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Unlocking the potential of information flow: Maximizing free-energy transduction
in a model of an autonomous rotary molecular motor
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Molecular motors fulfill critical functions within all living beings. Understanding their underlying working
principles is therefore of great interest. Here we develop a simple model inspired by the two-component
biomolecular motor Fo-F1 ATP synthase. We analyze its energetics and characterize information flows between
the machine’s components. At maximum output power we find that information transduction plays a minor
role for free-energy transduction. However, when the two components are coupled to different environments
(e.g., when in contact with heat baths at different temperatures), we show that information flow becomes a
resource worth exploiting to maximize free-energy transduction. Our findings suggest that real-world powerful
and efficient information engines could be found in machines whose components are subjected to fluctuations
of different strength, since in this situation the benefit gained from using information for work extraction can
outweigh the costs of information generation.
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I. INTRODUCTION

In the last 200 years, thermodynamics has traversed a grand
journey, from its inception with the desire to describe the
workings and performance limits of steam engines, to recent
advances in stochastic thermodynamics [1–4]. This theory en-
ables understanding of the energetics [5] of nanoscale engines
such as molecular motors [6,7]. Applying the theory to models
of real-world molecular machines gives insight into their inner
workings and can lead to useful design principles that may be
applied in the development of artificial engines.

An important subclass of molecular machines consists of
two strongly coupled components, such as Fo-F1 ATP syn-
thase [8], which turns one form of chemical energy into
another by converting a proton gradient into the production
of ATP. Fo-F1 ATP synthase has been analyzed extensively
[9–11] and was found to rotate in a stepwise manner [12]
with more intricate intermediate dynamics. Here we develop
a simplified model of a rotary motor inspired by these stylized
facts and analyze its energy transduction.

While the free-energy transduction in such two-component
motors is mechanical in the sense that different components
move relative to each other, the exact mechanism leading to
optimal performance remains opaque. Specifically, there are
two distinct pathways available for free-energy transduction
[13]: (i) an upstream system generates an energy flow that
directly drives the downstream system; and (ii) an upstream
system generates an information flow [14] that is exploited
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to rectify thermal fluctuations of the downstream system into
output power [15].

The role of information flow in bipartite systems [16–18]
has recently been reviewed in Ref. [13]. Notably, in coupled
bipartite work transducers, information flow and energy flow
are combined to form a rate of transduced free energy [19]:
Their sum [20] equals the transduced capacity [21], a kind of
bottleneck that simultaneously bounds input and output power
and allows definition of subsystem efficiencies [22].

The cellular environment of molecular machines can also
feature strong nonequilibrium fluctuations [23,24] generated,
e.g., by active media [25–28]. The thermodynamics [29–36]
of such active media and ratchet effects [37–42] within
them have recently gained attention. These active fluctuations
have the potential to speed up molecular transport motors
[43] and enzymatic catalysis [44]. It has also recently been
demonstrated that active noise increases the output power of
information engines [45–47] and enables extraction of more
work than is needed to perform feedback control on them [48],
leading to useful work-extraction machines.

The dynamics of coupled work transducers [21,49–52]
have been described with models having continuous state
spaces. Reference [53] analyzes energy and information flows
in a synthetic molecular motor, and Refs. [54,55] compare the
relative merits of chemical-driving and information-ratchet
mechanisms.

In this paper we investigate the interplay between energy
and information flows, elucidating the circumstances under
which either of them maximizes free-energy transduction.
To this end we consider a minimal two-component work
transducer with a discrete state space, simplifying an earlier
model with continuous degrees of freedom [21,52], and op-
timize its energy landscape. Our discrete model allows for
exact analytical expressions instead of extensive numerical
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FIG. 1. State graph of the system. The Y subsystem (blue) and X
subsystem (red) each have three states. Thin solid arrows represent
possible transitions in each subsystem. Thick cyclic arrows represent
the direction of each subsystem’s driving force. Black lines indicate
the internal energy in each state of the joint system.

calculations, which enables us to more easily interpret energy
and information flows in the work transducer.

In this paper we (i) introduce a discrete model inspired by
the rotary molecular motor Fo-F1 ATP synthase that sustains
energy and information flows between the motor’s compo-
nents; (ii) optimize the model’s parameters to reach optimal
output power; and (iii) analyze the motor when the two com-
ponents are at different temperatures, mimicking some aspects
of nonequilibrium active noise that only acts on one motor
component and thereby illustrating that information flow is a
valuable resource when additional fluctuations are present.

