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Transition-state theory reexamined
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Two quantum systems, each described as a random-matrix ensemble, are coupled to each other via a number
of transition states. Each system is strongly coupled to a large number of channels. The average transmission
probability is the product of three factors describing, respectively, formation of the first system from the entrance
channel, decay of the second system through the exit channel, and transport through the transition states. Each
of the transition states contributes a Breit-Wigner resonance. In general, the resonances overlap.
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I. INTRODUCTION

Starting with the seminal work of Bohr and Wheeler [1],
transition-state theory has played an important role in applica-
tions of many-body quantum theory to physics and chemistry
(see, for instance, Refs. [2,3]). The theory aims at calculat-
ing the probability of passage through or over a barrier that
separates two parts of a physical many-body system, and
of the associated reaction rates. Following a suggestion in
Refs. [4,5], an approach from first principles to transition-state
theory has been developed in Ref. [6]. The approach describes
the two parts of the system in terms of two independent
random-matrix ensembles. Each of these is coupled to a num-
ber of channels that feed or deplete the system. In Ref. [6]
the model was worked out explicitly for quantum tunneling
through a barrier and for passage through a single transition
state above the barrier (which turns into a transition-state
resonance). The model has been generalized in Ref. [7] to the
situation where the two parts of the system are coupled by
a number of nonoverlapping transition-state resonances and
where both parts are strongly coupled to a large number of
channels. The present paper describes a further generalization
of that model by allowing the transition-state resonances to
overlap. Such generalizations may apply, for instance, to the
transmission of electrons through quantum dots [8].

II. MODEL

We consider two time-reversal invariant quantum systems,
each coupled to a set of scattering states. The two systems are
coupled to each other via a set of k transition states. In matrix
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form, the Hamiltonian is

H =

⎛
⎜⎝H1 V1 0

V T
1 Htr V T

2

0 V2 H2

⎞
⎟⎠. (1)

Here H1 (H2) is the real and symmetric Hamiltonian matrix
governing system 1 (system 2, respectively). It acts in Hilbert
space 1 (in Hilbert space 2, respectively). Both Hilbert spaces
have dimension N . The real and symmetric Hamiltonian ma-
trix Htr acts in the transition space which has dimension k. The
coupling matrices V1 and V2 are real and have N rows and k
columns each. The upper index T denotes the transpose.

We assume that the matrices H1 and H2 are statistically
independent members of the Gaussian orthogonal ensemble
(GOE) of random matrices. Their elements are zero-centered
real Gaussian random variables with second moments:

〈(H1)μ1μ
′
1
(H1)μ2μ

′
2
〉 = λ2

N
(δμ1μ2δμ′

1μ
′
2
+ δμ1μ

′
2
δμ′

1μ2 ),

〈(H2)ν1ν
′
1
(H2)ν2ν

′
2
〉 = λ2

N
(δν1ν2δν ′

1ν
′
2
+ δν1ν

′
2
δν ′

1ν2 ). (2)

The angular brackets denote the ensemble average. The pa-
rameter λ defines the ranges of the two spectra. All indices
labeled μ and μ′ run from 1 to N ; those labeled ν and ν ′ run
from N + k + 1 to 2N + k. Elements of the matrix Htr carry
indices m, m′, n, and n′ that range from N + 1 to N + k. We
eventually consider the limit N → ∞, keeping k fixed. We
assume that the k eigenvalues Em of Htr are all located near
the centers of the spectra of H1 and H2.

We show in the Appendix that we may always write V1 and
V2 in the following forms:

(V1)μm =
∑

m′
(O1)μm′V1,m′ (Otr,1)mm′ ,

(V2)νm =
∑

m′
(O2)νm′V2,m′ (Otr,2)mm′ . (3)

Here O1 and O2 are orthogonal matrices of dimension N ,
and Otr,1 and Otr,2 are orthogonal matrices of dimension k.
Equations (3) show that the rows of the matrices V1 and V2
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are linear superpositions of the k vectors Z1,m′ and Z2,m′ in
transition space, with components

(Z1,m′ )m = V1,m′ (Otr,1)mm′ ,

(Z2,m′ )m = V2,m′ (Otr,2)mm′ , (4)

and with lengths |V1m′ | and |V2m′ |, respectively. The arguments
in Ref. [6] show that for all m′, |V1,m′ | and |V2,m′ | must be
small compared to λ.

