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Segregation disrupts the Arrhenius behavior of an isomerization reaction
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Coexistence of segregation and interconversion or isomerization reaction among molecular species leads to
fascinating structure formation in the biological and chemical worlds. Using Monte Carlo simulations of the
prototype Ising model, we explore the chemical kinetics of such a system consisting of a binary mixture of
isomers. Our results reveal that even though the two concerned processes are individually Arrhenius in nature,
the Arrhenius behavior of the isomerization reaction gets significantly disrupted due to an interplay of the
nonconserved dynamics of the reaction and the conserved diffusive dynamics of segregation. The approach
used here can be potentially adapted to understand reaction kinetics of more complex reactions.
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I. INTRODUCTION

The phenomenon of the existence of two or more molec-
ular species having the same chemical formula but different
properties is referred to as isomerism [1]. Structural chirality
is one of the reasons behind such isomerism, giving rise to
optical isomers or enantiomers [1,2]. For instance, L Glucose,
unlike its enantiomer D glucose, is not an energy source
for living organisms, as it cannot be phosphorylated during
glycolysis. The final product of synthesis of such molecular
species is often comprised of a mixture of its enantiomers.
Depending on the kind of interactions among themselves the
enantiomeric components of such mixtures can spontaneously
or inductively segregate from each other [3,4]. Simultane-
ously, either naturally or owing to an external drive, the
enantiomers may undergo an isomerization or interconversion
reaction leading to an enantio-selective production or amplifi-
cation of one of them [5–12]. Such enantio-selective processes
are ubiquitous in nature as well, e.g., amino acid residues of
naturally occurring proteins are mostly L enantiomers [13].
In the light of the above discussion, it is crucial to have a
microscopic understanding of the physical laws governing
such a phenomenon of segregation of molecular species si-
multaneously undergoing an isomerization reaction [14–26].

Segregation in enantiomeric mixtures can be easily un-
derstood by simply translating the concepts of kinetics of
phase segregation, which has been extensively studied in the
past [27,28] and recently developed further in more complex
and realistic scenarios [29–31]. Similarly, the interconversion
reaction among isomers can be captured under the essence
of phase ordering of ferromagnets [32]. In phase order-
ing, typically one ends up in a state where a majority of
the magnetic dipoles point in the same direction, follow-
ing a quench from high-temperature disordered state to a
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temperature below the Curie point. Both kinetics of phase seg-
regation in a binary mixture and phase ordering can essentially
be modeled by using simple lattice models, e.g., the nearest-
neighbor Ising model. Although both adaptations of the model
produce equivalent thermodynamics, fundamentally their dy-
namics are different. Combining the two approaches results in
an appropriate model for exploring the effect of isomerization
reaction during enantiomeric phase segregation in solids using
state-of-the-art Monte Carlo (MC) simulations [14,16,23].

In solid phase, according to Hohenberg-Halperin nomen-
clature [33], the segregation dynamics belongs to Model B,
whereas the phase ordering belongs to Model A. In the past,
combining these two types of dynamics were motivated more
from a technical point of view. In this regard, the first study
was by Glotzer et al. [14], where they focused on the steady-
state pattern formation and scaling of the characteristic length
scale, i.e., the average domain size, with the reaction proba-
bility. Alongside, there were quite a few studies that, instead
of using MC simulations, modified the Cahn-Hilliard equa-
tion to include the nonconserved dynamics for a theoretical
description of such systems [15–19,21,34]. Recent interests
in this regard have shifted toward modeling reactions in so-
lutions using molecular dynamics (MD) simulations [35,36].
These attempts have successfully explored novel mesoscopic
steady-state structures mimicking microphase segregation ob-
served in the chemical and biological worlds. In a nutshell,
all these previous studies where a combination of conserved
and nonconserved dynamics were used, the primary focus has
always been on either pattern formation or the scaling of the
characteristic length scale. However, answers to some of the
fundamental questions such as the effect of segregation on
the reaction kinetics, are still unexplored. Particularly, how
the rate of the interconversion reaction changes as a func-
tion of temperature has rarely been explored to date. In this
work, we focus on this particular aspect of the competing
dynamics.