II. DISCRETE WORK TRANSDUCER MODEL

Here we introduce the model and describe its dynamics and
thermodynamics.

A. Model dynamics

Our model is inspired by Fo-F1 ATP synthase, which con-
sists of two rotating subsystems: Y represents the Fo subunit,
while X is the F1 subunit. Real molecular motors operate in
continuous state spaces with energetic minima corresponding
to mesostates. Here, we use a discrete state space, capturing
the most relevant dynamics. Each subsystem has three states
(0,1,2), and a transition between two states corresponds to a
rotation of 120◦. Figure 1 shows a graph of the system states.
The two coupled subsystems are each in contact with a heat
bath at temperature T and are driven in opposite directions
by opposing chemical-potential gradients: a constant positive
gradient �μY > 0 drives Y clockwise, while X is driven coun-
terclockwise by a constant negative gradient �μX < 0.

The internal energy of each of the nine states of the joint
system is encoded in a 3 × 3 matrix εxy, encompassing poten-
tial energies specific to each subsystem, as well as coupling
energy. We assume that the system is Markovian, and bipartite
such that only one subsystem changes its state at a time,
constraining the rates Rxx′

yy′ for the transition from (x′, y′) to

(x, y) to

Rxx′
yy′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rxx′
y if x �= x′, y = y′

Rx
yy′ if x = x′, y �= y′

0 if x �= x′, y �= y′

− ∑
x �=x′

Rxx′
y − ∑

y �=y′
Rx

yy′ if x = x′, y = y′

, (1)

where the last line encodes conservation of probability. As-
suming bipartite dynamics considerably simplifies the model
and enables us to attribute specific energetic and entropic
flows to each subsystem [13,14]. Similar but much more in-
volved calculations can be carried out for systems lacking the
bipartite structure [56].

The system is autonomous: the transition rates do not vary
in time. Hence we only consider the steady-state distribution
of system states, where the joint system’s dynamics are de-
scribed by the stationary master equation∑

x′,y′
Jyy′

xx′ = 0, (2)

for probability current Jyy′
xx′ := Rxx′

yy′ px′y′ − Rx′x
y′y pxy from state

(x′, y′) to state (x, y), and probability pxy to find the joint
system in state (x, y). Along a given transition, the forward
and reverse rates are related by the local detailed-balance
condition [3,57–59],

Rxx′
yy′

Rx′x
y′y

= exp

(
− qyy′

xx′

kBT

)
(3a)

= exp

(
εx′y′ − εxy − �μxx′

yy′

kBT

)
, (3b)

where qyy′
xx′ is the heat flowing into the system during transi-

tion (x′, y′) → (x, y), �μxx′
yy′ is the free-energy change in the

chemical reservoir associated with the transition, and kB is
Boltzmann’s constant.

Rescaling energies by kBT , substituting the bipartite as-
sumption (1) and the local detailed-balance condition (3b), we
explicitly write the transition rates as

Rxx′
y = �X exp

(
εx′y − εxy ± �μX

2

)
(4a)

Rx
yy′ = �Y exp

(
εxy′ − εxy ± �μY

2

)
, (4b)

where �μX and �μY are the chemical driving forces on the
system, i.e., the negative free-energy changes in the respective
reservoirs when X or Y advance their state. The plus sign
holds for a forward transition, i.e., when x = (x′ + 1) mod 3,
while the minus sign holds for a backward transition, i.e., x =
(x′ − 1) mod 3, and similarly for Y . The kinetic prefactors
�X and �Y represent the bare transition rates, in the absence
of energy differences between states. For simplicity, we use
equal bare rates and rescale time such that �X = �Y = 1. We
also assume that energy changes affect the transition rates in a
symmetric way. The effect of alternative choices is discussed
in Appendix B.
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B. Thermodynamics

The bipartite assumption (1) permits identification of the
individual probability currents Jxx′

y and Jx
yy′ associated with the

net transition rates between adjacent states in each subsystem,

Jxx′
y := Rxx′

y px′y − Rx′x
y pxy (5a)

Jx
yy′ := Rx

yy′ pxy′ − Rx
y′y pxy. (5b)

These definitions in turn decompose the various flows of en-
ergy and information into contributions due to the individual
dynamics of each subsystem [13].

