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This article analyzes and compares two general techniques of rare event simulation for generating paths of
Markov processes over fixed time horizons: exponential tilting and stochastic bridge. These two methods allow
us to accurately compute the probability that a Markov process ends within a rare region which is unlikely to
be attained. Exponential tilting is a general technique for obtaining an alternative or tilted sampling probability
measure, under which the Markov process becomes likely to hit the rare region at terminal time. The stochastic
bridge technique involves conditioning paths towards two endpoints: the terminal point and the initial one. The
terminal point is generated from some appropriately chosen probability distribution that covers well the rare
region. We show that both methods belong to the class of importance sampling procedures by providing a
common mathematical framework of these two conceptually different methods of sampling rare trajectories.
We also conduct a numerical comparison of these two methods, revealing distinct areas of application for each
Monte Carlo method, where they exhibit superior efficiency. Detailed simulation algorithms are provided.
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I. INTRODUCTION

Rare trajectories account for realizations of stochastic pro-
cesses that are extremely unlikely to happen, in the sense
that conventional methods to sample stochastic trajectories,
like the Euler-Maruyama methods in the context of stochas-
tic differential equations [1,2] or the Gillespie algorithm for
pure jumping processes [3,4], mostly fail to provide satisfac-
tory statistical characterization within affordable times. Also,
rare paths usually occur in particular shapes and unveil spa-
tiotemporal patterns [5,6]. Even if such paths are uncommon,
they can have a decisive role in nature: catastrophic events
such as extinction of species [7,8], extreme rainfalls [9], or
earthquakes [10] manifest themselves through rare fluctua-
tions. The estimation of improbable events holds significance
across various scientific domains. These include scenarios
such as determining the probability for a medical therapy
efficacy falling below a low threshold [11], the level of a
dam exceeding a certain (very small or very large) threshold
[12], the capital of an insurance company falling below zero
[13], or cosmic radiation corrupting memory cells in silicon
microchips [14]. Therefore, the challenge of generating un-
likely paths by using conventional methods, coupled with their
significance in numerous phenomena, motivates the need for
sophisticated algorithms for sampling rare paths.

The literature contains numerous Monte Carlo algorithms
that thwart the rarity of the event to simulate, thus making it
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possible to control the simulation error. The original reference
in the statistical literature on importance sampling by expo-
nential tilting for first passage times of stochastic processes is
[15]; see also [1], pp. 164–166. Some methods of rare event
simulation rely on the generation of the bridge process, which
conditions paths to the endpoints and associates rare trajec-
tories with the occurrence or rare pairs of endpoints [16–22].
Other algorithms like cloning, also called splitting [23–26], or
like Metropolis schemes [27,28] link rare trajectories to the
occurrence of rare sample averages of integrated quantities.
A survey of simulation of rare events in queueing and reli-
ability models can be found in [29]. Following a theoretical
approach, [30] provides a review of central concepts of rare
event simulation for light- and heavy-tailed systems. A recent
presentation of importance sampling in the context of large
deviations theory is given by [31]. Then [32] discusses varia-
tional formulations of the thermodynamic free energy within
the framework of importance sampling and [33] addresses the
problem of automated search for optimal importance sam-
pling schemes by using recent ideas from deep learning.

The large variety of methods makes it difficult to assess
which is the best strategy to tackle the generation of rare paths
in specific problems. Moreover, it is not always simple to
convey to what extent the available Monte Carlo algorithms
are fundamentally different or simply different expressions of
the same mathematical framework. The present article shows
that two families of methods, those relying on exponential
tilting and on bridge processes, can be understood within
the common framework of importance sampling. This article
focuses on their analytical and numerical comparison. These
two methods are relevant as they encompass many strategies
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for sampling rare paths in nonequilibrium processes within
finite time horizons. The present article does not tackle the
theory of asymptotic optimality of estimation of rare event
probabilities,1 which relies on the theory of large deviations;
see, e.g., [35] for a general reference. Nor does it cover meth-
ods that do not use changes of measure, such as the forward
flux sampling [36,37], the transition path sampling [38–40],
or the saddlepoint technique, which provides the deterministic
most likely path in the limit of small noise [41,42].

More precisely, the scope of this article is the following.
The first and main objective is to show that these two con-
ceptually different techniques can be re-expressed in terms of
the same change-of-measure formula for the expected value.
Thus, the two algorithms differ only in their likelihood ratio,
namely, the Radon-Nikodym derivative, which is the factor
that accounts for the replacement of the original sampling
probability measure by a new one. The second objective of
this work is to compare the numerical performance of these
two techniques in various settings. We provide numerical
evidence that in real situations with finite time horizons, the
relative errors of backtracking and exponential tilting appear
bounded. This provides a surrogate for theoretical results
of asymptotic optimality. For both methods, we numerically
show that there is an optimal parameter minimizing the rel-
ative error. Finally, we find that stochastic bridges provide
superior suitability for tackling challenges associated with
rare transitions between metastable states.

As a byproduct of demonstrating the precise emergence of
these two methods from the technique of change of measure,
we establish that stochastic bridge techniques may introduce
systematic errors in the estimation of averages, which is a
unique theoretical result within the field. Furthermore, we
obtain a fairly complete tutorial on these two techniques of
rare event simulation, since we offer readily applicable algo-
rithms that streamline the implementation of these concepts
into computer programs. For the sake of simplicity, many
measure-theoretic details are given separately in footnotes.

