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Heat transport in an angular-momentum-conserving lattice
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It is expected that the energy-diffusion propagator in a one-dimensional nonlinear lattice with three conserved
quantities: energy, momentum, and stretch, consists of a central heat mode and two sound modes. The heat mode
follows a Lévy distribution. Consequently, the heat diffusion is super, i.e., the second moment of the diffusion
propagator diverges as tβ with β > 1; and the heat conduction is anomalous, i.e., the heat conductivity is size
dependent and diverges with size N by Nα , with α > 0. In this paper, we study a one-dimensional lattice with
two-dimensional transverse motions, in which the total angular momentum also conserves. More importantly, the
diffusion of this conserved quantity is ballistic. Surprisingly, the above pictures and the values of the mentioned
power exponents keep unchanged. The universality of the scalings is then further extended. On the other hand,
the detailed strengths of heat transports are largely enhanced. Such a counterintuitive finding can be explained
by the change of the phonon mean-free path of the lattices.
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I. INTRODUCTION

The microscopic dynamical origin of heat conduction, in
particular the anomalous heat conduction in low-dimensional
systems is one of the long-standing tasks in nonequilib-
rium statistical mechanics and has attracted much interest
recently [1–4]. In a macroscopic system, Fourier’s law �j =
−κ∇T is commonly satisfied, where ∇T denotes a small
temperature gradient and �j is its induced stationary-state heat
current, and most importantly κ is a system-size-independent
heat conductivity. The case is quite different in microscopic
low-dimensional systems. The system-size-diverging heat
conductivity in a one-dimensional (1D) Fermi-Pasta-Ulam
(FPU) lattice was first observed by Lepri et al. [5]. Since
then, effort has been largely focused on the necessary and
sufficient conditions of the Fourier law of heat conduction
in 1D systems, and a general consensus has been reached
that the conserved quantities play key roles in inducing a
normal or anomalous heat conduction. Heat conduction in 1D
models with momentum-conservation breaking, such as the
Frenkel-Kontorova [6] and φ4 [7] lattices, is generally normal.
While in the cases that the momentum is conserved, the heat
conduction is generally anomalous, i.e., the heat conductivity
becomes size dependent and diverges with system length as
κ ∼ Nα , with α > 0.

On the other hand, in spite of the extensive studies in
the past decades, no consensus has been reached yet for
the universality and detailed value of the power-exponent
α. Early mode-coupling theories (MCT) predict α = 2/5
[1] and a renormalization group analysis indicates α = 1/3
[8,9]. Later, a self-consistent MCT [10] was proposed, which
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predicts a two-universality-class scenario that α = 1/3 and
1/2 for models with asymmetric and symmetric interactions,
respectively. The prediction for the asymmetric cases agrees
with numerical simulations well [11,12]. However, for the
symmetric cases like the purely quartic and FPU-β lattices,
numerical simulations performed by different groups indicate
differently. The values of α = 2/5 [12–14], 1/3 [15], and also
1/2 [16] have all been reported. The possibility of having
a different universality class depending on the number of
conserved quantities has also been revealed recently [17].

Among all these theoretical predictions, a newly proposed
nonlinear fluctuating hydrodynamic theory (NFHT) has at-
tracted much increasing attention [18–20]. It suggests that
for a 1D lattice with three conserved quantities: energy,
momentum, and stretch, the value of the power exponent
α follows the same two-universality-class scenario, like the
above-mentioned self-consistent MCT expects. More impor-
tantly, NFHT studies not only the power exponent α, but the
scaling properties of various correlation functions of the con-
served quantities as well. It predicts that the energy-diffusion
propagator consists of a bell-shaped central heat mode and
two sound modes extending with speed of sound vs. For the
asymmetric and symmetric interparticle potentials, the heat
modes both satisfy Lévy scaling but with different values of
index, which induces the different values of α. As for the
sound modes, they follow Kardar-Parisi-Zhang scaling [21]
and a Gaussian distribution, respectively, in the two cases.
Those have been verified numerically [22,23].