We study the kinetics of an isomerization reaction of the
following type:

A1 � A2, (1)
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where the two isomers A1 and A2 are also undergoing seg-
regation from each other. The reaction is a unimolecular
elementary reaction, e.g., interconversion of cyclopropane and
propene. The mechanism of such a reaction can easily be
understood using the transition-state theory, always yielding
an Arrhenius-type relation between the rate constant k and
the temperature T [37]. In the present case too, if there is no
segregation, k as a function of T obeys the Arrhenius behavior
given as

ln k = ln A − Ea

R

(
1

T

)
, (2)

where A is a preexponential constant, Ea is the activation
energy, and R is the universal gas constant. Our results from
MC simulations of the prototype Ising model mimicking the
system described above reveal that at high reaction proba-
bility the Arrhenius behavior is maintained. However, as the
reaction probability decreases and segregation dominates, a
significant deviation from the Arrhenius behavior is observed.

The rest of the paper is divided into three different sections.
In Sec. II, we describe in detail the model and method of sim-
ulation. Following that in Sec. III, we present the results and
analyses. Finally, we put forward our conclusion in Sec. IV.

II. MODEL AND SIMULATION METHOD

We choose a square lattice system where on each site i
there sits an Ising spin Si = +1(or − 1) that corresponds to
species A1(or A2). The interaction energy between the spins
are given by the conventional Ising Hamiltonian

H = −J
∑
〈i j〉

SiS j, (3)

where 〈i j〉 indicates that only nearest neighbors can inter-
act with each other and J is the corresponding interaction
strength. We apply periodic boundary conditions in all pos-
sible directions to eradicate any surface effects. The model
exhibits an order-disorder transition with a critical temper-
ature Tc = 2J/kB ln(1 + √

2), where kB is the Boltzmann
constant [38]. From now onward the unit of temperature
is J/kB, and for convenience we have set J = kB = 1. In
order to capture the essence of a segregating mixture of
isomers undergoing isomerization reaction, we have intro-
duced both Kawasaki spin-exchange dynamics and Glauber
spin-flip dynamics [39–42]. In Kawasaki exchange, inter-
change of positions between a randomly chosen pair of
nearest-neighbor spins is attempted, facilitating segregation
of species. Such an MC move replicates atomic diffusion,
and the resultant dynamics is conserved as it keeps individual
compositions of the species unaltered. On the other hand, in a
Glauber spin-flip move, an attempt is made to flip a randomly
chosen spin, thus mimicking the interconversion or isomeriza-
tion reaction. We consider the forward and backward reactions
in (1) to be equally likely. The spin-flip move is nonconserved
as it changes the individual composition of the species. Both
moves are accepted according to the standard Metropolis cri-
terion [41,42].

We start with a racemic mixture of the isomers, i.e., equal
proportions of A1 and A2 are uniformly distributed on the
lattice, and then in the simulation we set the temperature to

FIG. 1. Pattern formation due to isomerization reaction and seg-
regation. Typical snapshots depicting time evolution of a binary
mixture of isomers, simultaneously undergoing isomerization reac-
tion and segregation, following a quench from a homogeneous phase
above Tc to a temperature T = 0.6Tc. The results are obtained from
simulations on a square lattice of linear size L = 32. Different rows
are for different values of the reaction probability pr , as indicated.
Contrasting colors correspond to different species.

T < Tc. At each MC step, the Glauber move is attempted
with a probability pr , while the Kawasaki exchange attempt
is executed with a probability 1 − pr . We choose one MC
sweep (MCS) as the unit of time, which refers to L2 attempted
MC moves. We perform all our simulations on a square lattice
of linear size L = 32 having L2 = 1024 isomers, at different
T for a range of pr ∈ [10−4, 5 × 10−1]. Note that the model
and methodology described above are applicable to a reactive
binary mixture of isomers in solid phase.

III. RESULTS

Segregation of molecular species in combination with the
isomerization reaction leads to pattern formation, as pertinent
to the individual dynamics associated with the two processes.
Typical representative time-evolution snapshots at T = 0.6Tc

are presented in Fig. 1, for different pr . For the highest
pr = 10−1, the patterns are similar to what is observed for
a system with purely nonconserved spin-flip dynamics, i.e.,
in phase ordering [43,44]. The isomerization reaction seems
to have finished faster as pr increases. This rationalizes the
difference in the set of times for which the snapshots are
presented for different pr in Fig. 1. As pr decreases, the snap-
shots at intermediate times appear to have more bicontinuous
morphologies. For all cases, although at different times, the
system finally approaches a morphology where one of the
isomers survives as the majority. For pr = 10−4, such a stage
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FIG. 2. Progress of the reaction. Linear-log plots for time dependence of the concentration difference χ (t ) of the two isomers, at different
temperatures for (a) pr = 10−1, (b) pr = 10−2, (c) pr = 10−3, and (d) pr = 10−4. The data presented are averaged over 80 independent time
evolutions obtained by using different random number seeds in the MC simulations. The upper insets show the same plots on double-log scale.
There the dashed black lines represent a power law ∼t1/2. The red dashed line in (d) represents another power-law ∼t1/3. The lower insets
show representatives of histograms of the extracted reaction completion time τr , at T = 0.8Tc. In the lower insets of (a) and (b) the dashed
lines represent a function of the form f (τr ) = 100 exp(−λτr ), where λ = 550 and 60, respectively.