Each of the two GOE Hamiltonians is coupled to a set of
open channels labeled, respectively, a, a′, a′′, etc., for H1 and
b, b′, b′′, etc., for H2. The real coupling matrix elements are
labeled W1,aμ and W2,bν , respectively. These obey∑

μ

W1,aμW1,a′μ = δaa′v2
1,a,

∑
ν

W2,bνW2,b′ν = δbb′v2
2,b. (5)

The relations (5) define the coupling strengths v2
1,a and v2

2,b.
The Kronecker deltas rule out direct (i.e., nonresonant) scat-
tering processes a → a′ and b → b′ [9]. We define the N × N
width matrices �1 and �2 as

(�1)μμ′ = 2π
∑

a

W1,aμW1,aμ′ ,

(�2)νν ′ = 2π
∑

b

W2,bνW2,bν ′ , (6)

and, in analogy to Eq. (1), the total width matrix � as

� =
⎛
⎝�1 0 0

0 0 0
0 0 �2

⎞
⎠. (7)

With E the total energy of the system, the inverse of the
propagator matrix of the system is

D(E ) = E − H + (i/2)�. (8)

Here and in what follows, E stands for the product of the vari-
able E and the unit matrix in the space under consideration.

There are two types of scattering processes: (i) backscat-
tering from channel a to channel a′ (or from channel b to
channel b′) on the same side of the transition region, and (ii)
transmission from channel a through the transition region to
channel b or vice versa. The elements of the scattering matrix
S(E ) for backscattering are given by

Saa′ (E ) = δaa′ − 2iπ
∑
μμ′

W1,aμ(D−1(E ))μμ′W1,a′μ′ ,

Sbb′ (E ) = δbb′ − 2iπ
∑
νν ′

W2,bν (D−1(E ))νν ′W2,b′ν ′ , (9)

those for transmission through the transition region are given
by

Sab(E ) = −2iπ
∑
μν

W1,aμ(D−1(E ))μνW2,bν,

Sba(E ) = −2iπ
∑
νμ

W2,bν (D−1(E ))νμW1,aμ. (10)

It is easy to check that the S matrix is unitary and symmetric.

III. MANY STRONGLY COUPLED CHANNELS

We calculate 〈Sab(E )〉 and 〈|Sab(E )|2〉 by averaging over
both H1 and H2. We expand (D−1(E ))μν in powers of V1

and V2. We resum the resulting series. To write the result in
compact form, we define the Green functions

G1(E ) = [E − H1 + (i/2)�1]−1,

G2(E ) = [E − H2 + (i/2)�2]−1,

Gtr (E ) = [
E − Htr − V T

1 G1(E )V1

−V T
2 G2(E )V2

]−1
. (11)

With these definitions, the first of Eqs. (10) becomes

Sab(E )

= −2iπ
∑
μν

W1,aμ

[
G1(E )V1Gtr (E )V T

2 G2(E )
]
μν

W2,bν .

(12)

Equations (11) show that G1(E ), G2(E ), and Gtr (E ) are statis-
tically correlated. Therefore, it is not possible, in general, to
calculate 〈Sab(E )〉 and 〈|Sab(E )|2〉 analytically. Complete an-
alytical expressions can be obtained, however, if the numbers
of channels strongly coupled to H1 and to H2 are both large
compared to unity. That is the case we consider. To quan-
tify that condition we consider backscattering for a closed
transition space defined by putting V1 = 0 = V2 in Eq. (1).
Equations (9) then define two backscattering matrices S1(E )
and S2(E ), given by

(S1(E ))aa′ = δaa′ − 2iπ
∑
μμ′

W1,aμG1(E )μμ′W1,a′μ′,

(S2(E ))bb′ = δbb′ − 2iπ
∑
νν ′

W2,bνG2(E )νν ′W2,b′ν ′ . (13)

These depend, respectively, only on H1 (only on H2). The
ensemble averages of (S1(E ))aa′ and (S2(E ))bb′ are diagonal.
That follows [9] from Eqs. (5). The average values define the
transmission coefficients

T1,a = 1 − |〈(S1)aa〉|2 , T2,b = 1 − |〈(S2)bb〉|2 . (14)

We assume
∑

a T1,a � 1 and
∑

b T2,b � 1. The strong in-
equalities imply that terms of order 1/

∑
a T1,a and 1/

∑
b T2,b

are negligible compared to terms of order unity. We calcu-
late the leading-order terms in an asymptotic expansion of
〈Sab(E )〉 and of 〈|Sab(E )|2〉 in inverse powers of