To further understand the role of conserved quantities, in
this paper, we study the heat transports in a one-dimensional
lattice with two-dimensional (2D) transverse motions, i.e.,
a quasi-2D lattice. Besides the energy, the momentum, and
the stretch, the angular momentum is also conserved. More
importantly it diffuses ballistically like what the momentum
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does. The rest of the paper is organized as follows. The model
and its dynamics will be introduced in Sec. II. In Sec. III,
numerical simulations for the energy diffusion and the heat
conduction are presented. The phonon mean-free path is then
calculated to further understand the change of these. A sum-
mary and discussion are given in Sec. IV.

II. MODEL AND DYNAMICS

The model we study is a quasi-2D lattice, i.e., a one-
dimensional lattice that consists of particles moving in two
transverse directions X and Y. The Hamiltonian reads

H =
N∑

i=1

[ | �pi|2
2

+ V (| �qi+1 − �qi|)
]
, (1)

where N denotes the total number of particles, and �qi ≡ xi�ex +
yi�ey with �ex and �ey being the unit vectors in the two directions.
All the masses have been set to unity. The interparticle inter-
action V takes the simplest nonlinear form, the purely quartic
form, i.e., V (r) = 1

4 r4. The dynamics that corresponds to the
above Hamiltonian follows

dvxi = (−�x3
i − �xi�y2

i + �x3
i+1 + �xi+1�y2

i+1

)
dt, (2)

dvyi = (−�y3
i − �yi�x2

i + �y3
i+1 + �yi+1�x2

i+1

)
dt, (3)

where �xi and �yi refer to the relative displacements xi −
xi−1 and yi − yi−1, respectively. In a more realistic model
with longitudinal and transverse motions as well as bending
angle interactions, three types of transport behaviors, i.e.,
logarithmic, 1/3 power-law, and 2/5 power-law divergences
of heat conductivity are all observed in different parameter
regimes [24].

In a model that the cross items are omitted [25], i.e.,

dvxi = (−�x3
i + �x3

i+1

)
dt, (4)

dvyi = (−�y3
i + �y3

i+1

)
dt, (5)

the system reduces to two independent 1D purely quartic
lattices, in each of which there exist three locally conserved
quantities, i.e., energy, momentum, and stretch. Throughout
this paper, we call this model a “simplified” lattice. The 1D
purely quartic lattices have been studied extensively and all
the known conclusions can be applied to this lattice. In another
point of view, the cross items in Eqs. (2) and (3) connect the
two 1D independent lattices together, and consequently build
the new quasi-2D lattice. Such a connection breaks the sep-
arated energy conservations in the two 1D lattices. However,
the total energy and the total angular momentum

I =
∑

i

Ii ≡
∑

i

(vxiyi − vyixi ) (6)

conserve instead. Recent study has revealed that the angular
momentum conservation plays a crucial role in the thermaliza-
tion process of this lattice [26]. The total number of conserved
quantities remains. We will see that the local angular mo-
mentum diffuses ballistically, and it will largely enhance heat
transports.

III. NUMERICAL SIMULATIONS

A. Diffusion properties of the conserved quantities

First of all, we study the diffusion properties of these
conserved quantities systematically by calculating their
spatiotemporal correlation functions. The local energy-
fluctuation spatiotemporal correlation function was proposed
to characterize the energy diffusion processes in a few 1D
lattices [27]. It has been applied to various 1D systems [14],
2D systems [28], and has also been extended to other con-
served quantities [29–31]. In an equilibrium state, the rescaled
energy-fluctuation spatiotemporal correlation is defined as

ρE (i, t ) ≡ 〈�Ei(t + t ′)�E0(t ′)〉t ′〈
�E2

i (t ′)
〉
i,t ′

, (7)

where �Ei(t ) ≡ Ei(t ) − 〈Ei〉, and Ei(t ) denotes the energy of
the ith particle at time t and 〈Ei〉 is this long-time average. For
a homogeneous lattice with a periodic boundary condition,
〈Ei〉 is independent of the particle label i. However, the fixed
boundaries are applied here, thus the values for the end parti-
cles are in fact slightly different. Similarly, the correlations of
the local momentum and the local angular momentum are

