means that the jump to the right takes place
by an amount ηi[xi+1(t ) − xi(t )], while to the left, the particle
jumps by the amount ηi[xi−1(t ) − xi(t )]. Here η ∈ [0, 1) is a
random variable drawn from the distribution R(η). Notice that
throughout time evolution, a particle can never overtake its
neighboring particles and maintains its initial order.

The overall update rule for the position can then be
written as

xi(t + �t ) =
{

xi(0), w.p. r�t,

xi(t ) + �i(t ), w.p. (1 − r�t ),
(2)

where “w.p.” stands for “with probability” and �i(t ) for the
increment which is given by

�i(t ) =

⎧⎪⎨
⎪⎩

ηi[xi+1(t ) − xi(t )], w.p. p�t,

ηi[xi−1(t ) − xi(t )], w.p. q�t,

0, w.p. [1 − (p + q)�t].

(3)

Given this model, our aim in this paper is twofold. First, we
aim to study the dynamics of tracer particles and explore
analytically the effect of stochastic resetting on the single-
file model. For this purpose, we investigate the variance and
different two-point correlation functions for the positions of
tracer particles. In particular, the role of resetting in the au-
tocorrelation involving two different times so far has been
studied only for a few cases such as the drift diffusion [38]
and the fractional Brownian motion [39]. It also played a
crucial role in income dynamics modeled using geometric
Brownian motion [81]. However, all of these studies dealt with
the single-particle dynamics. Here our aim is to investigate
this with multiple particles and understand how fluctuations
corresponding to one particle at a given time affect the po-
sition of some other particle at some later time. Second, our
work will also shed light on determining whether the long-
range correlation, stemming from the simultaneous resetting
of noninteracting particles [77], persists even when the system
involves interacting particles in its underlying dynamics.

The remainder of our paper is organized as follows: Sec. II
briefly recalls the main results of the reset-free random av-
erage process. In Sec. III we illustrate the effect of resetting
on the mean position of a tracer particle. These results will
then be used to calculate the variance in Sec. IV A and
equal time correlation in Sec. IV B. We devote Secs. V A and
V B to compute, respectively, the autocorrelation and the un-
equal time correlation in the steady state. Finally, we conclude
in Sec. VI.

II. RANDOM AVERAGE PROCESS WITHOUT RESETTING

Before we delve into discussing the consequences of reset-
ting on tracer particles, it is instructive to review some known
results for the random average process (RAP) in absence of
resetting (r = 0). Studied originally by Fontes and Ferrari as
a generalization of the smoothing process and the voter model
[82], the RAP has appeared in several physical problems like
force fluctuations in bead packs [83], mass transport models
[84,85], models of wealth distribution and traffic [86], and
the generalized Hammersley process [87]. As an interacting
multiparticle system, this model is particularly interesting
since the particles do not overtake each other and maintain
their initial order throughout the time evolution as indicated
by Eq. (2). Therefore, every particle performs the single-file
motion. Due to this nonovertaking constraint, the motion of
different particles get strongly correlated [79,80,88–91]. For
instance, various studies based on both microscopic calcula-
tions as well as hydrodynamic approaches have shown that the
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variance and the correlation of the displacement variable zi(t )
[with zi(t ) = xi(t ) − xi(0)] at late time is given by [80]

〈zi(t )〉 = μ1(p − q)t, (4)〈
z2

i (t )
〉 − 〈zi(t )〉2 � ζ

√
t, (5)

〈z0(t )zi(t )〉 − 〈zi(t )〉〈z0(t )〉

� ζ
√

t f

( |i|
2
√

μ1(p + q)t

)
, (6)

where the prefactor ζ = μ2
√

μ1(p + q)/[
√

π (μ1 − μ2)] de-
pends on first two moments μ1 and μ2 of the jump distribution
R(η) and the scaling function f (y) in Eq. (6) is given by

f (y) = e−y2 − √
πy Erfc(y). (7)

Due to the translational symmetry in the model, both mean
and variance in Eqs. (4) and (5) do not depend on the parti-
cle index i. Also the mean vanishes for the symmetric case
p = q since particles do not experience any drive under this
condition. Meanwhile the subdiffusive scaling of the vari-
ance at large times in Eq. (5) and the scaling function f (y)
in Eq. (7) are hallmark properties of many single-file sys-
tems that possess diffusive hydrodynamics at the macroscopic
scales [9,91].

It turns out that the variance and the correlation for single-
file systems depend crucially on the statistical properties of
the initial state of the system. For RAP, results in Eqs. (4)–(7)
hold true only for the quenched initial condition where the
initial positions are fixed to Eq. (1) for all realizations [80].
On the other hand, for annealed initial condition where initial
positions are drawn from the steady state, the initial positions
themselves vary from realization to realization. Under this
circumstance, the variance l0(t ) at late time grows as

l0(t ) � ζ
√

2t, for p = q, (8)

� μ1μ2(p − q)

(μ1 − μ2)
t, for p > q. (9)

As indicated, the temporal scaling of l0(t ) depends sensitively
on whether particles experience drive or not. This is contrary
to the quenched case in Eq. (5) where we obtain the same
scaling for both cases. Furthermore, in the case of symmetric
RAP, the ratio of the variances for two cases is found to be√

2, which is also observed in the context of other single-
file models [9,13]. In what follows, we will investigate these
quantities for nonzero r and illustrate how resetting modifies
them.