is reached at a much longer time ≈5 × 107 MCS, making
it computationally expensive. Hence, we refrain ourselves
from simulating larger lattices than L = 32. For evolution
snapshots at other temperatures see Figs. S1 and S2 in the
Supplemental Material (SM) [45]. From there it is apparent
that at high temperature (T = 0.8Tc), for smaller pr , at first the
system segregates to a slablike morphology, and then evolves
further due to the isomerization reaction. However, at low
temperature (T = 0.4Tc), even for pr = 10−4, the morpholo-
gies resemble more of what is shown in Fig. 1.

Since the objective is to study the reaction kinetics, we
have to extract the rate constant k. As a first step, we need
to monitor the progress of the reaction until it finishes, i.e.,
when one of the molecular species becomes almost negligible
compared to the other. For that we calculate the concentration
difference of the two species

χ (t ) = |NA1 (t ) − NA2 (t )|
NA1 (t ) + NA2 (t )

, (4)

where NA1 (t ) and NA2 (t ) are, respectively, the number of
molecules of A1 and A2, at a time t . The denominator in Eq. (4)
NA1 (t ) + NA2 (t ) = L2 is the total number of molecules present

in the system. By construction, at t = 0 for a racemic mix-
ture χ (0) ≈ 0, and at large t when the reaction is completed
χ (t ) ≈ 1, thus making χ (t ) a suitable parameter to capture the
progress of the reaction. In the main frames of Figs. 2(a)–2(d),
we present the corresponding data at different T for four
choices of pr , as indicated. Apparently, for all pr the data
show an initial transient regime where χ (t ) remains almost
constant, followed by a steep increase before finally settling
at a value ≈1 indicating the completion of the reaction. How-
ever, one could notice that the transient regime broadens as
pr decreases, indicating a dominance of segregation over the
reaction.

Also noticeable is the presence of a third regime where
χ (t ) again attains almost a plateau before finally approaching
unity. The plateau is most prominent for pr = 10−1 (where
nonconserved dynamics dominates) at low temperatures (T <

0.6Tc). For pr = 10−4, at high T this plateau vanishes (see
Figs. S3–S6 in the SM [45] for individual plots at different T ).
This implies that the plateau signals a freezing in the dynamics
due to low T . At a later time, it can come out of this metastable
state via merging of interfaces leading to a rapid growth of
domains, referred to as an avalanche. Such a behavior has
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FIG. 3. Temperature dependence of the reaction rate constant k. Plots of − ln〈k〉 against 1/T to verify the presence of Arrhenius behavior
for different pr . The dashed straight lines in (a)–(c) are fits using Eq. (2), and the dashed lines in (d)–(f) are just connecting the data points.
Here, the symbol 〈. . . 〉 indicates an average over 80 independent simulation runs.

been observed previously for the Ising model with purely non-
conserved dynamics [43,46]. Of course, this can be interpreted
as a finite-size effect. However, the primary finite-size effect
comes into the picture after the avalanche when the growing
domains become comparable with the system size.

The upper insets of Fig. 2 showing the same data on a
double-log scale unravel significant differences in the time
dependence of χ (t ) for different pr . For pr = 10−1 and 10−2,
data for all T is consistent with a power-law χ (t ) ∼ t1/2. In
a ferromagnetic system χ (t ) ≡ |m(t )|. There, during phase
ordering, the absolute magnetization |m(t )| obeys the same
power-law |m(t )| ∼ t1/2 in space dimension d = 2 [44]. For
lower pr , particularly at high T , the dominance of segrega-
tion makes the growth of χ (t ) much slower, roughly with
a power-law exponent of 1/3. This early-time behavior is
reminiscent of the Lifshitz-Slyozov growth [47], observed
for the time dependence of the characteristic length �(t ) dur-
ing phase segregation [48–50]. However, since the condition
χ (t ) ≡ |m(t )| ∼ �(t ) does not hold for conserved dynamics,
the analogy is misleading. For nonconserved dynamics it has
been shown that in two dimension, m(t ) ∼ �(t ) ∼ t1/2. In the
present case, even if one had plotted �(t ) for the modest
value of pr , the late-time data would always be following the
behavior �(t ) ∼ t1/2. This is because for modest pr initially
the segregation dominates over the reaction, thus the system
quickly reaches a state where the two isomers are almost com-
pletely segregated from each other. Given the Hamiltonian of