ρP(i, t ) ≡ 〈vxi(t + t ′)vx0(t ′) + vyi(t + t ′)vy0(t ′)〉t ′〈
v2

xi(t
′) + v2

yi(t
′)
〉
i,t ′

, (8)

ρI (i, t ) ≡ 〈Ii(t + t ′)I0(t ′)〉t ′〈
I2
i (t ′)

〉
i,t ′

. (9)

Due to the reflection symmetry, 〈vxi〉, 〈vyi〉, and 〈Ii〉 must
be zero. Therefore, the symbol � in Eqs. (8) and (9) have
been omitted. Also due to the XY symmetry, we calculate not
ρPX (i, t ) and ρPY (i, t ) separately, but their average instead to
reduce the thermal fluctuations. Correspondingly, the second
moments of these correlations are defined as

σ 2
E (t ) ≡

∑
i

ρE (i, t )i2, (10)

σ 2
P (t ) ≡

∑
i

ρP(i, t )i2, (11)

σ 2
I (t ) ≡

∑
i

ρI (i, t )i2. (12)

The simulations are performed in a lattice with particle
number N = 8001. Fixed boundary conditions are applied,
i.e., x0 = y0 = xN+1 = yN+1 = 0. Two Langevin heat baths
with identical temperature T = 1 are coupled to the left- and
right-most particles to keep the whole system in an equilib-
rium state. The correlations ρE (i, t ), ρP(i, t ), and ρI (i, t ) for
various time lag t are plotted in Figs. 1(a) to 1(c). Note that
the central particle is labeled as the zeroth one. Similar to the
1D cases [29], the profiles of ρP(i, t ) form two sound modes
moving out with the sound speed vs [see Fig. 1(b)], which
induces a ballistic diffusion, i.e., σ 2

P (t ) ∼ t2, see the corre-
sponding second moments plotted in Fig. 1(d). Interestingly,
those for the angular momentum ρI (i, t ) behave the same [see
Fig. 1(c)], and it diffuses ballistically too, i.e., σ 2

I (t ) ∼ t2. We
know the energy transport in the corresponding 1D lattice
depends only on the momentum transport, thus the change
that the extra conserved quantity makes to energy diffusion
is of great interest. The pictures of ρE (i, t ) look similar to
those for the 1D lattice, i.e., each forms a central heat mode
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FIG. 1. The diffusions of three conserved quantities, (a) ρE (i, t ),
(b) ρP(i, t ), and (c) ρI (i, t ) for various times. (d) The second mo-
ments of the diffusions. Canonical simulations with N = 8001 and
temperature T =1 are applied.

and two sound modes moving out with the sound speed vs.
The overall energy diffusion follows a super diffusion, i.e.,

σ 2
E (t ) ∼ tβ with the power exponent β = 1.4. Although this

value of β is basically the same as that we observed in the 1D
lattice [14], the detailed value of σ 2

E (t ) is enlarged noticeably
by about 60%. Namely, the heat diffusion has been largely
enhanced.

We have also checked the Lévy walk description of the
energy diffusion in this quasi-2D lattice. Corresponding to the
diffusion power exponent β = 1.4, the heat mode is expected
to follow a Lévy distribution with the index μ = 3 − β = 1.6
[32]. Then the height of the heat mode H should decay as
H ∼ t− 1

μ = t−0.625. The numerically calculated H versus t
and the above expected decay are plotted together in Fig. 2(a).
The agreement is excellent. The heat mode is then expected to
satisfy a scaling invariant relation

ρE (x, ut ) ∼ u− 1
μ ρE

(
u− 1

μ x, t
)
. (13)