∑
a T1,a and∑

a T2,b.
For

∑
a T1,a � 1 and

∑
b T2,b � 1, the arguments in

Ref. [6] show that in the expression for Gtr (E ) in Eq. (11) we
may replace G1(E ) and G2(E ) by their average values. With E
close to the centers of the spectra of H1 and H2, these averages
are given by

〈G1(E )〉μμ′ = −(i/λ)δμμ′, 〈G2(E )〉νν ′ = −(i/λ)δνν ′ . (15)

Insertion into the last Eq. (11) and use of the definitions (4)
gives

Gtr (E ) = (
E − Htr + iV T

1 V1/λ + iV T
2 V2/λ

)−1

=
(

E − Htr + i
2∑

j=1

∑
m

ZT
j,mZj,m/λ

)−1

. (16)
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We note that Eq. (16) does not contain any random elements.
Substituting Gtr (E ) given by Eq. (16) into Eq. (12) yields an
expression for Sab(E ) that depends upon H1 (H2) only via the
factor G1(E ) [the factor G2(E ), respectively]. That allows us
to calculate 〈Sab(E )〉 and 〈|Sab(E )|2〉 analytically.

IV. AVERAGE TRANSMISSION AMPLITUDE

We calculate 〈Sab(E )〉 by averaging separately the factors
that depend upon H1 and on H2. For the first of these we use
Eqs. (3) and the definition of the vectors Z1,m′ in Eqs. (4) to
write ∑

μ

W1,aμ(G1(E )V1)μm

=
∑
μμ′m′

W1,aμ(G1(E ))μμ′ (O1)μ′m′ (Z1,m′ )m. (17)

We define

H̃1 = OT
1 H1O1, W̃1,aμ =

∑
μ′

W1,aμ′ (O1)μ′μ,

G̃(E ) = OT
1 G1(E )O1. (18)

Then expression (17) takes the form∑
μm′

W̃1,aμ(G̃1(E ))μm′ (Z1,m′ )m. (19)

We observe that, with H1, the matrix H̃1 is also a member
of the GOE and that the coefficients W̃aμ also obey the first
of Eqs. (5). We use the first of Eqs. (15) for G̃1(E ). For
expression (19) that gives

− i

λ

∑
m′

W̃1,am′ (Z1,m′ )m. (20)

The sum over m′ has k terms. The first of Eqs. (5) shows that,
for N → ∞, W̃aμ is inversely proportional to 1/

√
N . It follows

that, for fixed k and N → ∞, expression (20) vanishes. Thus,

〈Sab(E )〉 = 0. (21)

The same conclusion is reached when we consider, instead of
expression (17), the term

∑
ν[V T

2 G2(E )]mνW2,bν in Eq. (12).

V. AVERAGE TRANSMISSION PROBABILITY

With 〈Sab(E )〉 = 0, the average probability for transmis-
sion from channel a to channel b is given by

Pab(E ) = 〈|Sab(E )|2〉. (22)

The average is over both H1 and H2. We use Eq. (16) in
Eq. (12). We use the transformation leading to Eq. (19) and the
corresponding transformation for the term containing G2(E ).
We calculate

X1a,m′m′′ = 2π

〈 ∑
μ

W̃1,aμG̃1(E )μm′
∑
μ′

W̃1,aμ′G̃∗
1(E )μ′m′′

〉
,

X2b,m′m′′ = 2π

〈 ∑
ν

G̃2(E )m′νW̃2,bν

∑
ν ′

G̃∗
2(E )m′′ν ′W̃2,bν ′

〉
.

(23)

The first (second) set of angular brackets denotes the average
over H1 (over H2, respectively). A slight generalization of the
argument used in the Appendix of Ref. [6] shows that in the
limit of many strongly coupled channels we have

X1a,m′m′′ = δm′m′′
1

λ

T1,a∑
a′ T1,a′

,

X2b,m′m′′ = δm′m′′
1

λ

T2,b∑
b′ T2,b′

. (24)