Each state transition is accompanied by an exchange of
chemical energy between the joint system and one of the two
chemical reservoirs. Thus, we identify the average rates of
work done on the individual subsystems,

Ẇ X =
∑

y

(
J10

y + J21
y + J02

y

)
�μX (6a)

Ẇ Y =
∑

x

(
Jx

10 + Jx
21 + Jx

02

)
�μY . (6b)

By convention, positive work indicates that work is done on
the system. Thus to transduce energy from Y to X , we require
Ẇ X < 0 and Ẇ Y > 0, meaning that Y moves in the direction
of its chemical-potential gradient, whereas X is driven against
its own gradient. This allows us to define an efficiency as the
ratio

η := −Ẇ X

Ẇ Y
(7)

of output power to input power.
Beyond energy exchanged with the chemical reservoirs,

there is also energy exchanged with the heat reservoir. The
average rates of heat flowing into each subsystem are [2,3,13]

Q̇X = −kBT
∑

x�x′,y

Jxx′
y ln

Rxx′
y

Rx′x
y

(8a)

Q̇Y = −kBT
∑

x,y�y′
Jx

y′y ln
Rx

yy′

Rx
y′y

. (8b)

When one subsystem changes its state, it also changes the po-
tential energy εxy and hence does work on the other subsystem.
We therefore identify the average rates of transduced work
[13,19] as

Ẇ X→Y :=
∑

x�x′,y

Jxx′
y (εxy − εx′y) (9a)

Ẇ Y →X :=
∑

x,y�y′
Jx

yy′ (εxy − εxy′ ). (9b)

The system is at steady state and therefore the average internal
energy is constant,

0 = dt E = Ẇ X→Y + Ẇ Y →X , (10)

where the second equality requires the bipartite assump-
tion (1). Hence Ẇ X→Y = −Ẇ Y →X . Together with the local
detailed-balance condition (3b), the definitions in Eqs. (6a),
(6b), (8a), (8b), and (9a), (9b) fulfill subsystem-specific

first laws:

−Ẇ Y →X = Ẇ X + Q̇X (11a)

Ẇ Y →X = Ẇ Y + Q̇Y . (11b)

Similar to the splitting of the energetic quantities above, the
average entropy production rate can be split into nonnegative
subsystem-specific components [14,17],

�̇X :=
∑

x�x′,y

Jxx′
y ln

Rxx′
y px′y

Rx′x
y pxy

� 0 (12a)

�̇Y :=
∑

x,y�y′
Jx

yy′ ln
Rx

yy′ pxy′

Rx
y′y pxy

� 0, (12b)

expressing subsystem-specific second laws of thermody-
namics. At steady state, the subsystem-specific entropy
productions can be rewritten as

0 � �̇X = − Q̇X

kBT
+ İY (13a)

0 � �̇Y = − Q̇Y

kBT
− İY , (13b)

in terms of the heat flows (8) and an information flow [13]

İY :=
∑

x,y�y′
Jx

yy′ ln
px|y
px|y′

, (14)

for conditional probability px|y. The information flow quanti-
fies how the dynamics of a given subsystem affect the mutual
information between the two subsystems. If İY > 0, the Y
subsystem increases mutual information while X consumes
it, and İY < 0 indicates that Y decreases mutual information
while X increases it. Combining the first laws in Eqs. (11) and
the second laws in Eqs. (13) reveals that the input and output
powers are each simultaneously bounded by an intermediate
quantity [20] called transduced capacity1 in Ref. [21]:

Ẇ Y � Ẇ Y →X + kBT İY︸ ︷︷ ︸
transduced capacity

� −Ẇ X . (15)

This equation illustrates that there are two pathways for
free-energy transduction: the conventional transduced power
Ẇ Y →X as well as information flow İY . While the former has
a straightforward interpretation in terms of the rate of work
done by the Y subsystem on the X subsystem, the information
flow is more subtle. In the extreme case with Ẇ Y →X = 0 and
İY > 0, no work is transduced and the X subsystem rectifies
fluctuations using information generated by the Y subsystem,
a setup that can reasonably be described as a Maxwell demon
or information engine [13,14,17,53,60–63]. In the following
we investigate which combination of these pathways maxi-
mizes the performance of our work-transducer model.