In Fig. 2(b), the rescaled correlations t
1
μ ρE (i, t ) versus the

rescaled location it− 1
μ are plotted. The curves for various time

t overlap each other very well. The above scaling-invariant
relation is then confirmed. Moreover, the tail of a Lévy distri-
bution should decay as i−(μ+1) = i−2.6. In Fig. 2(c), the tails

FIG. 2. (a) The height of the heat mode H versus time t . It follows a power-law decay H ∼ t−0.625 very well, which implies a Lévy scaling
with the index μ = 1/0.625 = 1.6. (b) The rescaled profiles of ρE (i, t ). In the central regimes, curves for various t overlap each other very
well. (c) The rescaled profiles in the tail regime. A straight line with slope −2.6 is plotted for reference. (d) The rescaled profiles of the sound
modes. The overlap for various t is acceptable.
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of the rescaled distributions are plotted in double-logarithmic
scale. Clear power-law decay can be confirmed. However, for
the detailed power exponent −2.6, due to the large fluctuation,
it is hard to make a convincing conclusion. Nevertheless, a
power-law decay rather than an exponential decay can be
confirmed. As for the sound mode, a random-walk-with-
velocity-fluctuation process [33] expects that the dispersion of
the humplike sound mode grows as t

1
2 and its volume follows

a power-law decay t−(μ−1), thus the distribution should satisfy
the scaling [34]

ρE (x̄, ut ) ∼ u−(μ− 1
2 )ρE

(
u− 1

2 x̄, t
)
, (14)

where x̄ ≡ x − vst . In Fig. 2(d), the rescaled correlations
tμ− 1

2 ρE (i, t ) versus the rescaled coordinate (i − vst )t− 1
2 are

plotted. Curves for various time t basically overlap. The agree-
ment with Eq. (14) is acceptable.

B. Heat conduction of the lattices

Since the extra conserved quantity does not change the
scaling properties of heat diffusion but largely enhances the
detailed strength, we naturally expect that the heat conduction
should be changed in the same way. We will confirm it in this
section.

1. Nonequilibrium measure of the heat conductivity

The heat conductivity κ , which measures the strength of
heat conduction, is originally defined according to the Fourier
law, i.e., �j = −κ∇T , where ∇T denotes an infinitesimal tem-
perature gradient and �j denotes its induced stationary-state
heat current. This provides a straightforward way of measur-
ing the value of κ , the nonequilibrium heat bath method. To do
so, two Langevin heat baths with temperatures TL = 1.1 and
TR = 0.9 are coupled to the two end particles of the lattice.
Compared with our previous studies [12,14], the temperature
difference �T ≡ TL − TR we applied here is much smaller,
thus the system is even closer to an equilibrium state. The
length-dependent heat conductivity κNE(N ) is defined as

κNE(N ) ≡ JN

�T
, (15)

where J denotes the stationary-state heat current and the
subscript “NE” denotes that the calculation is based on the
nonequilibrium method. Here the fixed boundary conditions
are applied again.

In our numerical calculation, the average of J is taken
after enough long transient time so that the local heat currents
along the lattices become time t and site i independent and
the temperature profiles are well established and also time t
independent, see the temperature profiles in the inset of Fig. 3
for the longest lattice N = 131072. The so-measured κNE

versus N is plotted in Fig. 3. We see it grows with the system
length N by Nα , with α = 2/5. As a comparison, the result for
the simplified model is also plotted. Similar divergence power
exponent is observed. However, the detailed heat conductivity
is apparently lower. In other words, the cross terms in Eqs. (2)
and (3) enhance heat conduction largely, about 38%.

FIG. 3. Heat conductivity κNE(N ) versus system length N for the
quasi-2D and simplified lattices. Two lines with slope 2/5 are plotted
for reference. κNE(N ) for the former lattice is apparently (about 38%)
higher than that for the latter one. Inset: the temperature profiles for
the two lattices with the longest length N = 131072.