The rest of the article has the following structure. Section II
reviews the general theory of change-of-measure for stochas-
tic processes and in particular for Markov processes with
discrete time and state spaces. In Secs. III and IV we recast
exponential tilting and bridge change-of-measure. Numerical
applications of these two Monte Carlo techniques to a sim-
ple binomial process and to a process with metastable states
are provided in Sec. V. Concluding remarks are presented
in Sec. VI. Supplemental Material (SM) [43], Sec. SM 1,
shows explicitly the Monte Carlo algorithms introduced in this
article.

II. CHANGE OF MEASURE AND LIKELIHOOD
RATIO PROCESS

This section provides a succinct introduction to the theory
of change of measure. We refer readers to [1,34,44,45] for a

1The two usual criteria of asymptotic optimality of Monte Carlo
estimators of rare event probabilities are logarithmic efficiency and
bounded relative error, for which we refer to pp. 158–160 of [1] or
to [34].

more in-depth introduction to the topic. We start with the case
of the single random variable and we then generalize this to
the stochastic process.

A. Random variable

One of the central ideas in rare event simulation is the
change of the sampling measure, which allows transforming
the problem of estimating averages over some probability
measure P to another average estimation over a different mea-
sure P̃. The idea is that suitable transformations of this kind
can ease the estimation of averages. Let us present the basic
result of the theory. Let (�,F , P̃) be a probability space [46].
Assume that the random variable L over this space is nonneg-
ative with P̃ probability 1, i.e., P̃-almost surely (P̃-a.s.), and
satisfies EP̃[L] = 1. Then one shows that

P[A] = EP[IA] = EP̃[IAL] =
∫

A
L dP̃, ∀A ∈ F , (2.1)

defines an unique probability measure P on (�,F ). In
Eq. (2.1) we denote the indicator as

IA(ω) = I{ω ∈ A} =
{

1, if ω ∈ A,

0, otherwise.

Therefore, computing the probability P[A], which is the
expectation of IA under the measure P, is equivalent to com-
puting the expectation, this time under P̃, of IAL. The above
result is a fairly general one, since the only restriction on the
new measure P̃ is absolute continuity with respect to (w.r.t.)
P, denoted P � P̃ on F . This means P̃[A] = 0 ⇒ P[A] = 0,
∀A ∈ F . In other words, any set A allowed by P must be
allowed by P̃ as well. The random variable L, often called
likelihood ratio, is the Radon-Nikodym derivative of P w.r.t.
P̃, denoted dP/dP̃.

Equation (2.1) gives the following change-of-measure re-
sult. Let X be a random variable on (�,F ), then

z = EP[X ] = EP̃[XL] (2.2)

when P � P̃.2

A simple illustration is the following. Let X be Gaussian
with mean 0 and variance equal to 1, under P, let μ ∈ R and
let

L = exp

{
−μ(X − μ) − μ2

2

}
. (2.3)

We have from Eq. (2.2) that

EP[evX ] = EP̃[evX L] = e
1
2 v2

, ∀v ∈ R,

iff X is Gaussian with mean μ and variance equal to one under
P̃. So this change of measure allows for arbitrary recentering
of X , yet without changing the variance of X .

Let f and f̃ be the densities of the random variable X under
P and P̃, respectively. We then have that

L = f (X )

f̃ (X )

2Rigorously, Eq. (2.2) requires P � P̃ only on the restriction of
F to σ (X ) ∩ {X �= 0}, where σ (X ) = {X −1(B)|B ∈ B(R)} is the σ -
algebra generated by X .
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is a valid likelihood ratio for the change of measure

z = EP[g(X )]

= EP̃[g(X )L]

=
∫
R

g(x)
f (x)

f̃ (x)
P̃[X ∈ (x, x + dx)],3

for any Borel g: R → R. In this situation, P � P̃ can be re-
expressed as the support of the density f being included into
the support of the density f̃ . We see directly that the likelihood
ratio in Eq. (2.3) is indeed the ratio of the two given Gaussian
densities, evaluated at X .

The importance sampling algorithm amounts to select a
large number of replication m, to generate X1, . . . , Xm inde-
pendently from f̃ and then to estimate z by

ẑm = 1

m

m∑
j=1

g(Xj )
f (Xj )

f̃ (Xj )
.

B. Stochastic process

In this section we show the extension of Sec. II A to
the case of stochastic processes. Let (�,F , {Ft }t�0, P̃) be
a filtered probability space,4 where time is either discrete,
t ∈ N, N = {0, 1, . . .}, or continuous, t ∈ [0,∞). Assume
that the stochastic process {Lt }t�0 over this space is a P̃-a.s.
nonnegative martingale w.r.t. the filtration {Ft }t�0

5 such that
EP̃[Lt ] = 1, ∀t � 0. Then there exists a unique probability
measure P on (�,F ) such that

∀t � 0, P[At ] = EP̃[IAt Lt ] =
∫

At

Lt dP̃, ∀At ∈ Ft .

(2.4)

Thus P � P̃.6 The martingale {Lt }t�0 is called Radon-
Nikodym or likelihood ratio process. At any t � 0, Lt is
the density or Radon-Nikodym derivative of P w.r.t. P̃ on
Ft .7 Proof of Eq. (2.4) can be found, e.g., in [45]. Thus
Eq. (2.4) generalizes Eq. (2.1). We have the following change-
of-measure result for stochastic processes: for any integrable
process {Xt }t�0,8 it holds that

EP[Xs] = EP̃[XsLs] = EP̃[XsLt ], (2.5)

provided P � P̃.9

3Precisely, the validity of L = f (X )/ f̃ (X ) is limited to the restric-
tion of F to σ (X ), meaning that EP[Z] = EP̃[ZL] would be untrue
with Z not σ (X )-measurable, namely, with any Z that could not take
the form Z = g(X ), for some Borel function g.