III. PERFORMANCE OPTIMIZATION

We assume the chemical-potential differences �μX and
�μY driving the system are fixed by external constraints and

1Note that we here use units of energy, i.e., our transduced capacity
is kBT times the definition in Refs. [13,21,22].

034115-3



GRELIER, SIVAK, AND EHRICH PHYSICAL REVIEW E 109, 034115 (2024)

FIG. 2. Optimal energy matrix εxy and path of probability flux
(purple arrows) when E∞ → ∞ and �μY > −�μX > 0. Blue:
states of Y ; red: states of X . Blue and red arrows indicate the direc-
tions of the respective driving forces on Y and X . Since �μX < 0,
the probability flux drives X against its chemical-potential gradient.

vary the parameters of the energy matrix εxy to optimize the
work transducer’s performance.

A. A single cycle maximizes output power

Interestingly, output power −Ẇ X (6a) and efficiency η

(7) can be simultaneously optimized, as we demonstrate in
Appendix A where we use a gradient-descent algorithm to
vary the nine entries εxy of the energy matrix. The resulting
optimal energy matrix is intuitive: it produces a single cy-
cle through state space that tightly couples input and output
power. We therefore parametrize the matrix as

εxy =
⎛
⎝E‡ E∞ 0

0 E‡ E∞
E∞ 0 E‡

⎞
⎠, (16)

where E‡ is a finite energy [which we will exactly calculate
later, see Eq. (21)], and E∞ tends to infinity, forming an insur-
mountable energy barrier that channels the probability flux of
the joint system along a single path through state space. The
direction of this path is set by the magnitudes and directions
of the driving forces �μX and �μY . Figure 2 illustrates the
resulting probability flux.

Due to the tight coupling, in each full rotation 3�μX and
3�μY flow between the machine and the respective chemical
reservoirs. Hence the power ratio η (7) is entirely determined
by the ratio of the chemical driving forces,

η = −�μX

�μY
, (17)

and notably is independent of the remaining free parameter
E‡ in the energy matrix. Thus, to further optimize the motor
at fixed �μX and �μY , we focus on optimizing the output
power by varying the parameter E‡.

B. Output power is maximized at vanishing information flow

Due to conservation of probability and the symmetry
of the energy matrix, the probability fluxes Jxx′

y , Jx
yy′ along

the path in Fig. 2 between adjacent states is uniform, i.e.,
Jx=y+1

y+1,y = Jx+1,x
y=x =: J . Explicitly,

J = Rx=y+1
y+1,y px=y+1,y − Rx=y+1

y,y+1 px=y+1,y+1 (18a)

= e(�μY −E‡ )/2 p0 − e−(�μY −E‡ )/2 pE‡ (18b)

= Rx+1,x
y=x px,y=x − Rx,x+1

y=x px+1,y=x (18c)

= e(�μX +E‡ )/2 pE‡ − e−(�μX +E‡ )/2 p0, (18d)

where we have used the rates in Eqs. (4a) and (4b) and iden-
tified the steady-state probabilities pE‡ := px=y,y and p0 :=
px=y+1,y associated with the states of energy E‡ and 0, respec-
tively. Solving Eqs. (18b) and (18d) and pE‡ + p0 = 1/3 for
J , pE‡ , and p0 yields

J = 1

3

sinh 1
2

(
�μX + �μY

)
cosh 1

2 (�μX + E‡) + cosh 1
2 (�μY − E‡)

(19a)

pE‡ = 1

6

e−(�μX +E‡ )/2 + e(�μY −E‡ )/2

cosh 1
2 (�μX + E‡) + cosh 1

2 (�μY − E‡)
(19b)

p0 = 1

6

e(�μX +E‡ )/2 + e−(�μY −E‡ )/2

cosh 1
2 (�μX + E‡) + cosh 1

2 (�μY − E‡)
. (19c)

This simplifies the output power Ẇ X (6a), transduced power
Ẇ Y →X (9b), and information flow İY (14) to

Ẇ X = 3 J �μX (20a)

Ẇ Y →X = 3 J E‡ (20b)

İY = 3 J ln
pE‡

p0
, (20c)

where in the last line we used that the marginal probabilities
are uniform due to symmetry, i.e., py=0 = py=1 = py=2 = 1/3
and hence px=1|y=1/px=1|y=0 = px=1,y=1/px=1,y=0 = pE‡/p0,
and similarly for the other two Y transitions. Figure 3(a)
shows these quantities for �μX = −1 and �μY = 2.