III. AVERAGE POSITION

For p 	= q, we saw in Eq. (4) that the particles experience a
net drive which gives rise to a nonzero value of mean that
grows linearly with time. Let us investigate what happens
to this average in presence of resetting. Here again, it turns
out convenient to work in terms of the displacement variable
zi(t ) = xi(t ) − xi(0) and rewrite the update rules in Eq. (2) as

zi(t+�t ) =
{

0, with probability r�t,

zi(t )+�i(t ), with probability (1 − r�t ),
(10)

where the increment �i(t ) can be written as

�i(t ) =

⎧⎪⎨
⎪⎩

ηi[zi+1(t ) − zi(t ) + 1], with probability p�t,

ηi[zi−1(t ) − zi(t ) − 1], with probability q�t,

0, with probability 1 − (p + q)�t .
(11)

Denoting the mean as hi(t ) = 〈zi(t )〉, we can write its evolu-
tion for a small time interval [t, t + �t] as

hi(t + �t ) � (1 − r�t )[hi(t ) + 〈�i(t )〉]. (12)

Plugging 〈�i(t )〉 from Eq. (11) and taking �t → 0 limit, we
obtain the following differential equation for hi(t ):

dhi(t )

dt
= μ1[phi+1(t ) + qhi−1(t ) − (p + q)hi(t )]

− rhi(t ) + μ1(p − q). (13)

Recall that μm = 〈ηm〉 = ∫ 1
0 dη ηmR(η) represents the mth

moment of the jump distribution R(η). One needs to solve
this equation with the initial condition hi(0) = 0. Since it is
a linear equation in hi(t ), we proceed to solve it by taking the
Fourier transformation with respect to the index i. Defining
the Fourier transformation as

h̄(k, t ) =
∞∑

i=−∞
hi(t ) e jik (14)

and the inverse Fourier transform as

hi(t ) = 1

2π

∫ π

−π

dk h̄(k, t ) e− jik, (15)

with j2 = −1, we recast Eq. (13) in terms of the Fourier
variable as

∂ h̄(k, t )

∂t
= −α(k) h̄(k, t ) + 2πμ1(p − q)δ(k), (16)

with α(k) = r + μ1(p + q) − μ1 pe− jk − μ1qe jk . Finally,
solving Eq. (16) and performing the inverse Fourier
transformation, we get

hi(t ) = h(t ) = μ1(p − q)

r
(1 − e−rt ). (17)

Notice that the final expression turns out to be independent
of the index i, since we have assumed translational invariance
of our infinite system. Also, the mean expectedly vanishes for
the symmetric p = q case. Meanwhile for r = 0, our result
reduces to Eq. (4) where the mean grows linearly with time.
However, for any nonzero r, it approaches a steady value at
large times. This steady value decays as ∼1/r with respect to
the resetting rate. Physically, a larger resetting rate confines
the tracer particle to move in the vicinity of its initial position,
which gives rise to the smaller mean. In Fig. 1 we have
plotted the mean hi(t ) and compared it with the same obtained
from numerical simulations. We observe an excellent match
between them. In the following sections, we will use this
expression of mean to compute different correlation functions
for the tracer particles.
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FIG. 1. Comparison of the mean hi(t ) = 〈zi(t )〉 in Eq. (17) with
the numerical simulation for p = 1.0, q = 0.1, r = 1, and jump dis-
tribution R(η) = 1. Simulation is conducted with N = 101 particles.

IV. VARIANCE AND EQUAL TIME CORRELATION

In this section we look at the variance and equal time
correlations of the positions of two tagged particles when the
entire system is reset to the configuration in Eq. (1) with rate
r. Let us denote this correlation by Ci(t ) = 〈z0(t )zi(t )〉. Recall
that for free RAP, the correlation function satisfies a scaling
behavior in |i|/√t with the associated scaling function given
in Eq. (7). Here our aim is to illustrate how this scaling behav-
ior gets modified in presence of resetting. To this aim, we start
by deriving the time evolution differential equation for Ci(t ).
In a small time interval [t, t + �t], the correlation Ci(t + �t )
for i 	= 0 changes by an amount

Ci(t + �t ) � Ci(t ) − r�t Ci(t ) + 2μ1(p − q)�t h(t )

+ μ1(p + q)�t[Ci+1(t ) + Ci−1(t ) − 2Ci(t )].

On the other hand, applying the same procedure for i = 0
gives

C0(t + �t ) � C0(t ) − r�t C0(t ) + 2μ1(p − q)�t h(t )

+ μ2(p + q)�t {1 + 2[C0(t ) − C1(t )]}
+ μ1(p + q)�t[2C1(t ) − 2Ci(t )].

Combining both contributions for i = 0 and i 	= 0 and taking
the limit �t → 0, we obtain

dCi(t )

dt
= μ1(p + q)[Ci+1(t ) + Ci−1(t ) − 2Ci(t )]

+ δi,0 μ2(p + q){1 + 2[C0(t ) − C1(t )]}
+ 2μ1(p − q)h(t ) − rCi(t ). (18)

Fortunately, this equation involves only mean and two-point
correlation function and does not involve higher order correla-
tion functions. This closure property enables us to obtain exact
solution for this equation. For this, let us take the Laplace
transformation with respect to t (→ s) as

Ĉi(s) =
∫ ∞

0
dt e−st Ci(t ), (19)

and rewrite Eq. (18) in terms of Ĉi(s) as

sĈi(s) = μ1(p + q)[Ĉi+1(s) + Ĉi−1(s) − 2Ĉi(s)]

+ δi,0 μ2(p + q)