4The sequence of σ algebras {Ft }t�0 is a filtration in the sense that
Fs ⊂ Ft ⊂ F , ∀ 0 � s � t < ∞ (with inclusion weakly meant).

5This means that EP̃[Lt |Fs] = Ls, ∀ 0 � s � t < ∞.
6Precisely, P � P̃ holds on the restriction of F to Ft , ∀t � 0.
7An alternative commonly used notation is Lt = dP/dP̃ |t .
8The process {Xt }t�0 must also be {Ft }t�0-adapted, in the sense that

Xt is Ft -measurable, ∀t � 0.
9Precisely, P � P̃ is required on the restriction of F to Fs ∩ {Xs �=

0}, ∀0 � s � t .

C. Discrete Markov process

Throughout this article, we will consider the Markov pro-
cess with discrete time domain N and discrete state space
Z = {. . . ,−1, 0, 1, . . .}. We note that most applied prob-
lems can be indeed formulated in this setting through time
and space discretization, so this choice should not entail
practical restrictions. We obtain the likelihood ratio process
of change of measure from the induced probability of the
Markov process. The likelihood ratio takes a simple form,
depending only on the transition kernels of the Markov pro-
cess. In this section we consider the time t � 1 and the
states n, n′ ∈ Z.

Our Markov process {Xt }t∈N is defined on the filtered prob-
ability space (�,F , {Ft }t�0, P). Let us define the transition
probabilities

pt,n( j) = P[Xt = n + j | Xt−1 = n], ∀ j ∈ Z,

together with the probabilities of the initial state

p0(n) = P[X0 = n].

Let P̃ denote a second probability measure on
(�,F , {Ft }t�0), which is unambiguously determined
through the change-of-measure kernels q0 : Z → [0,∞)
and qt : Z × Z → [0,∞) as follows:

p0(n) = q0(n)P̃[X0 = n] (2.6)

and

P[Xt = n′ | Xt−1 = n, Xt−2 = nt−2, . . . , X1 = n1]

= qt (n, n′)P̃[Xt = n′ | Xt−1 = n, Xt−2

= nt−2, . . . , X1 = n1], (2.7)

for nt−2, . . . , n1 ∈ Z. Because {Xt }t∈N is a Markov process
under P, the values of nt−2, . . . , n1 on the left side of Eq. (2.7)
are irrelevant. They remain irrelevant on the right side and thus
{Xt }t∈N remains a Markov process under the new probability
measure P̃. So we can simplify Eq. (2.7) to

pt,n(n′ − n) = qt (n, n′)P̃[Xt = n′ | Xt−1 = n]. (2.8)

We can define the transition probabilities under P̃ by

p̃t,n( j) = P̃[Xt = n + j | Xt−1 = n] = pt,n( j)

qt (n, n + j)
, ∀ j ∈ Z,

(2.9)

and the initial probability under P̃ by

p̃0(n) = P̃[X0 = n].

We then have, for n0, . . . , nm ∈ Z,

p0(n0)

p̃0(n0)

m∏
t=1

pt,nt−1 (nt − nt−1)

p̃t,nt−1 (nt − nt−1)

= q0(n0)
m∏

t=1

qt (nt−1, nt ), for m = 1, 2, . . . .
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This last expression gives us the following general form of the
likelihood ratio process:

L0 = q0(X0) and

Lm = q0(X0)
m∏

t=1

qt (Xt−1, Xt ), for m = 1, 2, . . . .

Thus Lm is a function of X0, . . . , Xm, for m = 0, 1, . . ..10

When the Markov process is homogeneous under P and the
change-of-measure kernel qt does not depend on t � 1, then
the Markov process {Xt }t∈N remains homogeneous under P̃.
In this case, by redenoting the change-of-measure kernels at
times t �= 0 in Eq. (2.7) simply by q•, we obtain the likelihood
ratio process

L0 = q0(X0) and

Lm = q0(X0)
m∏

t=1

q•(Xt−1, Xt ), for m = 1, 2, . . . . (2.10)

Thus the following change-of-measure formula holds for
all events depending on the Markov process over the finite
time horizon [0, t†], for some t† � 1. For some given func-
tion g: Zt†+1 → R, define the importance sampling estimator
Zt† = g(X0, . . . , Xt† )Lt† . We then have

zt† =EP[g(X0, . . . , Xt† )] = EP̃[g(X0, . . . , Xt† )Lt† ] = EP̃[Zt† ],
(2.11)

whenever P � P̃.11

Until now, nothing has been said about the form of the
change-of-measure kernels (q). We will focus on two particu-
lar choices for these kernels, namely, the exponential tilt and
bridge changes of measure.

D. Absolute continuity and simulation

In the context of simulation, P represents the original mea-
sure and replications of XL [see Eq. (2.2)] or of XLs [see
Eq. (2.5)] are drawn under the importance sampling measure
P̃. It may appear weird to state the existence of the original
measure P (which we already have) through Eq. (2.1) and
Eq. (2.4), but the important aspect here is the unambiguous
relationship between P and P̃: if either Eq. (2.1) or Eq. (2.4)
can be established, then the importance sampling algorithm
with P̃ is valid.

From the theoretical perspective, the only restriction for
choosing the importance sampling measure (P̃) is absolute
continuity (P � P̃), which P̃-a.s. guarantees the existence of
the likelihood process ({Lt }t�0). A sample path with proba-
bility zero under the original measure (P) may thus receive
positive probability under the importance sampling measure
(P̃). However, since paths can be important observables them-
selves, one can be interested in a new measure (P̃) that
samples only the paths that have positive probability under
the original probability (P). For example, in the context of

10In other terms, the likelihood ratio process is adapted to the
filtration generated by the Markov process.