the nearest-neighbor Ising model, the system from there on
can move further only via the nonconserved Glauber moves
that mimic the interconversion reaction. Hence, at late time,
χ (t ) behaves similar to a purely nonconserved dynamics. For
details on the behavior of �(t ) we refer to Ref. [51].

Next, we extract the reaction-completion time τr as

χ (t = τr ) = h, (5)

where we choose h = 0.9 [52]. Histogram of the extracted τr

(see Figs. S7–S10 in the SM [45] for histograms at different
T for four values of pr) shows nonuniform localized patterns
for pr � 10−2 with an exponential behavior at high T as pre-
sented in the lower insets of Figs. 2(a) and 2(b), respectively,
for pr = 10−1 and 10−2, at T = 0.8Tc. The dashed lines there
represent best fits using f (τr ) = 100 exp(−λτr ), with decay
constants λ = 550 and 60, respectively, for pr = 10−1 and
10−2, implying a slower decay as pr decreases. For even lower
pr , the exponential nature is lost and the histogram appears
to flatten out, as shown for pr = 10−4 in the lower inset of
Fig. 2(d).

From the extracted τr we calculate the rate constant k of
the isomerization reaction as k = τ−1

r . In Fig. 3 we show the
temperature dependence of k, by plotting − ln〈k〉 as a function
of 1/T . For pr � 10−2, the data show a linear nature confirm-
ing the Arrhenius behavior depicted in Eq. (2). The dashed
lines in Figs. 3(a)–3(c) represent respective best fits obtained
using the ansatz in Eq. (2). The obtained activation energies
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FIG. 4. Interplay of segregation and reaction. Plots of the time evolution of the segregation order parameter ψ (t ) against the corresponding
concentration difference χ (t ), on a linear-log scale at different temperatures T for (a) pr = 10−1, (b) pr = 10−2, (c) pr = 10−3, and
(d) pr = 10−4. The color bar represents the corresponding time. The snapshots at T = 0.4Tc and 0.8Tc represent typical configurations having
ψ (t ) ≈ 0.85. The green arrows in (c) and (d) are guides to show the trend in data with increasing T .

are Ea ∈ [3.46, 3.75] with a mean of 〈Ea〉 = 3.65(18). For
all pr � 10−2, fits using Ea = 3.65 in Eq. (2) also work rea-
sonably well, indicating possibly a pr-independent activation
energy. For pr < 10−2, the data do not appear to be linear any-
more, and, in fact, for pr = 10−4 it becomes almost flat. This
implies that the dominance of diffusive segregation dynamics
disrupts the Arrhenius behavior of the isomerization reaction,
even though segregation itself is an Arrhenius process [53].
An apparent linear behavior of the data can be noticed in the
large and small 1/T limit, respectively, for Figs. 3(d) and 3(f),
for a very small range with only three data points. Since a
fitting of Eq. (2) with two free parameters using only three
data points is not justified, we abstain ourselves to pursue
them as a possible Arrhenius behavior.

To investigate the phenomenon of an interplay of two Ar-
rhenius processes leading to a non-Arrhenius behavior, we
probe the segregation using the time evolution of the order
parameter

ψ (t ) = 1

L2

∑
i

|n�
A1

− n�
A2

|
n�

A1
+ n�

A2

, (6)

where the
∑

is over all lattice sites and n�
A1

(or n�
A2

) is
the number of A1 (or A2) molecules in a sub lattice of size
� × � with � = 1 around a site i of the parent square lattice.

By construction, ψ for a segregated system is higher (≈1)
than a homogeneous one. For a purely segregating system,
the time when ψ approaches unity, provides a measure of
the associated relaxation time τs, and a plot of − ln〈τ−1

s 〉
against 1/T confirms the Arrhenius behavior (see Fig. S11 in
the SM).