The Kronecker deltas are due to the orthogonal invariance
of the two ensembles. Using Eqs. (24) in the expression for
|〈Sab〉|2, we obtain for the average transmission probability Pab

defined in Eq. (22) the expression

Pab(E ) = T1,a∑
a′ T1,a′

Y
T2,b∑
b′ T2,b′

, (25)

where

Y =
∑
mn

∣∣∣∣∣
∑
m′n′

(z1,m)m′ (Gtr (E ))m′n′ (z2,n)n′

∣∣∣∣∣
2

, (26)

where (Gtr (E )) is given by Eq. (16) and where

z1,m = Z1,m/
√

λ , z2,m = Z2,m/
√

λ . (27)

Equation (25) gives the average transmission probability as
the product of three factors. The first (last) factor is the
probability to enter (leave) space 1 (space 2) via channel a
(via channel b, respectively). The fact that Pab(E ) factorizes
and the forms of the first and last factors are all due to the
statistical properties of H1 and H2 and to the assumptions∑

a T1,a � 1 and
∑

b T2,b � 1. That is seen by comparing
Eq. (25) with the result of the theory of compound-nucleus
scattering [9]. There one uses a scattering matrix of the form
of (S1(E ))aa′ as in Eqs. (13), with H1 being a member of the
GOE. For a 
= a′, for N → ∞, and for

∑
a′′ T1,a′′ � 1, the

resulting expression for 〈|(S1(E ))aa′ |2〉 factorizes and has the
form [10]

〈|(S1(E ))aa′ |2〉 = T1,a
T1,a′∑
a′′ T1,a′′

, a 
= a′. (28)

That form is known as “independence of formation and decay
of the compound nucleus,” with T1,a interpreted as the proba-
bility of compound-nucleus formation, and the second factor
interpreted as the relative probability of compound-nucleus
decay into channel a′. Equation (25) differs in form from
Eq. (28) in that it contains two factors, each denoting a relative
probability. That is a consequence of the symmetry of Sab(E )
in Eqs. (10) under the operation a ↔ b.

The factor Y in Eq. (26) describes transport through the
transition space. It does not depend on the couplings of sys-
tem 1 and system 2 to the channels. We show presently that
this apparent independence is the result of the assumptions∑

a T1,a � 1 and
∑

b T2,b � 1. The factor Y is the sum of
squares of amplitudes, each of which bears a close formal
analogy to the inelastic parts of the S matrices in Eqs. (13).
Indeed, the transition space is entered from space 1 through
“channel” m and left for space 2 through “channel” n via
the vectors z1,m and z2,n, respectively. The elements (z1,m)m′

and (z2,n)m′ are analogs of the amplitudes
√

2πW1,aμ and
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√
2πW2,bν in Sec. II. All have dimension (energy)1/2. Propa-

gation within the transition space is governed by the effective
Hamiltonian

Heff = Htr − i
2∑

j=1

∑
m

zT
j,mz j,m, (29)

which differs from Htr because it accounts for the coupling
to spaces 1 and 2. The coupling term has the same form
and plays the same role as the width matrices in Eqs. (6)
and (8). It differs from the width term in Eq. (8) by a factor
of 2. While the width matrix in Eq. (8) is due to the free
propagator in channel space, the coupling term in Eq. (29)
is a remnant of the propagators G1(E ) and G2(E ) in spaces 1
and 2, respectively. Propagation in these spaces is subject to
the coupling to the channels. In the limits

∑
a T1,a � 1 and∑

b T2,b � 1, G1(E ) and G2(E ) take the forms (15) wherein
all explicit reference to the channels disappears. Nevertheless,
the coupling to the channels leaves us with the abovemen-
tioned factor of 2. Equation (26) shows that the factor Y is
determined entirely by the dynamics in transition space. That
is a consequence of the orthogonal invariance of H1 and H2.
Using the definitions (27), (4), and (3) and the orthogonality
of the matrices O1 and O2, we can rewrite Y identically as

Y = (1/λ2)
∑
μν

∣∣∣∣∣
∑
m′n′

(V1)μm′ (Gtr )m′n′ (V2)νn′

∣∣∣∣∣
2

. (30)

Here, Gtr (E ) is given by the first of Eqs. (16). Equations (30)
and (16) relate Y to the matrices V1 and V2 introduced origi-
nally in our model. They generalize Eq. (32) and the second of
Eqs. (31) of Ref. [6] to the case of several transition states and
offer an intuitive understanding of the transmission process.