11Precisely, P � P̃ is required on Ft† .

stochastic thermodynamics, random paths have a prominent
role in the characterization of entropy production [47,48].
As another example, rare paths can be measurable objects
with important biological implications [6,49]. Thus, it can
also be useful to have the stronger constraint of equiva-
lence of measures (P � P̃ and P̃ � P).12 In Sec. III we
will see that the exponential tilting always satisfies this con-
dition, whereas in the bridge process, the equivalence of
measures depends on the choice of the terminal distribution
(see Sec. IV).

Last, we note that when only absolute continuity of the new
measure w.r.t. the original one (P̃ � P) holds, an importance
sampling algorithm may still be used but introduce systematic
errors (also called bias errors) in the estimation of the quantity
of interest z, given in Eq. (2.11). Such systematic errors can be
small, relative to the Monte Carlo variability, if the forbidden
region by P̃ is irrelevant for the estimation of Z . Nevertheless,
these systematic errors can also hold significance as they
have the potential to surpass Monte Carlo (statistical) errors,
a point we will illustrate through a numerical example in
Sec. V A.

III. EXPONENTIAL TILT FOR MARKOV PROCESSES

This section provides the analytical formulation of impor-
tance sampling by exponential tilting. The technique is first
introduced for a single random variable, then for the simple
process of partial sums of i.i.d. random variables, and finally
for discrete Markov processes.

Exponential tilting is a fairly general change-of-measure
procedure that can be applied whenever the underlying dis-
tribution decays sufficiently fast at its extremities, namely,
when the distribution is “light-tailed.” This procedure em-
beds the original probability measure into a new one, which
renders likely specific trajectories that would have been oth-
erwise rare, under the original probability. This technique is
sometimes called Esscher transformation. It was suggested
by [50,51] for local applications of the central limit theorem,
in order to obtain a very accurate analytical approximation
to the distribution of the sum. It was then shown by [52]
that Esscher’s approximation can be reformulated in terms
the saddlepoint approximation of asymptotic analysis [53].
Theoretically, both saddlepoint approximation and optimal
exponential tilting belong to the class of large deviations
approximations [54]. These approximations are adequate for
obtaining the very small probabilities of rare events; see, e.g.,
Chapter 3 of [44].

Exponential tilting is introduced in Sec. III A for a single
random variable. It is then given for the sum of i.i.d. random
variables, in Sec. III B. The likelihood ratio process of expo-
nential tilt for Markov processes is provided in Sec. III C. We
conclude with two remarks in Sec. III D: Sec. III D 1 concerns
the choice of the tilting parameter, and Sec. III D 2 presents a
closely related method, called s-ensemble.

12Precisely, one assumes P � P̃ and P̃ � P on Ft , ∀t � 0.
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A. Exponential tilt for random variable

Consider now the random variable X with cumulant gener-
ating function (c.g.f.)

K (θ ) = log EP[eθX ], for θ ∈ R,

where P represents the present probability measure, and we
consider values of θ such that K (θ ) is finite. The exponentially
tilted measure Pθ is the measure P̃ of Eq. (2.4) obtained by the
Radon-Nikodym derivative or likelihood ratio

Lθ = dP
dPθ

= exp[−θX + K (θ )], (3.1)

over σ (X ). Thus Pθ is equivalent to P, in the sense that Pθ �
P and P � Pθ .13 The measure Pθ , called exponential tilt of
P, is a practical importance sampling measure. We note that if
F is the distribution function (d.f.) of X under P, then

dFθ (y) = exp[θy − K (θ )]dF (y) (3.2)

provides the d.f. under Pθ .
Although our focus lies on univariate processes, we can

briefly mention that exponential tilting generalizes directly to
the multivariate setting. When X is a random vector in Rd ,
for some d � 2, with c.g.f. K (v) = log EP[e〈v,X〉], for v ∈ Rd ,
then the likelihood ratio of Eq. (3.1) becomes

Lθ = dP
dPθ

= exp[−〈θ, X〉 + K (θ)], (3.3)

for θ ∈ Rd .

B. Exponential tilt for random walk

Let us introduce the exponential tilt likelihood ratio process
for the simple random walk, which is the process of partial
sums of independent random variables Y1,Y2, . . . with com-
mon d.f. F and c.g.f. K , under some probability measure P.
Consider thus

Xt =
t∑

j=1

Yj, for t = 1, 2, . . . .

We can assume the fixed initial state 0, viz. define X0 = 0.
The exponentially tilted measure Pθ over σ (X1, . . . , Xt ) is
obtained from the likelihood ratio process

Lt (θ ) = exp[−θXt + tK (θ )], for t = 1, 2 . . . ,

with θ such that K (θ ) is finite. We have P � Pθ and Pθ �
P.14

For a given time horizon t† � 1 and for a given func-
tion g: Zt† → R, we are generally interested in computing
zt† = EP[g(X1, . . . , Xt† )]. The importance sampling estimator
of exponential tilting is given by

Zt† (θ ) = g(X1, . . . , Xt† )Lt† (θ ) (3.4)

13Precisely, Pθ � P and P � Pθ hold on on the restriction of F to
σ (X ).