The value of E‡ controls how free energy is transduced in
the machine. At E‡ = 0, no energy is transduced, hence the
joint system acts like a pure information engine. At an inter-
mediate value E‡ > 0, no information is transduced and the
system acts as a conventional energy transducer. At any other
E‡, both energy and information are transduced, rendering the
system a hybrid engine.

Maximizing the flux J (19a) over E‡ yields

E‡
opt = �μY − �μX

2
, (21)

which averages the driving forces to produce equal forward
rates along the single pathway,

Rx=y+1
y+1,y

∣∣
E‡

opt
= Rx+1,x

y=x

∣∣
E‡

opt
= e(�μX +�μY )/2, (22)

and similarly for the reverse rates.
Figure 3(b) shows the maximal output power as a function

of the power ratio, obtained by substituting E‡
opt (21) in the

energy matrix (16) and varying the chemical potential �μX

at fixed �μY . Maximum power is obtained at intermediate
power ratio, and maximum power ratio is only possible at
vanishing power when the engine stalls.

One might have naively expected E‡ = 0 to optimize the
current by eliminating energy barriers; however, E‡

opt smooths
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FIG. 3. Performance optimization of the work transducer.
(a) Output power −Ẇ X (6a) (red solid curve), transduced power
Ẇ Y →X (9b) (green dashed curve), and information flow İY (14) (blue
dotted curve), each as a function of the coupling parameter E ‡ in
the energy matrix (16), for fixed driving strengths �μX = −1 and
�μY = 2. (b) Maximal output power as a function of the power ratio,
by using E ‡ = E ‡

opt (21) and varying driving strength �μX at fixed
�μY = 2. Black cross: �μX = −1 used in (a).

the driving forces and ensures that no single transition is rate
limiting for the machine’s progress through its state space.
The uniform probability flux is also reflected by the fact that
the probability distribution becomes uniform and hence there
is no bunching up of probability before a rate-limiting tran-
sition: E‡ = E‡

opt leads to pE‡ = p0 in Eqs. (19b) and (19c).
Interestingly, because of the uniform probability distribution,
this choice of E‡ also eliminates the information flow, see
Eq. (20c):

İY
∣∣
E‡

opt
= 0. (23)

We therefore conclude that performance is optimized when
the engine behaves in a conventional way by transducing
power and no information between its components, and that
rectifying thermal fluctuations using an information-engine
mechanism cannot provide as much output power. This find-
ing echoes Ref. [47], where it was found that an information
ratchet is less efficient at transporting a particle uphill than
conventional dragging; however, it was also found that when
there are sufficient additional, nonthermal fluctuations, the
information ratchet can be more efficient. In the following
section we seek to approximate this effect by subjecting
the different machine components to different temperatures,
thereby creating an imbalance in thermal fluctuations.

In Appendix B we demonstrate that, with different split-
ting factors for the X and Y dynamics, output power can be
maximized at finite information flow. However, the power-
maximizing information flow is small.

IV. INTRODUCING DIFFERENT TEMPERATURES

ATP synthase is located in a membrane at the interface of
two different media. The Fo subunit is embedded in a lipid
membrane, while the F1 subunit is in aqueous surroundings
[9]. It is therefore conceivable that the properties of the noises
acting on each subsystem differ. Most likely the individual
components are not only subjected to thermal fluctuations but
also to additional nonequilibrium ones [23,24], although a
difference in temperatures (albeit small relative to those found
in classical examples of macroscopic heat engines) on each
side of the membrane is also possible [64–66]. To simplify
the analysis, we here assume that subsystem X is coupled to
a heat bath at temperature T X and subsystem Y is coupled
to a heat bath at temperature T Y , thereby subjecting the joint
system to distinct noises of different strengths.