The Hamiltonian Heff is complex symmetric and can be
diagonalized by a complex orthogonal matrix O,

(Heff )mn =
k∑

l=1

OmlElOnl . (31)

The k complex eigenvalues El , l = 1, . . . , k, obey Im(El ) < 0
for all l . For j = 1 and 2, we define amplitudes

ζ j,ml =
∑

m′
(z j,m)m′Om′l (32)

and obtain

Y =
∑
mn

∣∣∣∣∣
∑

l

ζ1,ml
1

E − El
ζ2,nl

∣∣∣∣∣
2

. (33)

Insertion of that into Eq. (25) gives our final result,

Pab(E ) = T1,a∑
a′ T1,a′

∑
mn

∣∣∣∣∣
∑

l

ζ1,ml
1

E − El
ζ2,nl

∣∣∣∣∣
2

T2,b∑
b′ T2,b′

.

(34)

The total transmission probability is given by

∑
b

Pab(E ) = T1,a∑
a′ T1,a′

∑
mn

∣∣∣∣∣
∑

l

ζ1,ml
1

E − El
ζ2,nl

∣∣∣∣∣
2

. (35)

In Eqs. (34) and (35), each transition state contributes to
transmission through the transition space of a Breit-Wigner
resonance with complex resonance energy El = εl − iγl . The
resonance energies are ordered by putting ε1 < ε2 < · · · < εk .
Equations (15) may be used in Gtr only if all εl are close to
the centers E = 0 of the spectra of H1 and H2. An equivalent
assumption was formulated in Sec. II.

To interpret Eqs. (34) and (35), we consider two extreme
cases. (i) The k resonances are isolated so that εl − εl−1 �
γl , γl−1 for all l = 2, . . . , k. Then Y reduces to

Y =
∑
mnl

∣∣∣∣∣ζ1,ml
1

E − El
ζ2,nl

∣∣∣∣∣
2

. (36)

Transmission is described by a sum of Lorentzians. That is
somewhat similar to the case considered in Ref. [7] where
simplifying statistical assumptions on the matrices V1 and V2

are used. These prevent the resonances from overlapping and
cause all resonances to have the same partial and total widths.
(ii) All resonances overlap so that γl , γl−1 � εl − εl−1 for all
l . Then

Y =
∑
mn

∑
ll ′

ζ1,ml
1

E − El
ζ2,nlζ

∗
1,ml ′

1

E − E∗
l ′
ζ ∗

2,nl ′ , (37)

with nonnegligible interference terms between pairs l 
= l ′ of
resonances. The values of Y for cases (i) and (ii) may differ
substantially. The actual physical situation may lie anywhere
between cases (i) and (ii). It seems that only case (i) has so
far been considered in the literature. The presence or absence
of interference terms could be tested experimentally using a
beam with variable mean energy E and band width δE < εl −
εl−1.
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APPENDIX

We derive the first of Eqs. (3), and the second follows
analogously. The matrices V1V T

1 and V T
1 V1 have, respectively,

dimensions N and k. Both are real and symmetric. Thus,
V1V T

1 and V T
1 V1 are diagonalized by orthogonal matrices O1

of dimension N and and Otr,1 of dimension k, respectively, so
that

(
V1V

T
1

)
μμ′ =

k∑
s=1

(O1)μsV2
s (O1)μ′s,

(
V T

1 V1
)

mm′ =
k∑

t=1

(Otr,1)mtW2
t (Otr,1)m′t . (A1)

Both matrices V1V T
1 and V T

1 V1 are positive semidefinite.
Therefore, all eigenvalues are positive or zero. In Eqs. (A1),
that fact is taken into account by writing the eigenvalues as
squares of real numbers. The rank of V1 is k. Therefore, at
most k eigenvalues of V1V T

1 differ from zero. That fact is
indicated in the summation over s in the first of Eqs. (A1).
In the identity V1(V T

1 V1) = (V1V T
1 )V1 we replace the contents

of the round brackets by the right-hand sides of Eqs. (A1).
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After some simple matrix algebra, the identity takes the form

[
OT

1 V1Otr,1
]
μm

W2
m = V2

μ

[
OT

1 V1Otr,1
]
μm

. (A2)

Equation (A2) implies W2
m = V2

m for all m = 1, . . . , k and
[OT

1 V1Otr,1]μm ∝ δμm. Insertion of that relation into the first
of Eqs. (A1) shows that the proportionality constant is Vm, so
that [OT

1 V1Otr,1]μm = Vmδμm. That yields the first of Eqs. (3).
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