14Precisely, Pθ � P and P � Pθ hold on σ (X1, . . . , Xt ), which is
the σ -algebra generated by X1, . . . , Xt , for t = 1, 2, . . ..

and we have

zt† = EP[g(X1, . . . , Xt† )]

= EPθ
[g(X1, . . . , Xt† )Lt† (θ )]

= EPθ
[Zt† (θ )]. (3.5)

Given the multidimensional likelihood ratio formula of
Eq. (3.3), the generalization of the above one-dimensional
exponential tilting to the random walk {X t }t�0 with individual
values in Rd with d � 2 is straightforward.

Note that sampling under Pθ amounts to generating i.i.d.
summands from the exponentially tilted d.f. of Eq. (3.2). We
thus obtain Algorithm SM1.1 of SM [43], Sec. SM 1, for
importance sampling by exponential tilt for random walks.

For some large x > EP[Y1], let Ix = (t†x,∞), for some
time horizon t† � 1. We are now interested in the rare event
probability zt† (Ix ) = P[Xt† ∈ Ix], which a small upper tail
probability of the sample mean. The importance sampling
estimator is thus given by

Zt† (θ, Ix ) = I{Xt† ∈ Ix}Lt† (θ ) = I{Xt† > t†x}Lt† (θ ) (3.6)

and we have zt† (Ix ) = EPθ
[Zt† (θ, Ix )].

But not every choice of tilting parameter θ reduces the
variability, and inadequate choices may also increase it, sub-
stantially. Let θ (x) the solution w.r.t. v of

K ′(v) = d

dv
K (v) = x, i.e., EPθ (x) [Y1] = x, i.e.,

EPθ (x) [Xt† ] = t†x. (3.7)

It is shown that θ (x) exists and it is unique, for any x within
the interior of the range of K ′; see, e.g., [52]. Moreover, [52]
shows also that θ (x) appears as a saddlepoint on the surface of
the real part of the complex exponent of the Fourier transform
of the density. It is shown at pp. 168–169 of [1] that the impor-
tance sampling estimator given in Eq. (3.6) with θ = θ (x) is
optimal, in the sense of logarithmic efficiency, under Pθ (x). A
less rigorous but simple justification of the optimality of this
choice of titling parameter is given in Sec. III D 1.

Logarithmic efficiency is a slightly weaker criterion than
bounded relative error; see footnote 1. These two usual op-
timality criteria of rare event simulation are asymptotic for
vanishing probabilities like zt† (Ix ), as x → ∞. For many
important accurate estimators of small probabilities, only log-
arithmic efficiency can be established [1]. However, these
two criteria can hardly be distinguished in most practical
situations.

A detailed presentation of importance sampling in the
context of large deviations theory is given by [31]. In par-
ticular, an analysis of the joint large deviations behavior
of the random process of interest (called “observable”) and
of the (logarithmically rescaled) likelihood ratio process is
presented. The article provides necessary and sufficient con-
ditions, for any general change-of-measure procedure (not
necessarily exponential tilt), in order to have logarithmic ef-
ficiency. Interestingly, this result motivates further research
concerning the existence and the characterization of loga-
rithmically efficient change-of-measure methods other than
exponential tilt.
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Note finally the following property: the exponentially tilted
distribution Pθ (x) is the closest one to the original distribu-
tion P, under all distributions that are centered according to
Eq. (3.7), where closeness is in terms of Kullback-Leibler
divergence; cf., e.g., [54].

C. Exponential tilt for homogeneous Markov processes

The discrete time Markov process, its change-of-measure
kernels, and and its likelihood ratio process are all introduced
in Sec. II C. We showed that the change-of-measure kernels
allow us to obtain an alternative probability measure P̃. The
objective is to choose P̃ so to reorient sample paths towards a
specific region of interest, which is rarely reached under the
original measure P. We show here how P̃ is obtained through
exponential tilt, for the homogeneous Markov process. We
only need to obtain the change-of-measure kernels of Eq. (2.6)
and Eq. (2.7) of exponential tilting. In this section we consider
the time t � 1 and the states n, n′ ∈ Z.

Let

z(n, θ ) = exp[θn − K0(θ )] (3.8)

and

z(n, n′, θ ) = exp[θ (n′ − n) − K•n(θ )], (3.9)

where

K0(θ ) = log
∑
j∈Z

exp(θ j)p0( j) (3.10)

and

K•n(θ ) = log
∑
j∈Z

exp(θ j)p•n( j), (3.11)

at any θ ∈ R where the two sums above converge, are the
c.g.f. of the probability of the initial state, denoted p0, and
the c.g.f. of the homogeneous transition probabilities, denoted
p•n = pt,n and independent of the time index t � 1. The expo-
nentially tilted probability measure, P̃ = Pθ , is characterized
by

p0(n, θ ) = Pθ [X0 = n]

= exp[θn − K0(θ )]P[X0 = n] = z(n, θ )p0(n)
(3.12)

and

p•n( j, θ ) = Pθ [Xt = n + j | Xt−1 = n]

= exp[θ j − K•n(θ )]P[Xt = n + j | Xt−1 = n]

= z(n, n + j, θ )p•n( j), ∀ j ∈ Z. (3.13)

Thus exponential tilt corresponds to the particular choice
of the general change-of-measure kernels Eqs. (2.6) and (2.7),
respectively, given by

q0(n) = 1

z(n, θ )
and q•(n, n′) = 1

z(n, n′, θ )
.

Thus, the likelihood ratio process of Eq. (2.10) for the case
of exponential tilt becomes

L0(θ ) = q0(X0) = [z(X0, θ )]−1 and

Lt (θ ) =
[

z(X0, θ )
t∏

k=1

z(Xk−1, Xk, θ )

]−1

=
{

exp

[
θX0 − K0(θ )

+
t∑

k=1

θ (Xk − Xk−1) − K•Xk−1 (θ )

]}−1

= exp

{
−θXt +

[
K0(θ ) +

t∑
k=1

K•Xk−1 (θ )

]}

= e−θXt M0(θ )
t∏

k=1

M•Xk−1 (θ ), (3.14)

where the argument θ has been added to the likelihood ratio
for convenience and where M0 = eK0 and M•n = eK•n are the
moment generating functions of p0 and p•n, respectively.