A. Transmitted and received capacity

When the subsystems are in contact with heat baths at
different temperatures, the second laws (13) read

0 � �̇X = − Q̇X

kBT X
+ İY (24a)

0 � �̇Y = − Q̇Y

kBT Y
− İY . (24b)

Now, using the first laws (11) and replacing the temperature
T in Eq. (15) with the respective temperatures T X and T Y , we
define different transmitted and received capacities:

Ẇ Y � Ẇ Y →X + kBT Y İY︸ ︷︷ ︸
transmitted capacity

(25a)

−Ẇ X � Ẇ Y →X + kBT X İY︸ ︷︷ ︸
received capacity

. (25b)

Here, in contrast to Eq. (15), input and output power are
no longer simultaneously bounded by a single transduced
capacity. The two right-hand sides represent different rates of
transduced free energy [19] that bound the input power Ẇ Y

and output power −Ẇ X .
This illustrates the effect of a temperature difference: If

T X > T Y and İY > 0, the received capacity is larger than the
transmitted capacity and—relative to the equal-temperature
case—more output power can be generated at the same input
power. All else being equal, an increase in the energy flow
produces the same increase in the minimum input power and
in the maximum output power. However, the effect of a change
in information flow is scaled by the temperature. When T X >

T Y , a positive information flow İY can generate more output
power in subsystem X than is required for its generation in Y .
On the other hand, when T X < T Y with İY < 0, more power
is needed to generate information flow in subsystem Y than
can be harnessed in subsystem X . We therefore expect an
optimized machine to utilize an information flow from cold
to hot to maximize free-energy transduction.

Similar arguments have been put forward to obtain a posi-
tive energy balance when operating an information engine: if
the work extraction is carried out at a higher temperature than
the memory erasure, net work can be obtained [47,67,68].
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FIG. 4. Work-transducer performance as a function of coupling
parameter E ‡, for different temperatures T X acting on the X sub-
system, at fixed T Y = 1, �μX = −1, and �μY = 2, as in Fig. 3(a).
(a) Output power −Ẇ X . (b) Transduced power Ẇ Y →X . (c) Informa-
tion flow İY . Darker colors indicate higher temperatures T X . The
plots for T X = 1 from Fig. 3(a) are reproduced here with thicker
curves.

With T X �= 1 and T Y �= 1, Eqs. (18) become2

J = e(�μY −E‡ )/2T Y
p0 − e−(�μY −E‡ )/2T Y

pE‡ (26a)

= e(�μX +E‡ )/2T X
pE‡ − e−(�μX +E‡ )/2T X

p0, (26b)

and solving Eqs. (26a) and (26b) together with p0 + pE‡ =
1/3 yields

J = 1

3

sinh
(

�μY −E‡

2T Y + �μX +E‡

2T X

)
cosh �μX +E‡

2T X + cosh �μY −E‡

2T Y

(27a)

pE‡ = 1

3

exp
(

�μY −E‡

2T Y

)
exp

(
�μX +E‡

2T X

) + exp
(

�μY −E‡

2T Y

) (27b)

p0 = 1

3

exp
(

�μX +E‡

2T X

)
exp

(
�μX +E‡

2T X

) + exp
(

�μY −E‡

2T Y

) . (27c)

Substituting these into Eqs. (20) gives the output power −Ẇ ,
transduced power Ẇ Y →X , and information flow İY .

2For simplicity we assumed that the temperature does not affect the
kinetic prefactor. Following Kramers theory [78], larger temperatures
also increase the bare transition rate, which would scale the resulting
powers and information flows accordingly.

FIG. 5. Performance at maximal output power, as a function of
power ratio, at different temperatures T X . (a) Output power maxi-
mized over coupling parameter E ‡, for different temperatures T X .
(b) Transduced power Ẇ Y →X . (c) Information flow. Here, T Y = 1
and �μY = 2, the same as for the corresponding equal-temperature
plot in Fig. 3(b). A cusp appears in (a) and (b) when T X = 1, because
at equal temperatures output power cannot surpass input power and
hence the optimized engine stalls for −�μX > �μY .

Figure 4(a) depicts the output power as a function of the
coupling parameter E‡, for different temperatures and at fixed
driving strengths �μX and �μY . Having access to different
temperature reservoirs allows for a larger output power when
the coupling parameter is tuned appropriately. Figure 4(b)
plots the transduced power Ẇ Y →X . Generally, maximum out-
put power is achieved when energy flows from hot to cold
(from X to Y when T X > T Y and from Y to X when T X <

T Y ). Transduced power is accompanied by information flow
İY , shown in Fig. 4(c). At maximum output power this infor-
mation flow opposes the transduced power, i.e., information
flows from Y to X when T X > T Y and from X to Y when
T X < T Y .