2. Equilibrium measure of the heat conductivity

An inevasible problem of the above nonequilibrium
method is that the applied temperature difference must be
neither too small, otherwise the so-induced net heat current
cannot be distinguished from the background statistical fluc-
tuations; nor too large, otherwise the system is too far from
equilibrium. Numerical difficulties also prevent us from sim-
ulating even longer systems, otherwise the consumption of the
computational resources increases unacceptably. Meanwhile,
the Green-Kubo formula [35] provides a way of calculating
the heat conductivity in terms of the autocorrelation function
CJJ (τ ) of the fluctuation-induced instantaneous global heat
current at equilibrium:

CJJ (τ ) ≡ lim
N→∞

1

kBT 2N
〈JN (t )JN (t + τ )〉t , (16)

where JN (t ) denotes the global heat current measured in a
system with N particles. In the general cases that sound modes
exist, the length-dependent heat conductivity is expected as

κGK(N ) ≡
∫ N/vs

0
CJJ (τ )dτ, (17)

where the subscript “GK” indicates that the calculation is
based on the Green-Kubo formula [36]. In such cases, if the
autocorrelation CJJ (τ ) decays as CJJ (τ ) ∼ τ−γ with γ < 1
in the long t limit, then κGK(N ) is expected to diverge as
κGK(N ) ∼ Nα with α > 0 in the thermodynamic limit, and the
power exponents α and γ are simply connected by α = 1 − γ .

To do the simulations, the initial states are randomly ex-
tracted from the microcanonical ensemble with zero total
momentum, zero total angular momentum, and identical per-
particle average energy ε = 1.5, which corresponds to the
desired temperature T = 1. Periodic boundary conditions are
applied here, i.e., x0 = xN , y0 = yN , xN+1 = x1, and yN+1 =
y1. Theoretically speaking, the system size N should be in-
finity, which is however practically impossible. Here we use
N = 32768, which is long enough for the considered regime

034118-4



HEAT TRANSPORT IN AN … PHYSICAL REVIEW E 109, 034118 (2024)

FIG. 4. The global heat-current autocorrelation function CJJ (τ )
for the quasi-2D and simplified lattices. N = 32768. The decays of
the tails follow τ−3/5 quite well. Lines with the other two commonly
expected values of the power exponent -1/2 and -2/3 are also plotted
for reference.

of time lag [37]. The results are plotted in Fig. 4. The asymp-
totic decay of CJJ (τ ) follows a power law τ−3/5 quite well, for
both the quasi-2D and the simplified lattices. κGK(N ) ∼ N2/5

is thus expected, which agrees with our nonequilibrium cal-
culation. Furthermore, it has been analytically revealed that
for a system without temperature pressure, the super energy
diffusion and the anomalous heat conduction are connected
by d2

dτ 2 σ
2
E (τ ) = 2CJJ (τ )

kBT 2cv
[38], where cv denotes the specific vol-

umetric heat capacity. This straightforwardly indicates γ +
β = 2. Here our measures agree with it exactly [39].

On the other hand, although CJJ (τ ) decays with the same
power exponent for both the quasi-2D and the simplified
lattices, the detailed value of CJJ (τ ) for the former one is
apparently (about 43%) larger than that for the latter one. The
same ratio of heat conductivity difference is expected, which
basically agrees with the nonequilibrium calculation.

C. Phonon mean-free path and dispersion relation

Besides the universal decay or divergent power exponents,
the detailed values of diffusivity and heat conductivity are
also of great practical value. The above studies have re-
vealed that, counterintuitively, the cross terms that connect
two independent 1D lattices to a single quasi-2D lattice appar-
ently enhance heat transports. Phenomenologically speaking,
the thermal conductivity is determined in terms of a wave-
number-dependent phonon mean-free path (MFP) �k , i.e.,
κ = 1