Let us now give a couple of remarks. The required absolute
continuity is clearly satisfied, because of the positivity of the
change-of-measure kernels of exponential tilt. In fact, both
P � Pθ and Pθ � P hold, namely, P and Pθ are equivalent.
In contrast with the likelihood ratio for the bridge process,
presented in Sec. IV, the likelihood ratio of Eq. (3.14) is not
restricted to problems with finite time horizons.

Consider the time horizon t† � 1 and the function g:
Zt†+1 → R. We want to evaluate zt† = EP[g(X0, . . . , Xt† )].
The estimator of exponential tilting is given by

Zt† (θ ) = g(X0, . . . , Xt† )Lt† (θ ), (3.15)

for Lt† (θ ) given in Eq. (3.14), and we have

zt† = EP[g(X0, . . . , Xt† )]

= EPθ
[g(X0, . . . , Xt† )Lt† (θ )]

= EPθ
[Zt† (θ )]. (3.16)

Exponential tilting can be also obtained for the multi-
dimensional homogeneous Markov process {X t }t�0 taking
individual values in Zd , at any d � 2, essentially by replacing
Eqs. (3.8) and (3.9) by

z(n, θ) = exp[〈θ, n〉 − K0(θ)] and

z(n, n′, θ) = exp[〈θ, n′ − n〉 − K•n(θ)],

where n, n′ ∈ Zd , K0(θ) = log
∑

j∈Zd exp[〈θ, j〉]p0( j) and
K•n(θ) = log

∑
j∈Zd exp[〈θ, j〉]p•n( j), at any θ ∈ Rd for

which the two sums above converge.
We note the exponential tilting requires the existence of the

c.g.f. of the transition probabilities; see Eqs. (3.10) and (3.11).
This is a light-tail requirement on the transition distributions.
In several problems of physics the state space is a finite set
and so these c.g.f. do always exist. Thus there are no restric-
tions on the value of the tilting parameter θ . But there are
situations of physics in which the existence of the c.g.f. of the
transition probabilities cannot be guaranteed. This is often the
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case when the Markov process refers to quantities such as the
time-averaged current or activity in, e.g., exclusion processes
or to quantities subject to kinetic constraints.

From the above derivations, we can compute the desired
expectation in Eq. (3.16) with Algorithm SM1.2 in SM [43],
Sec. SM 1, of importance sampling by exponential tilting. We
consider the practical case with fixed initial initial state.

D. Remarks: Optimality and s-ensemble

This section presents two general remarks related to expo-
nential tilting. The first one concerns the optimal choice of the
tilting parameter and is given in Sec. III D 1. The second re-
mark concerns the closely related technique called s-ensemble
in the physical literature, which is another approach to expo-
nential tilting and which is the subject of Sec. III D 2.

1. Optimal tilting parameter under time and space homogeneity

The methodology introduced so far does not address the
question of the selection of the tilting parameter associated
with the rare event under consideration. In fact, through the
numerical examples in Sec. V, we will provide evidence that
there is usually an optimal tilting parameter minimizing the
sampling error of the numerical estimations. We next show
the computation of the optimal tilting parameter for a par-
ticular problem as an illustration. In particular, we are now
interested in the probability of reaching, at some final time t†,
the interval of states

Ic(a) = [c − a, c + a] ∩ Z, for some integers a � 0 and c.

Consider also that the initial state is fixed X0 = n0, for some
n0 ∈ Z much smaller than c − a. The quantity of interest is
thus

zt† (Ic(a)) = P[Xt† ∈ Ic(a)]. (3.17)

We further assume that the process is homogeneous in
the state space: the transition probability p•n does not de-
pend on n and we denote p•• = p•n. This is the random
walk of Sec. III B. Denote by K•• the c.g.f. of p••. We want
to determine the exponential tilting parameter θ for which
varPθ

(Zt† (θ, Ic(a))) is small, i.e., such that EPθ
[Z2

t† (θ, Ic(a))]
is small. Then Eq. (3.14) leads to

Lt† (θ ) = exp[−θ (Xt† − n0) + t†K••(θ )].

We thus have

EPθ
[{Zt† (θ, Ic(a))}2]

= EPθ
[ (I{c − a � Xt† � c − a}Lt† (θ ) )2]

� EPθ
[I{Xt† � c − a}{exp[−θ (Xt† − n0) + t†K••(θ )]}2]

� {exp[−θ (c − a − n0)+t†K••(θ )]}2EPθ
[I{Xt† �c − a}]

� exp{−2[θ (c − a − n0) − t†K••(θ )]},
given that θ > 0 whenever a > 0. Strict convexity of K••
implies that the above exponent is minimized for

t†K ′
••(θ ) = c − a − n0 > 0,

namely, for

EPθ
[Xt† − X0 | X0 = n0] = c − a − n0, (3.18)

which thus recenters the average of Xt† towards the lower
bound of the target interval Ic(a).

The problem of finding the optimal parameter for arbitrary
expectations is not yet solved [e.g., for the case of computing
the same estimator in Eq. (3.17) but for a process with state-
dependent transition probabilities]. Nevertheless, expressions
like Eq. (3.18) can be used in an intuitive way to reduce
the sampling errors. For example, in the considered situation
where the target interval Ic(a) is well above the starting point
n0, any value θ > 0 that redrifts the process sufficiently up-
wards is expected to reduce the Monte Carlo variability. We
will elaborate more on this point in Sec. V A.