(
1

s
+ 2[Ĉ0(s) − Ĉ1(s)]

)

− rĈi(s) + 2μ1(p − q)ĥ(s). (20)

While writing this equation, we have taken the initial condi-
tion Ci(0) = 0 and introduced the notation ĥ(s) to denote the
Laplace transformation of the mean h(t ), which from Eq. (17)
turns out to be

ĥ(s) = μ1(p − q)

r

(
1

s
− 1

s + r

)
. (21)

We now proceed to solve Eq. (20). First notice that, due to the
single-file constraint, we get coupling of different i in Eq. (20).
To decouple them, we take the Fourier transformation

Z (k, s) =
∞∑

i=−∞
Ĉi(s) e jik, (22)

and insert this in Eq. (20) to yield

Z (k, s) = μ2(p + q){1 + 2s[Ĉ0(s) − Ĉ1(s)]}
s[s + r + 2μ1(p + q)(1 − cos k)]

+ 4πμ1(p − q)ĥ(s)

(s + r)
δ(k). (23)

Everything on the right-hand side is known except two func-
tions, namely, Ĉ0(s) and Ĉ1(s). One of them can be expressed
in terms of the other by putting i = 0 in Eq. (20). This results
in the relation

Ĉ1(s) = [2(p + q)(μ1 − μ2) + s + r]Ĉ0(s)

2(μ1 − μ2)(p + q)

− μ2(p + q)/s + 2μ1(p − q)ĥ(s)

2(μ1 − μ2)(p + q)
, (24)

which we substitute in Eq. (23) to yield

Z (k, s) = μ2

s

μ1(p + q) − s(s + r)Ĉ0(s) + 2μ1s(p − q)ĥ(s)

(μ1 − μ2)[s + r + 2μ1(p + q)(1 − cos k)]

+ 4πμ1(p − q)ĥ(s)

(s + r)
δ(k). (25)

We now have only one unknown Ĉ0(s). However, this can be
computed self-consistently as shown later. Finally inverting
Z (k, s) in k gives the exact correlation as

Ĉi(s) = 2μ1(p − q)ĥ(s)

s + r
+ Ĝi(s), (26)

where the function Ĝi(s) is defined as

Ĝi(s) = μ2[μ1(p + q) − s(s + r) Ĝ0(s)]

s(μ1 − μ2)
Vi(s + r), (27)

Vi(s) = 1

2π

∫ π

−π

dk
e− jik

s + 2μ′
1(1 − cos k)

,

= 1√
s2 + 4μ′

1s

(
s + 2μ′

1 − √
s2 + 4μ′

1s

2μ′
1

)|i|
(28)
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FIG. 2. Comparison of 〈z2
0 (t )〉c in Eq. (33) with the numerical simulation for two sets of parameters: p = 1.0, q = 0.1 in panel (a) and p =

0.5, q = 0.5 in panel (b). For both panels, we have performed simulation with N = 101 particles, resetting rate r = 1, and jump distribution
R(η) = 1.

with μ′
1 = μ1(p + q). To summarize, we have calculated the

exact two-point correlation functions in Eq. (26) in terms
of the Laplace variable s. The idea now is to perform the
inversion and obtain them in the time domain. For simplicity,
we carry out this inversion separately for the i = 0 and i 	= 0
cases below.

A. Variance of z0(t )

We first look at the variance for which we put i = 0 in
Eq. (26). Looking at this expression, it is clear that one needs
to invert the Laplace transformation Ĝ0(s). We rewrite its
expression from Eq. (27) as

Ĝ0(s) = μ1μ2(p + q)(μ1 − μ2)−1(s
√

s + r)−1[√
(s + r) + 4μ1(p + q) + μ2

μ1−μ2

√
s + r

] . (29)

Fortunately, one can perform this inversion exactly, and we
show in Appendix A that

G0(t ) = μ2(μ1 − μ2)(p + q)√
r(μ1 − 2μ2)

×
∫ t

0
dT e−rT Erf[

√
r(t − T )]Z (T ), (30)

where G0(t ) stands for the Laplace transformation of Ĝ0(s)
and the function Z (t ) is defined as

Z (t ) = 1√
πt

(
e−4μ1t (p+q) − μ2

μ1 − μ2

)

− μ2

μ2 − μ2

√−B1 e−B1t Erf(
√−B1 t )

+ √−B2 e−B1t Erf(
√−B2 t ). (31)

Constants B1 and B2 depend on the model parameters as B1 =
4(p + q)(μ1 − μ2)2/(μ1 − 2μ2) and B2 = B1 − 4μ1(p + q).
Finally, using Eq. (30) in Eq. (26), we obtain

C0(t ) = G0(t ) + 2μ2
1(p − q)2

r2
[1 − e−rt (rt + 1)], (32)

from which the variance of z0(t ) turns out to be

〈
z2

0(t )
〉
c = C0(t ) − 〈z0(t )〉2,

= G0(t ) + μ2
1(p − q)2

r2
[1 − e−rt (2rt + e−rt )]. (33)

This represents the exact variance of the position of a tagged
particle in RAP with resetting. Figure 2 illustrates the compar-
ison of our analytical results with the numerical simulations
for both symmetric and asymmetric cases. An excellent match
is seen in both cases. For any nonzero r, we anticipate the
expression in Eq. (33) to attain a stationary value at large
times. To show this, one can, in principle, directly put t → ∞
in Eq. (30) and carry out the integration. However, it turns
out more convenient to put s → 0 limit in Ĝ0(s) and use the
formula G0(t → ∞) = lims→0[sĜ0(s)]. With this procedure,
the stationary value of the variance turns out to be

〈
z2

0(t → ∞)
〉
c = μ2

1(p − q)2

r2
+ μ1μ2(p + q)√

r(μ1 − μ2)

×
[√

r + 4μ1(p + q) + μ2
√

r

μ1 − μ2

]−1

.