3

∑
k ckvk�k [40], where ck is the specific heat of the

phonon mode with wave number k and vk denotes its group
velocity. This provides a perspective to better understand the
above enhancement. To this end, we need to study the dis-
persion relation and measure the phonon MFP of the lattices.
An anharmonic phonon (a-ph) approach enables us to do so
numerically by calculating the Fourier-transformed suscep-
tibility [41]. Similar to the tuning fork experiment, suppose
that the collective response to a periodic external weak force
f (t ) = f1 cos ωt that is applied to the first particle takes the

form of a propagating plane wave, which reads

〈vn(t )〉 f = |An| cos(ωt + φn) = Re(|An|ei(ωt+φn ) ) (18)

for the nth particle, and the phase following

φn = −kn + φ0, (19)

where the coefficient k corresponds to the wave number. Ac-
cording to the linear-response theory, the excited motion that
is described in Eq. (18) can be expressed as

〈vn(t )〉 f = f1Re[χn(ω)eiωt ], (20)

and the susceptibility χn(ω) reads [41]

χn(ω) = 1

kBT

∫ ∞

0
dτ 〈vn(τ )v1(0)〉e−iωτ ≡ |χn(ω)|eiφn .

(21)

We can thus determine the wave number k by calculating the
above correlation of velocity 〈vn(τ )v1(0)〉. Suppose |χn(ω)|
follows an exponential decay with n, i.e.,

|χn(ω)| ∝ e−n/�, (22)

then the MFP of the phonon is naturally the value of �.
In the numerical simulations, the same microcanonical en-

semble and periodic boundary conditions that are applied in
Sec. III B 2 are applied again. The so-obtained phase φn(ω)
versus n for various ω ∈ (0.058, 1.304) is plotted in Fig. 5(a).
Quite good linear dependence on n is observed. Accordingly,
the dispersion relation is then worked out and plotted in
Fig. 5(c). That for the simplified lattice is also plotted for
reference. In fact, analytical estimations of the dispersion
relations have been worked out for such nonlinear lattices
based on the self-consistent phonon theory [42,43] and the
renormalized phonon approach [44]. Namely,

ω̃k = ηωk, (23)

where ωk ≡ 2 sin k
2 denotes the dispersion relation of a 1D

linear lattice, and η represents the renormalized factor for the
nonlinear lattices. For the 1D FPU lattice (also the simplified
lattice) having the interparticle coupling V (r) = K

2 r2 + λ
4 r4

(the purely quartic lattice corresponds to K = 0 and λ = 1),

η1D =
√

K + √
K2 + 12λT

2
. (24)

As for the quasi-2D lattice, there exist two branches of
phonons with opposite sign of angular momentum, and both
of the two branches follow the same dispersion relation [26]

η =
√

K + √
K2 + 16λT

2
. (25)

Those analytical estimations are plotted in Fig. 5(c) as curves.
In the studied regime, they agree with the numerical results
quite well, despite some slight overestimation. For even larger
ω > 2.675, similar to the case in Ref. [41], the response de-
cays very fast, yielding a very short phonon MFP. Evaluation
of the corresponding wave number k thus becomes quite dif-
ficult.

Similarly, the numerically obtained |χn(ω)| is plotted in
single logarithmic scale in Fig. 5(b). The values for each
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FIG. 5. (a) The phase φn(ω) and (b) the amplitude |χn(ω)| for the quasi-2D lattice. The values of ω along the arrow are 0.058, 0.105, 0.153,
0.201, 0.249, 0.307, 0.403, 0.508, 0.699, 0.901, 1.102, and 1.304. The corresponding (c) dispersion relation and (d) phonon MFPs for the two
lattices. The curves in (c) denote the renormalized-phonon expectations Eqs. (24) and (25).

ω follow a straight line, indicating exponential dependence
on n, which agrees with the expectation of Eq. (22). Based
on it and the already obtained dispersion relation, the MFP
�(ω) versus the wave number k is worked out and plotted
in Fig. 5(d). Those for the simplified lattice are also plotted
for comparison. We see that both of them follow power-law
decays with the same value of power exponent about −1.85.
However, for the detailed values of �, those for the quasi-2D
lattice are apparently (about 50%) longer than those for the
simplified lattice. This fact well explains the difference of
their heat transports in the two lattices.