2. s-ensemble

This section briefly summarizes the alternative closely re-
lated importance sampling estimator called s-ensemble. It is
an ancillary section that is not required for the comprehension
of this article. The s-ensemble change-of-measure [55–57] is
directly defined at the level of path measures as follows:15

Ps[X0 = n0, . . . , Xt† = nt† ]

= P[X0 = n0, . . . , Xt† = nt† ]
es(nt† −n0 )

Zt† (s)
, (3.19)

∀n0, . . . , nt† ∈ Z, where

Zt† (s) =
∑

n0,nt† ∈Z
P[X0 = n0, Xt† = nt ]e

s(nt† −n0 ),

at any s ∈ R where the sum converges. Thus Zt† is the mo-
ment generating function16 of the increment Xt† − X0. The
parameter s is used to fix the first moment of the increment
to some desired value c through

EPs [Xt† − X0] = d

ds
logZt† (s) = c. (3.20)

From the definition of the s-ensemble probability measure
in Eq. (3.19), we can readily derive the likelihood ratio process
of this change of measure in the following form:

Lt† (s) = e−s(Xt† −X0 )Zt† (s). (3.21)

The s-ensemble change of measure is similar in form to
our exponential tilting, as both techniques bias the original
measure by exponential factors. Also, in a process with ho-
mogeneous transition probabilities that do not depend on the
state of the process, nor on time, both changes of measure are
identical (see Sec. V A 3). Also, a more general definition of
exponential tilting, with one tilting parameter per unit of time,
can include both the exponential tilt for the homogeneous
Markov processes of Sec. III C and the s-ensemble. However,

15Usually the s-ensemble is defined in a more general manner
through processes called “integrated observables.” Here we have
chosen to work with a specific case of integrated observable, namely,
the increment Xt − X0, and we refer to [55–57] for a more general
definition.

16The specific notation Z (instead of M used in other sections)
for the moment generating function is typical in the s-ensemble
literature, as is s (instead of θ ) for the tilting parameter.

034113-7



JAVIER AGUILAR AND RICCARDO GATTO PHYSICAL REVIEW E 109, 034113 (2024)

the s-ensemble and exponential tilt as given in Sec. III C
exhibit relevant differences: the s-ensemble draws paths with
fixed mean global increment through Eq. (3.20) [27,28]. Also,
the asymptotic properties of the s-ensemble make it a use-
ful tool to compute large deviation rates [5,23–26,55–59]
and constrained paths in the limit of large times (t† → ∞)
[60,61]. On the other side, while transition probabilities in
our exponential tilting are obtained through a simple transfor-
mation of the transition probabilities of the original process,
obtaining the transition probabilities of the s-ensemble is not
a trivial task; see, e.g., [5,62]. Since the focus of this work lies
on rare paths within finite time horizons, we do not explore
applications of the s-ensemble change of measure.

IV. STOCHASTIC BRIDGES FOR MARKOV PROCESSES

The bridge process provides a practical alternative tech-
nique to exponential tilting. It also constructs a sampling
probability measure P̃ that makes frequent a given event of
interest, which is rare under P. The main idea is to generate
a bridge process with fixed boundary points or endpoints.
The bridge process is then used for sampling the rare paths
that possess unlikely pairs of endpoints under the original
probability. In fact, as we explain below, the technique can
be readily extended to address arbitrary initial and final
distributions. There are various recent applications of this
methodology for sampling rare events in the context of in-
trinsically out-of-equilibrium systems [16–22,63]. The bridge
methods are similar in spirit to the transition-path-sampling
algorithms [38–40], extensively used in equilibrium molec-
ular dynamics, where paths constrained to both ends are
sampled using a Metropolis-Hastings scheme. However, tran-
sition path sampling is based on a proposal-rejection scheme
like the Metropolis-Hastings algorithm, meaning that gen-
erated paths are accepted with some probability. Contrary,
all transition paths generated with a bridge process will end
in the desired regions by construction. The generator of the
bridge process is obtained conditioning the transition proba-
bilities [60,61], which is explained in the following section.
As before, we consider processes with discrete state and time
spaces. With the methods of this section, we always need a
fixed time horizon t† � 1. We consider the time t < t†, in N,
and the states n0, nt† , n, n′ ∈ Z.

A. Conditioned Markov process

The bridge process is obtained upon conditioning the orig-
inal Markov process on passing through particular states at
given times. It is possible to sample the stochastic bridges
both backward or forward in time, giving rise to two possible
generators that we describe below.

1. Forward generator

We can derive transition probabilities that are conditional
on some fixed final state Xt† = nt† through the relation

P[Xt+1 = n′|Xt = n, Xt† = nt† ]

= P[Xt+1 = n′, Xt = n, Xt† = nt† ]

P[Xt = n, Xt† = nt† ]

= P[Xt+1 = n′|Xt = n]
P[Xt† = nt† |Xt+1 = n′, Xt = n]

P[Xt† = nt† |Xt = n]

= P[Xt+1 = n′|Xt = n]
P[Xt† = nt† |Xt+1 = n′]

P[Xt† = nt† |Xt = n]
.