Numerically maximizing the output power over the cou-
pling parameter E‡ gives the equivalent of Fig. 3(b), i.e.,
the tradeoff between output power −Ẇ X and power ratio
−�μX /�μY , shown in Fig. 5(a). When the engine can ex-
ploit different temperatures, the maximal output power is
greater. Additionally, the output power can exceed the input
power. This is only possible because it is not only chemically
driven but also allowed to exploit a temperature difference that
produces an internal energy flow from hot to cold, as seen in
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Fig. 5(b), and an information flow from cold to hot, shown in
Fig. 5(c).

With the ability to exploit a difference in temperature be-
tween two reservoirs, our engine operates similarly to a heat
engine. Consequently, we can also analyze its thermal effi-
ciency. Appendix C shows that the thermal efficiency remains
lower than Carnot efficiency, illustrating that the machine is
operating within thermodynamic limits.

V. DISCUSSION AND CONCLUSION

In this paper we have analyzed a simplified, discrete-
state-space model inspired by the molecular machine Fo-F1

ATP synthase. To maximize the motor’s output power, the
coupling between the two motor components first needs to
provide barriers to channel probability flux in such a way as
to minimize slippage between the components. Moreover, the
energy landscape should smooth over the forces generated by
the chemical-potential differences that drive the rotation, to
provide a constant net force driving the motor through its state
space.

A machine optimized in this way transduces free energy
by trading energy between its components. However, when
relaxing the assumption of isothermality and allowing the
different components to be in contact with heat baths at differ-
ent temperatures, a second, entropic pathway to free-energy
transduction becomes relevant. This entropic interaction is
characterized by the information flow, which describes how
the dynamics of each subsystem modify the joint system’s
entropy balance. Information flow becomes relevant in non-
isothermal settings because the minimum energetic cost to
generate it and its maximum energetic benefit are respectively
scaled by the input and output temperatures, making it worth-
while to exploit this pathway when those temperatures differ.
By contrast, in isothermal settings it is more economical to
directly transduce energy through the machine and forego any
information transduction.

Strikingly, a temperature difference between the machine’s
components allows for output power larger than input power,
suggesting that the machine exploits the temperature dif-
ference in the manner of a heat engine. This behavior is
accompanied by an information flow. Naively, when the pa-
rameters are optimized to maximize output power, one might
have expected both information flow and transduced power to
always flow from the input to the output machine component.
However, the direction of these flows correlates with the tem-
perature difference: Power is transduced from hot to cold and
information flows from cold to hot.

Our model uses just three states per subsystem; however,
having more subsystem states could produce different opti-
mization results. For instance, if the two motor components
have varying state numbers, their gearing ratio can be adjusted
[69] to match the relative strength of the chemical forces,
while avoiding slippage between them.

Our model is a simplification of previous models of Fo-F1

ATP synthase that have a continuous state space [21,52]. For
these it was shown that the slippage between the components
is important to maximize output power [52], whereas our
model has maximum output power at tight coupling. This is
likely because the discrete model does not capture the effect

of energy barriers between states, which are here accounted
for only implicitly in the transition rates.

It would be interesting to analyze information flows in
real-world molecular machinery, especially in Fo-F1 ATP syn-
thase [70–74]. While subsystem efficiencies can be estimated
from the average behavior of the joint system [22], estimating
information flows necessitates observing the detailed dynam-
ics of both subunits. Synthetic chemical motors [53,75] and
the dimeric stepping motors kinesin and myosin [76] have
recently been analyzed in this way. Our model system sug-
gests that information flow plays a minor role in free-energy
transduction when fluctuations on both subsystems are com-
parable. However, when the fluctuations are different (e.g.,
because of a temperature difference), information flow can
become a valuable resource.
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FIG. 6. Parametric plot of output power −Ẇ X (6a) and power
ratio η (7) for �μX = −1 and �μY = 2. Teal dots show 107 random
energy matrices εxy with coefficients uniformly sampled between 0
and 20. Yellow-to-orange points connected by dashed black lines de-
pict three trajectories of the gradient-descent algorithm started from
random initial conditions with arrows indicating trajectory direction.
The dash-dotted line indicates the power ratio at tight coupling (17).
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FIG. 7. Work-transducer performance with different splitting factors sX and sY , at equal temperatures. Output power −Ẇ X (6a) (red solid
curve), transduced power Ẇ Y →X (9b) (green dashed curve), and information flow İY (14) (blue dotted curve), each as a function of the coupling
parameter E ‡ in the energy matrix (16), for fixed driving strengths �μX = −1 and �μY = 2. The middle plot corresponds to Fig. 3(a).