(34)

Recall that for r = 0, the tracer particle does not attain any
stationary value. This indicates that the stationary value of the
variance should diverge as r → 0. From the exact expression
in Eq. (34), we find that 〈z2

0(t → ∞)〉c diverges differently
depending on whether the particles move symmetrically (p =
q) or asymmetrically (p 	= q). For p = q, the stationary value
diverges as ∼r−1/2 as r → 0, whereas for p 	= q, it diverges
as ∼r−2. Contrarily for large r, 〈z2

0(t → ∞)〉c decays as ∼1/r
for both cases.

After analyzing the stationary value of the variance, let us
look at its time-dependent form in Eq. (33). While this is an
exact expression, it has rather a complicated form. To gain
some insights into it, we will analyze it for large t and study
the relaxation properties. For continuity of presentation, we
have shown this calculation in Appendix A and quote only the
final result here. We find d (t ) = 〈z2

0(t → ∞)〉c − 〈z2
0(t )〉c is
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FIG. 3. Comparison of the relaxation behavior of the variance 〈z2
0 (t )〉c for the symmetric (p = q) and asymmetric (p 	= q) cases. For

illustration, we have plotted d (t ) = 〈z2
0 (t → ∞)〉c − 〈z2

0 (t )〉c in Eq. (36) and compared it with the numerical simulation for two sets of
parameters: p = 1.0, q = 0.1 in panel (a) and p = q = 0.5 in panel (b). For both panels, we have performed simulation with N = 101 particles,
resetting rate r = 1 and jump distribution R(η) = 1.

given by

d (t ) � μ2
√

μ1 p√
2πr(μ1 − μ2)

e−rt

√
t

, for p = q, (35)

� 2μ2
1(p − q)2

r2
rte−rt , for p 	= q. (36)

Interestingly, we find different relaxation behaviors depending
on whether p = q or p 	= q. While for the symmetric case,
the variance relaxes as ∼e−rt/

√
t to its stationary value, we

obtain ∼te−rt relaxation for the asymmetric case. Note that
such a difference between the symmetric and the asymmetric
variances is not seen for free RAP (r = 0), and we obtain the
same subdiffusive scaling for both cases as shown in Eq. (5).
Indeed, writing the time evolution equation for the variance
〈z2

0(t )〉c for the free RAP, one can show that it can be made
independent of p and q by suitably scaling t → (p + q)t [80].
Therefore, we get same temporal scaling of the variance for
both symmetric and the asymmetric cases. However, in the
presence of resetting, we get an additional timescale in the
problem (∼ 1/r) and the time evolution equation cannot be
rendered independent of p and q. This gives rise to different
behaviors for two cases. This key difference is one of the
consequences of the resetting. In Fig. 3 we have compared
the relaxation properties with the numerical simulations for
p = q case [Fig. 3(b)] and p 	= q case [Fig. 3(a)]. We observe
an excellent agreement between our theory and numerics for
both cases.

B. Correlation Ci(t ) = 〈z0(t )zi(t )〉 for i �= 0

After analyzing the variance of the position of a tagged
particle, let us now look at the position correlation for two
different tagged particles. For free RAP, we saw in Eq. (6) that
the two-point correlation function satisfies nontrivial scaling
behavior in ∼|i|/√t with i being the separation between two
particles. The associated scaling function is given in Eq. (7).
In this section we study the correlation function in pres-
ence of resetting and calculate Ci(t ) = 〈z0(t )zi(t )〉 for i 	= 0.
Its expression in the Laplace domain is given in Eq. (26)
from which it is clear that we have to perform the inverse

Laplace transformation of Ĝi(s). Rewriting its expression from
Eq. (27),

Ĝi(s) = Ĝ0(s) × ŵi(s + r), (37)

with ŵi(s) =
(

s + 2μ′
1 − √

s2 + 4μ′
1s

2μ′
1

)|i|
, (38)

where we have defined μ′
1 = μ1(p + q). In order to perform

the inverse Laplace transformation of Ĝi(s), we have to carry
out two inversions: one is for Ĝ0(s) and the other is for ŵi(s).
Now, for Ĝ0(s), we have already computed this inversion in
Eq. (30). On the other hand, for ŵi(s), its inversion in the time
domain [denoted by wi(t )] is given by [92]

wi(t ) = |i|
t

e−2μ′
1t I|i|(2μ′

1t ), for i 	= 0. (39)

Finally using the convolution form of Ĝi(s) in Eq. (37) gives

Gi(t ) =
∫ t

0
dT e−rT wi(T )G0(t − T ). (40)

inserting which in Eq. (26), we obtain

Ci(t ) =
∫ t

0
dT e−rt wi(T )G0(t − T )

+ 2μ2
1(p − q)2

r2
[1 − e−rt (rt + 1)]. (41)

Remember that Ci(t ) = 〈z0(t )zi(t )〉, and in order to obtain the
connected correlation, we subtract the mean contributions as
follows:

〈z0(t )zi(t )〉c = 〈z0(t )zi(t )〉 − 〈z0(t )〉〈zi(t )〉,

=
∫ t

0
dT e−rt wi(T )G0(t − T )