For a system where reaction is happening along with segre-
gation, time dependence of ψ (t ) alone will capture the effect
of both processes. Hence, to understand the interplay between
the segregation and the reaction, in Fig. 4 we plot the time
dependence of ψ (t ), characterizing the segregation with χ (t )
reflecting the temporal progress of the reaction at different
T for four values of pr . For pr = 10−1, shown in Fig. 4(a),
ψ (t ) increases monotonously with χ (t ), and the spread of data
points over time for different T appear to be quite condensed,
suggesting no trend as a function of T . Typical configurations
having ψ (t ) ≈ 0.85, a value that corresponds to an almost
completely segregated state for a purely segregating system,
are also shown in Fig. 4(a) for a high and low T . None of them
represent a completely segregated morphology, suggesting
that both the dynamics affect the system concurrently. How-
ever, the reaction has progressed slightly further for T = 0.8Tc

with χ (t ) = 0.1 compared to χ (t ) = 0.08 at T = 0.4Tc. This
difference eventually gets manifested in the form of an Arrhe-
nius behavior, expected for a simple isomerization reaction.
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As pr decreases, the data for different T look more dis-
persed with a T -dependent trend, as guided by the green
arrows in Figs. 4(c) and 4(d). There, one can notice that
at the beginning ψ (t ) increases sharply while no significant
change in χ (t ) is observed, implying that initially during
the evolution segregation dynamics dominate. The effect is
more pronounced for pr = 10−4 at high T . This could be
further appreciated from the almost completely segregated
morphology of the configuration representing a system having
ψ (t ) = 0.85 at T = 0.8Tc, for pr = 10−4, shown in Fig. 4(d).
The value of χ (t ) = 0.02 at this instance indicates that the
progress of the reaction is negligible. Since segregation itself
is an Arrhenius process, the system reaches such a state much
faster at high T . However, after attaining such a morphology,
not only the segregation dynamics almost seizes, but the ac-
tivation energy Ea of the reaction also increases, temporarily
halting the entire evolution of the system. This is analogous
to the phenomenon of dynamic freezing due to emergence of
metastable slablike configurations during phase ordering of
a ferromagnet [43,46,54]. On the other hand, at T = 0.4Tc

the value of χ (t ) = 0.06 when ψ (t ) = 0.85 suggests that
the reaction has progressed further compared to T = 0.8Tc.
Corresponding typical configuration at T = 0.4Tc, shown in
Fig. 4(d), also does not represent a segregated morphology.
Thus, in this case the reaction can easily proceed even further
toward its completion. Hence, at low T and low pr , although
the system always encounters a simultaneous occurrence of
segregation and reaction, it never gets trapped in a completely
segregated state, making the reaction completion time compa-
rable with the one at high T . Overall it implies that for low pr ,
the activation energy Ea of the isomerization reaction is not T
independent, and rather it depends irregularly on T , which in
turn gets manifested in the form of a non-Arrhenius behavior
of the isomerization reaction.

IV. CONCLUSION

To summarize, we have presented results on chemical
kinetics of an elementary isomerization reaction when it

competes with a segregation process among the isomers.
Results from our MC simulations of a model constructed
using the nearest-neighbor Ising model with two competing
dynamics reveal that the Arrhenius behavior of the reac-
tion gets disrupted as segregation dynamics dominates over
the reaction dynamics, even though segregation itself is an
Arrhenius process. Non-Arrhenius behavior is also observed
in glass-forming materials around the glass-transition tem-
perature [55,56]. However, there the system is intrinsically
disordered, having a fairly complex energy landscape. In our
case, the chosen Hamiltonian of the system lacks any sort
of disorder, and hence, the observation of a non-Arrhenius
behavior analogous to glass-forming materials is also not
an obvious outcome. We have rationalized this observation
by virtue of a phenomenological argument that, at high
temperature and low reaction probability, the segregation of
isomers reaches completion leading to an almost completely
segregated morphology, and thereby raising the activation
energy of the reaction making it difficult for the system to
evolve further. These findings shall provoke an experimental
verification, which to the best of our understanding can be
done without much hassle.

As a next step it would be worth exploring aging and re-
lated dynamical scaling [57] in a system with mixed dynamics
such as presented here. Note that the results presented here are
for solid phase reactions. Thus, as a future endeavor, it would
be intriguing to consider similar reactions in solution phase
by performing MD simulations of a fluid system [58]. This
would lead to a mixed dynamics of Model A and Model H
of dynamic critical phenomenon [33]. Furthermore, based on
the model presented here, one can construct similar models
for reactions of higher complexity, and subsequently may also
invoke the role of a catalyst. For that, use of a multispecies
model like the Potts model is required [43,59].
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