APPENDIX A: GRADIENT-DESCENT OPTIMIZATION
OF ENERGY LANDSCAPE

We vary the nine coefficients in the energy matrix εxy to
maximize the output power −Ẇ X (6a) and power ratio η (7).
Generating random matrices suggests that output power and
power ratio can be simultaneously maximized (see scatter plot
in Fig. 6).

To find the optimal coefficients, we employ a gradient-
descent algorithm [77]. We start with random coefficients εxy

and vary them according to

εk+1
xy = εk

xy + α1
∂η

∂εxy
− α2

∂Ẇ X

∂εxy
, (A1)

with positive learning rates α1 and α2, and k enumerating
the iteration of the algorithm. The trajectory followed by this
optimization is plotted in Fig. 6 and terminates at a tight-
coupling energy matrix that allows only a single path through
state space [Eq. (16)]. To avoid numerical divergences, we
limited the coefficient range to [0,20]. The fact that no random
parameter set outperformed the gradient-descent algorithm
gives us confidence that we have found the global optimum.
The apparent maximum η = −�μX /�μY corresponds to the

tight-coupling limit (17) in which output power and power
ratio can be maximized simultaneously.

APPENDIX B: BIPARTITE JUMP DYNAMICS
WITH DIFFERENT SPLITTING FACTORS

Using Eqs. (4a) and (4b), we assumed that the energy
difference between adjacent states symmetrically affect the
forward and backward transition rates. However, thermody-
namics only constrains the ratio of transition rates. Here, we
investigate how an asymmetric sensitivity of transition rates
on the energy difference (also called the splitting factor [5])
affects the results. We rewrite Eqs. (4a) and (4b) with arbitrary
splitting factors sX and sY , to obtain

Rx=y+1
y+1,y = e sY (�μY −E‡ ) (B1a)

Rx=y+1
y,y+1 = e −(1−sY )(�μY −E‡ ) (B1b)

Rx+1,x
y=x = e sX (�μX +E‡ ) (B1c)

Rx,x+1
y=x = e −(1−sX )(�μX +E‡ ). (B1d)

Note that the transition-rate ratio still fulfills local detailed
balance (3b). Using px=y+1,y = p0 and px=y,y = pE‡ for all y,
and p0 + pE‡ = 1/3, we solve Eqs. (18a) and (18c) with the
above rates to obtain flux

J = 1

3

e(�μY −E‡ )sY +(�μX +E‡ )sX − e(�μY −E‡ )(sY −1)+(�μX +E‡ )(sX −1)

e(�μY −E‡ )sY + e(�μX +E‡ )sX + e(�μY −E‡ )(sY −1) + e(�μX +E‡ )(sX −1)
, (B2)
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and steady-state probabilities

pE‡ = 1

3

e(�μY −E‡ )sY + e(�μX +E‡ )(sX −1)

e(�μY −E‡ )sY + e(�μX +E‡ )sX + e(�μY −E‡ )(sY −1) + e(�μX +E‡ )(sX −1)
, (B3a)

p0 = 1

3

e(�μY −E‡ )(sY −1) + e(�μX +E‡ )sX

e(�μY −E‡ )sY + e(�μX +E‡ )sX + e(�μY −E‡ )(sY −1) + e(�μX +E‡ )(sX −1)
. (B3b)

Inserting the flux J and the probabilities p0 and pE‡ into
Eqs. (20a), (20b), and (20c) yields output power −Ẇ X , trans-
duced power Ẇ Y →X , and information flow İY . Figure 7 shows
these as a function of the coupling parameter E‡, illustrating
qualitatively similar curves as in Fig. 3(a).

APPENDIX C: CARNOT EFFICIENCY

In order to more deeply investigate the nonisothermal case,
we compare the system’s thermal efficiency (defined as net
output power per input heat flux),

ηthermal = −Ẇ X − Ẇ Y

Q̇X
, (C1a)

with the Carnot efficiency,

ηCarnot = 1 − T Y

T X
, (C1b)

for T X > T Y . Figure 8 illustrates that thermal efficiency re-
mains below Carnot efficiency.

FIG. 8. Comparison of thermal efficiency ηthermal and Carnot
efficiency ηCarnot at maximum output power as a function of the
temperature ratio T Y /T X , at fixed T Y = 1 and �μY = 2.
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