+ μ2
1(p − q)2

r2
[1 − e−rt (2rt + e−rt )]. (42)

It is worth mentioning that even for free RAP, only asymptotic
results for 〈z0(t )zi(t )〉c are known [80]. Our analysis here
provides an exact expression for the correlation valid for all
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FIG. 4. Comparison of the equal time correlation 〈z0(t )zi(t )〉c in the steady state (t → ∞) in Eq. (44) for for two sets of parameters:
p = 1.0, q = 0.1 in panel (a) and p = 0.5, q = 0.5 in panel (b). In both panels, simulation has been carried out with N = 101 particles,
resetting rate r = 1, and jump distribution R(η) = 1.

times and not just at large times. However, at large times,
one can simplify this expression. In fact, putting t → ∞ in
Eq. (40), one can see that

Gi(t → ∞) = G0(t → ∞) ŵi(r), (43)

where the steady value G0(t → ∞) is given in Eq. (A14) and
ŵi(r) is given in Eq. (38). Using these expressions, we find
that the correlation between two tracer particles in the steady
state is given by

〈z0(t )zi(t )〉c
t→∞= Gst

0 exp

(
−|i|

ξp

)
+ μ2

1(p − q)2

r2
, (44)

where Gst
0 = G0(t → ∞) is defined in Eq. (A14) and the decay

length ξp is defined as

ξp = | log
(
r + 2μ′

1 −
√

r2 + 4μ′
1r

) − log(2μ′
1)|−1. (45)

Interestingly for p 	= q, we find that the correlation decays to
a nonzero constant value as |i| → ∞. Contrarily, it decays to
zero for p = q. For reset-free RAP, this correlation decays
to zero both for the symmetric and the asymmetric cases.
Our study unravels that resetting affects these two cases in
different manners and manifestly gives rise to long-range cor-
relations only for the p 	= q case. Recently, resetting induced
long-range correlation was also found in independently diffus-
ing particles but subjected to simultaneous resetting at a rate r
[77]. Here we have extended this result for interacting single-
file systems. Physically, the long-range correlation can be
understood as follows: Consider two particles with positions
x0(t ) and xl (t ) with l 
 1. Both these particles experience
an effective attraction around their initial positions due to
the resetting event. However, this attraction has a purely dy-
namical interpretation and does not arise due to any physical
potential. Furthermore, for p > q, all particles that lie between
x0(t ) and xl (t ) experience a net drift towards xl (t ). As a result
of this combined effect of attraction and drift, the positions
x0(t ) and xl (t ) of two particles become strongly correlated.
Figure 4 shows the comparison of our analytical results with

the same obtained using numerical simulation. Indeed, even in
simulations, we find that the correlation Ci(t ) does not decay
to zero for the asymmetric case.

V. UNEQUAL TIME CORRELATIONS

So far we have presented rigorous results on the variance
and the equal time correlation and demonstrated how resetting
modifies these quantities. Our analysis showed that contrary
to the reset-free RAP model, these quantities, in the presence
of resetting, behave differently depending on the presence or
absence of drive in the dynamics. Continuing with this, we
now look at the autocorrelation and the unequal time position
correlations for two tracer particles. Let us denote this cor-
relation by Si(t0, t0 + t ) = 〈z0(t0)zi(t0 + t )〉. As done before,
we again consider a small time interval [t0 + t, t0 + t + dt]
and follow the update rules in Eqs. (10) and (11) to write the
total change in Si(t0, t0 + t ) within this interval. This results
in the following differential equation:

dSi(t0, t0 + t )

dt
= −rSi + μ1(p − q)h(t0)

+ μ1[pSi+1 + qSi−1 − (p + q)Si]. (46)

Solving this equation by taking the joint Fourier-Laplace
transformations as

S̃(k, t0, t0 + t ) =
∞∑

i=−∞
e jik Si(t0, t0 + t ), (47)

S(k, s, t ) =
∫ ∞

0
dt0 e−st0 S̃(k, t0, t0 + t ), (48)

and inserting them in Eq. (46), we obtain

dS

dt
= −α(k)S + 2πμ1(p − q)ĥ(s)δ(k), (49)

where α(k) = r + μ1(p + q) − μ1 pe− jk − μ1qe jk . Since we
are interested in computing the correlations in the steady state
(i.e., t0 → ∞), we will analyze Eq. (49) in the small-s limit.
In Appendix B, we have explicitly carried out this analysis
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FIG. 5. Autocorrelation L0(t ) has been compared with the numerical simulations for p = 1.0, q = 0.1 in panel (a) and p = 0.5, q = 0.5
in panel (b). We have plotted both the exact expression in Eq. (52) as well as the asymptotic (large-t) expression in Eq. (54). Simulation has
been performed with N = 101 particles, resetting rate r = 1, and jump distribution R(η) = 1.

and obtained the correlation Si(t0, t0 + t ) measured from the
steady state (t0 → ∞) as

Si(t0, t0 + t ) � Br

2π

∫ π

−π

dk
e− jik−α(k)t

r + 2μ′
1(1 − cos k)

+ μ2
1(p − q)2

r2
(1 + e−rt ) (50)

with B =
√

r + 4μ′
1

r
Gst

0 , (51)

where again we have used the notation μ′
1 = μ1(p + q) and

Gst
0 = G0(t0 → ∞) is defined in Eq. (A14). Subtracting the

mean contribution from this correlation, we obtain the con-
nected correlation Li(t ) as

Li(t ) = [Si(t0, t0 + t ) − 〈z0(t0)〉 〈zi(t0 + t )〉]t0→∞,

= Br

2π

∫ π

−π

dk
e− jik−α(k)t

r + 2μ′
1(1 − cos k)

+ μ2
1(p − q)2

r2
e−rt .