IV. SUMMARY

To summarize, heat transport properties of a quasi-2D
purely quartic lattice are systematically studied. Compared
with the corresponding 1D purely quartic lattice, there exists
one more conserved quantity that diffuses ballistically, the
angular momentum. Since the energy transport in the 1D
purely quartic lattice depends only on momentum transport,
it is interesting to study the role of the conserved angular
momentum. Our numerical simulations show that, similar to
the 1D case, the energy diffusion propagator ρE (i, t ) consists
of one central heat mode and two sound modes moving out

in opposite directions. The heat mode fits a Lévy distribution
with index μ = 1.6 quite well; and the sound modes fit a
random-walk-with-velocity-fluctuation process with the same
index. Consequently, σ 2

E (t ), the second moment of ρE (i, t ),
diverges with t by tβ with β = 1.4. The extra conserved
quantity, the angular momentum, which diffuses ballistically
like the momentum, does not change the scaling properties of
the energy diffusion. The robustness of the universal scalings
is clearly presented. Very recently a ballistic transport has
been reported in a 1D FPU-like nonintegrable model with
long-range interactions having only few conserved quantities.
It is quite surprising since ballistic transport is commonly ex-
pected exclusively in an integrable system with N conserved
quantities [45].

On the other hand, the detailed values of σ 2
E (t ) are largely

enhanced for the quasi-2D lattice. It is then naturally expected
that the heat conductivity κ of this lattice changes in the same
way. We measure κ by using both nonequilibrium heat bath
and equilibrium Green-Kubo methods, and confirm that the
length-dependent κ (N ) diverges with the length N by Nα , with
α = 2/5. This is consistent with the universal relation α =
β − 1. The detailed value of κ in the quasi-2D lattice is indeed
noticeably enlarged. To understand the enhancement of the
heat transport, we calculate the phonon mean-free path in the
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quasi-2D lattice. Clearly, the MFP in the quasi-2D lattice is
roughly 50% longer than that in the 1D lattice, which basically
explains the change of the heat diffusion and conduction.

For momentum-conserving systems, heat transports com-
monly much more efficiently in low-dimensional systems
than in high-dimensional ones, because in such systems, the
long-wavelength phonons contribute the most but transverse
connections induce irreversible phonon scattering [46], which
badly breaks those phonons. That is why the heat conductivity
in a 1D momentum-conserving nonlinear lattice generally
follows a power-law divergence with the system length, while
in 2D cases the divergence is commonly logarithmic [47],
which is much slower. Our study reveals that to form a
high-dimensional lattice by properly coupling independent
low-dimensional lattices, the overall heat transports can be
greatly enhanced. The key is to produce extra conserved quan-
tity with ballistic diffusion. This provides a new idea to control
heat transports in microscopic materials.

In the theoretical aspect, the robustness of the universal
scalings urges us to conjecture a number-of-conserved-
quantity-independent universal scaling for the heat transports.
We have tried it in the framework of NFHT. Although
the original NFHT studies 1D lattices with three conserved

quantities: energy, momentum, and stretch, it is applicable
to systems with other numbers of conserved quantities, e.g.,
the lattice with exchange noise which conserves displacement
and energy [48]. In a recently proposed model in which the
time-reversal symmetry is broken by a magnetic field [49],
NFHT does not apply because the Euler equations for the
conserved quantities are not closed due to the expression of
the new conserved quantity, the pseudomomentum. Unlike
that model, the time-reversal symmetry holds in this quasi-2D
model. However, unfortunately, since the angular momentum
current depends on not only the relative but also the absolute
displacements of the particles, it cannot be expressed by other
conversed quantities. The Euler equations cannot be closed ei-
ther. This mounts an interesting challenge to the application of
NFHT and thus provides an interesting open problem awaiting
future studies.
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