(52)

For t = 0, one can perform the integration over k, and the
result matches with the equal time correlation in Eq. (44) in
the steady state. On the other hand, for nonzero t , performing
this integration turns out to be difficult. However, for large
t , we could carry out the integration rigorously and obtain
some asymptotic results. Below we discuss this first for the
autocorrelation (i = 0) and then for general i.

A. Autocorrelation L0(t )

To get large t-behavior of L0(t ), we first notice that
one gets exponentially decaying terms like ∼ exp[−2μ1(p +
q)t sin2(k/2)] inside the integration in Eq. (52). For large
t , such integrations will be dominated by smaller values of
k. Therefore, performing small-k approximation in Eq. (52),
we get

L0(t ) � Be−rt

2π

∫ π

−π

dk e− jkμ1(p−q)t−μ1t (p+q)k2/2

+ μ2
1(p − q)2

r2
e−rt . (53)

Next, we change the variable u = k
√

μ1(p + q)t in this equa-
tion and carry out the integration for large t to obtain

L0(t ) � B e
−

[
r+ μ1 (p−q)2

2(p+q)

]
t

√
2πμ1(p + q)t

+ μ2
1(p − q)2

r2
e−rt . (54)

Using this expression, we again find that the large time decay
of L0(t ) depends on whether the particles experience a drift
or not. While for the symmetric case, the autocorrelation in
the steady state decays as ∼e−rt/

√
t at late times, we observe

an exponential decay ∼e−rt for the asymmetric (p 	= q) case.
This is contrary to the case of simple resetting Brownian
motion, where autocorrelation in the steady state decays expo-
nentially as e−rt at all times [38,39]. However, for interacting
particles, L0(t ) has a more complicated form and picks up
exponential decay (or otherwise) only at large times. In Fig. 5
we have compared this late time decay with the numerical
simulations. We observe that while the simulation data deviate
from Eq. (54) at small times, the agreement becomes better at
larger times.

B. Unequal time correlation Li(t )

We now analyze Eq. (52) for general i. For this case also we
can perform the small-k approximation in Eq. (52) for larger
values of t since the integral has exponentially decaying terms
like ∼ exp[−2μ1(p + q)t sin2(k/2)]. We then obtain

Li(t ) � Be−rt

2π

∫ π

−π

dk e− jik− jkμ1(p−q)t−μ1t (p+q)k2/2

+ μ2
1(p − q)2

r2
e−rt . (55)

To perform the integration over k, we change the variable u =
k
√

μ1(p + q)t and plug it into this equation. Finally, we find
that the Li(t ) satisfies the scaling relation

Li(t ) − L|i|→∞(t ) � B e−rt

√
2πμ1(p + q)t

M
[

i + μ1(p − q)t√
2μ1(p + q)t

]
,

(56)
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FIG. 6. Unequal time correlation Li(t ) in Eq. (52) is compared with the numerical simulation for asymmetric (p > q) RAP in the left
panel and symmetric (p = q) RAP in the right panel for t = 1. Parameters chosen are r = 1, R(η) = 1 and number of particles N = 101 for
simulation.

where the scaling functions M(y) and L|i|→∞(t ) are given by

M(y) = e−y2
and L|i|→∞(t ) = μ2

1(p − q)2

r2
e−rt . (57)

Note that this scaling behavior is entirely an outcome of the
resetting dynamics and does not appear for the reset-free RAP
[80]. Looking at Eq. (56), once again we see that for the
asymmetric RAP, Li(t ) takes a nonzero value as |i| → ∞
indicating a long-range correlation between two particles.
However, this value decays exponentially with time, and as
t → ∞, this long-range correlation vanishes. As discussed in
the case of equal time correlation, the appearance of long-
range correlation turns out to be an interplay of the effective
attraction experienced by the particles around their resetting
sites and a net drift due to asymmetric rates.

In Fig. 6 we have compared the exact expression of Li(t ) in
Eq. (52) with the numerical simulations for p 	= q in Fig. 6(a)
and p = q in Fig. 6(b). For both cases, we see an excellent
agreement between theory and numerics. However, demon-
strating the scaling behavior of Li(t ) in Eq. (56) in simulation
turns out to be difficult. It turns out that one needs to go to very
large values of t in order to observe this scaling relation. For
instance, in Fig. 7 we see that this scaling behavior becomes
valid at around t = 200. However, the value of Li(t ) at such

FIG. 7. Scaling function M(y) in Eq. (56) for the unequal time
correlation Li(t ) is compared with the exact expression of Li(t ) in
Eq. (52) for different values of t and p = 1.0, q = 0.1, r = 1, and
jump distribution R(η) = 1.

large times is very small due to the presence ∼e−rt term
in Eq. (56). Measuring such small values in simulation is
difficult. Therefore, to validate this scaling relation, we have
plotted the exact Li(t ) in Fig. 7 for different values of t by
numerically performing the integration over k. At large t , we
recover the scaling function M(y) (see Fig. 7).

VI. CONCLUSION

In conclusion we have studied the motion of tracer parti-
cles in a one-dimensional single-file model called the random
average process which is subjected to stochastic resetting.
The resetting mechanism, characterized by a constant rate r,
causes the entire system being reinstated to the configuration
given in Eq. (1). Utilizing an exact microscopic analysis, we
calculated key statistical quantities such as variance, equal
time correlation, autocorrelation, and unequal time correlation
for the positions of tracer particles. Through these calcula-
tions, we demonstrated how resetting modifies the system and
gives rise to properties which are otherwise not observed in
absence of the resetting

We first looked at the variance 〈z2
0(t )〉c whose exact ex-

pression is given in Eq. (33). At large times, it expectedly
attains a stationary value given in Eq. (34). To gain some
physical insights, we further explored the relaxation behavior
of 〈z2

0(t )〉c as it approaches its stationary value. Interest-
ingly, this relaxation process turns out to crucially depend
on whether the particles move symmetrically (p = q) or
asymmetrically (p 	= q) on either side. While for the sym-
metric case, the variance relaxes as ∼e−rt/

√
t to its stationary

value, we obtain ∼te−rt relaxation for the asymmetric case.
Note that such a difference between the symmetric and the
asymmetric variances is not seen for free RAP (r = 0), and
we obtain the same subdiffusive scaling for both cases as
shown in Eq. (5). Resetting introduces an additional timescale
in the model which leads to different behaviors for two
cases. This key difference is one of the consequences of the
resetting.

We next turned our attention to the equal time position
correlation for two different tracer particles. Focusing on the
steady state, our study revealed that resetting induces a long-
range correlation only for the asymmetric case. On the other
hand, for the symmetric case, we obtained correlations that
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decay exponentially with the distance in Eq. (44). In a recent
work involving independently diffusing particles, but under-
going global resetting at a rate r, the authors showed that the
simultaneous resetting induces a strong long-range correlation
in the system [77]. Our work generalizes these results in
the interacting single-file setup and shows that simultaneous
resetting induces a long-range correlation only when particles
experience a bias (p 	= q).

Finally, we investigated the autocorrelation and the unequal
time position correlation in the steady state. For the autocor-
relation L0(t ), once again, we find that the large-t decay is
different for p = q and p 	= q cases. Specifically, for the sym-
metric case L0(t ) exhibited a decay of ∼ e−rt/

√
t , while for

the asymmetric case, the decay followed L0(t ) ∼ e−rt . Con-
versely, the unequal time position correlation Li(t ) exhibits
a scaling behavior in terms of the variable y = [i + μ1(p −
q)t]/

√
t . The associated scaling function M(y) is written in

Eq. (57). We emphasize that this scaling behavior is entirely
an outcome of the resetting dynamics and does not appear for
the reset-free RAP [80].

Studying analytically an interacting multiparticle system
is difficult because of the correlation between different par-
ticles. Here we presented a specific single-file model for
which exact microscopic computations can be carried out. Our
work pointed to a crucial difference in the tracer dynamics
for symmetric RAP and asymmetric RAP, both subjected to
resetting at a rate r. For future direction, it would be inter-
esting to explore an intermediate case where only some of
the particles experience bias while all others move symmet-
rically [88,89] and see if one still gets a resetting induced
long-range correlation. Also, our paper focused on one spe-
cific model of single-file motion called the random average
process. It remains a promising direction to study effects of
resetting on other single-file models like single-file diffusion
[8–11], in active particles [21–24,93–95], and in experiments
[57–59]. Furthermore, throughout our paper, we have focused
on the global resetting mechanism where all particles are
simultaneously reset to their initial positions. This choice is
also consistent with typical experimental setups where the
resetting mechanism is implemented via global confining po-
tentials that pull particles towards their minimum [57–59].
Therefore while global resetting seemed natural to us, we
also emphasize that exploring tracer dynamics with other
resetting mechanisms (like partially resetting, local reset-
ting [74–76]) in multiparticle systems remains an important
future direction. Finally, we have only looked at different
two-point correlation functions in our paper. Obtaining higher
moments and the distribution function for the position of a
tracer particle still remains an open problem even for the
reset-free RAP.
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APPENDIX A: DERIVATION OF THE VARIANCE 〈z2
0(t )〉c

IN EQ. (33)

In this Appendix we provide a detailed derivation of the
variance 〈z2

0(t )〉c = 〈z2
0(t )〉 − 〈z0(t )〉2 in Eq. (33). The starting

point is to find C0(t ) = 〈z2
0(t )〉 for which we need the Laplace

transform Ĉ0(s) in Eq. (26). We rewrite this expression
here as

Ĉ0(s) = 2μ2
1(p − q)2

s(s + r)2
+ Ĝ0(s), (A1)

with Ĝ0(s) defined as

Ĝ0(s) = μ2(μ1 − μ2)(p + q)

(μ1 − 2μ2)
Ĥ (s)Ẑ (s + r), with

Ẑ (s) =
√

s + 4μ1(p + q) − μ2

μ1−μ2

√
s

s + 4(p+q)(μ1−μ2 )2

μ1−2μ2

and

Ĥ (s) = 1

s
√

s + r
. (A2)

To evaluate the first term in the right-hand side of Eq. (A1),
we use the relation∫ ∞

0
dt e−st

[
1 − e−rt (rt + 1)

r2

]
= 1

s(s + r)2
. (A3)

On the other hand, for the second term, we use the convolution
structure of Ĝ0(s), which gives G0(t ) as

G0(t ) =μ2(μ1 − μ2)(p + q)

(μ1 − 2μ2)

∫ t

0
dT e−rT H (t − T ) Z (T ).

(A4)

Here H (t ) and Z (t ) are inverse Laplace transforms of Ĥ (s)
and Ẑ (s), respectively. Using Mathematica, we find H (t ) =
Erf(

√
rt )/

√
r and Z (t ) as

Z (t ) = 1√
πt

(
e−4μ1t (p+q) − μ2

μ1 − μ2

)

− μ2

μ2 − μ2

√−B1 e−B1t Erf(
√−B1 t )

+ √−B2 e−B1t Erf(
√−B2 t ), (A5)

with B1 = 4(p + q)(μ1 − μ2)2/(μ1 − 2μ2) and B2 = B1 −
4μ1(p + q). Substituting these expressions in Eq. (A4) yields

G0(t ) = μ2(μ1 − μ2)(p + q)√
r(μ1 − 2μ2)

∫ t

0
dT e−rT

× Erf[
√

r(t − T )] Z (T ). (A6)

We now have both terms from the right-hand side of Eq. (A1).
Performing the inverse Laplace transformation, we get

C0(t ) = G0(t ) + 2μ2
1(p − q)2

r2
[1 − e−rt (rt + 1)], (A7)

from which the variance of z0(t ) turns out to be〈
z2

0(t )
〉
c = C0(t ) − 〈z0(t )〉2,

= G0(t ) + μ2
1(p − q)2

r2
[1 − e−rt (2rt + e−rt )],

(A8)
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with G0(t ) given in Eq. (A6). This expression of 〈z2
0(t )〉c is

quoted in Eq. (33).
Let us now analyze this expression to extract the asymp-

totic behavior of the variance. To perform the integration in
Eq. (A6), we substitute the error function for large t as

Erf(
√

r(t − T )) � 1 − e−r(t−T )

√
πr(t − T )

(A9)

and plug it into Eq. (A6) as

G0(t ) � μ2(μ1 − μ2)(p + q)√
r(μ1 − 2μ2)

[ ∫ t

0
dT e−rT Z (T )

− e−rt

√
πr

∫ t

0
dT

Z (T )√
t − T

]
.

For t → ∞, the first term inside the bracket [·] simply be-
comes the Laplace transform Ẑ (r) in Eq. (A2). Therefore, one
can recast G0(t ) as

G0(t ) �μ2(μ1 − μ2)(p + q)√
r(μ1 − 2μ2)

[
Ẑ (r) − e−rt

√
πr

∫ t

0
dT

Z (T )√
t − T

]
.

(A10)

Next, we have to evaluate the integral over T for larger values
of t . Defining J (t ) = ∫ t

0 dT Z (T )√
t−T

, we take its Laplace trans-
form with respect to t (→ s) as

Ĵ (s) =
√

π

s
Ẑ (s). (A11)

We take the small-s limit of this equation, which corresponds
to its large-t limit in the time domain

Ĵ (s → 0) � (μ1 − 2μ2)
√

μ1√
4(p + q)(μ1 − μ2)2

√
π

s
. (A12)

Now performing the inverse Laplace transformation, we
obtain

J (t ) � (μ1 − 2μ2)
√

μ1√
4(p + q)t (μ1 − μ2)2

, as t → ∞. (A13)

Using this in Eq. (A10), we obtain

G0(t ) � μ1μ2(p + q)√
r(μ1 − μ2)

[√
r + 4μ1(p + q) + μ2

√
r

μ1 − μ2

]−1

− μ1
√

μ1(p + q)

2r(μ1 − μ2)

e−rt

√
πt

, (A14)

and plugging this into Eq. (A8) gives the relaxation behavior
of 〈z2

0(t )〉c in Eqs. (35) and (36).

APPENDIX B: UNEQUAL TIME CORRELATION
Si(t0, t0 + t ) IN THE STEADY STATE (t0 → ∞)

This Appendix provides a derivation of the unequal time
correlation Si(t0, t0 + t ) in Eq. (50). Let us first denote by
S(k, s, t ) the joint Fourier-Laplace transform of Si(t0, t0 + t )
[see Eq. (48)]. We showed in Eq. (49) that S(k, s, t ) satisfies
the differential equation

dS(k, s, t )

dt
= −α(k)S(k, s, t ) + 2πμ1(p − q)ĥ(s)δ(k),

(B1)

where α(k) = r + μ1(p + q) − μ1 pe jk − μ1qe− jk . Solving
this equation with the initial condition S(k, s, t = 0) =
Z (k, s) in Eq. (25) gives

S(k, s, t ) = Z (k, s) e−α(k)t + 2π ĥ(s)h(t ). (B2)

Since we are interested in finding the correlation at the steady
state (i.e., t0 → ∞), we analyze Eq. (B2) in the small-s limit.
For ĥ(s), we use Eq. (21) to obtain ĥ(s → 0) � μ1(p − q)/rs.
On the other hand, using Eq. (25), we find Z (k, s) as

Z (k, s → 0) � Br

s[r + 2μ1(p + q)(1 − cos k)]

+ 4πμ2
1(p − q)2

r2s
δ(k), (B3)

where B is a constant that depends on model parameters and
is given in Eq. (51). Finally plugging Eq. (B3) in S(k, s, t ) in
Eq. (B2) and performing the inverse Fourier transformation,
we find

Si(t0, t0 + t )|t0→∞ = 1

2π

∫ π

−π

dk e− jik sS(k, s, t )|s→0, (B4)

= Br

2π

∫ π

−π

dk
e− jik−α(k)t

r + 2μ1(p + q)(1 − cos k)

+ μ2
1(p − q)2

r2
(1 + e−rt ). (B5)

This result is quoted in Eq. (50).
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