(4.1)

We can re-express Eq. (4.1) with specific notation for transi-
tion probabilities and change-of-measure kernels as

p̃t+1,n(n′ − n; t†, nt† ) = ut+1(n, n′; t†, nt† ) pt+1,n(n′ − n),
(4.2)

where

ut+1(n, n′; t†, nt† ) = P[Xt† = nt† |Xt+1 = n′]
P[Xt† = nt† |Xt = n]

(4.3)

and

p̃t+1,n(n′ − n; t†, nt† ) = P[Xt+1 = n′|Xt = n, Xt† = nt† ].

Thus, Eq. (4.2) is a special case of Eq. (2.9) (with qt =
1/ut ). By using the transition probabilities of Eq. (4.2) and
by considering the initial state as fixed, we obtain paths that
necessarily cross the boundary points X0 = n0 and Xt† = nt† .
We have thus generated a bridge process. Since the transition
probabilities in Eq. (4.2) operate forward in time, we call this
procedure the forward generator of the bridge.

2. Backward generator

Now we construct bridges with transition probabilities that
fix the initial state and operate backward in time. Using ma-
nipulations similar to those of Eq. (4.1), we obtain

P[Xt = n′|Xt+1 = n, X0 = n0]

= P[Xt+1 = n|Xt = n′]
P[Xt = n′|X0 = n0]

P[Xt+1 = n|X0 = n0]
,

namely,

P[Xt = n′|Xt+1 = n, X0 = n0]

= wt (n
′, n; n0)P[Xt+1 = n|Xt = n′]

= wt (n
′, n; n0)pt+1,n′ (n − n′), (4.4)

where

wt (n
′, n; n0) = P[Xt = n′|X0 = n0]

P[Xt+1 = n|X0 = n0]
(4.5)

is the backward change-of-measure kernel. Considering fixed
final states (Xt† = nt† ), the transition probabilities in Eq. (4.4)
draw stochastic bridges connecting X0 = n0 and Xt† = nt† .
The kernels of Eq. (4.5) have different functionality than the
change-of-measure kernel of Eq. (2.8). This distinction arises
from the backward nature of the generator for the bridge
process.

Both forward Eq. (4.1) and backward Eq. (4.4) gener-
ators are obtained upon multiplying the original transition
probabilities by the change-of-measure kernels ut+1 and wt .
These kernels take the form of Doob’s h-transform; cf. pp.
190–195 of [45]. Nevertheless, the probabilities in numerator
and denominator of ut+1 of Eq. (4.3) are efficiently computed
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through a backward Kolmogorov equation, whereas the prob-
abilities in numerator and denominator of wt of Eq. (4.5) are
usually computed with a forward Kolmogorov equation.

Applications that involve sampling bridges with a common
initial state (at t = 0) but multiple final destinations (at t =
t†), thus with the Kronecker delta initial distrbution P[X0 =
n] = δn,n0 , are better addressed by the backward generator, as
described in [16]. The reason is that with the backward gener-
ator we need to iterate the forward Kolmogorov equation only
once, in order to compute the quantities P[Xt = n|X0 = n0],
for all relevant values of n and t , that are necessary for ob-
taining the backward change-of-measure kernel (4.5) and thus
for sampling the bridges. On the other hand, sampling bridges
with fixed initial state and multiple final destinations using
the forward generator with its change-of-measure kernel in
Eq. (4.3) would require iterating the backward Kolmogorov
equation once for each final point of the bridge. For the same
reason, the forward generator is more practical than the back-
ward generator when investigating ensembles of bridges with
a fixed final position but varying initial conditions.

Since we focus on problems with fixed initial condition, we
will work in the following with the backward generator, also
called backtracking method [16]. However, it’s worth noting
that all the derivations related to the backward generator have
their analogous counterparts for the forward generator, so we
can make this choice without any loss of generality.

B. Stochastic bridge change of measure and likelihood ratio

Now, we want to use one of the bridge generators of
Sec. IV A to define the stochastic bridge measure, an al-
ternative version of the generic change-of-measure formulas
derived in Sec. II C, which we note as P̃ = Pn0 . To completely
define such a path measure, we have to specify the statistics of
the initial and final conditions. We focus on paths with fixed
initial condition, X0 = n0, so that Pn0 [X0 = n] = δn,n0 . We
have considerable freedom in selecting the final distribution,
subject to constraints of admissibility associated with absolute
continuity (see Sec. IV C for a detailed discussion of this
aspect). We call wt† the probability function of the final state,

Pn0 [Xt† = n] = wt† (n; n0). (4.6)

We chose to use the backward generator to draw realizations
of the Markov process under Pn0 backward in time, following
the transition probabilities specified in Eq. (4.4),

Pn0 [Xt = n′|Xt+1 = n] = wt (n
′, n; n0)P[Xt+1 = n′|Xt = n].

(4.7)

The corresponding likelihood ratio is obtained by multipli-
cation of these backward change-of-measure kernels and it is
thus given by

Lt† (n0)

= {w0(n0, X1; n0) · · · wt†−1(Xt†−1, Xt† ; n0)wt† (X †
t ; n0)}−1.

(4.8)

Interestingly, all terms in Eq. (4.8) cancel out excepting those
that depend on the final state at time t†. Therefore, the

expression of the likelihood ratio reduces to

Lt† (n0) = h(Xt† ; n0)

wt† (Xt† ; n0)
, (4.9)

where

h(n; n0) = P[Xt† = n|X0 = n0].

Thus, for some given function g: Zt†+1 → R, the importance
sampling estimator of backtracking is given by

Zn0,t† = g(n0, X1, . . . , Xt† )Lt† (n0) (4.10)

and we have

zt† = EP[g(n0, X1, . . . , Xt† )]

= EPn0
[g(n0, X1, . . . , Xt† )Lt† ] = EPn0

[
Zn0,t†

]
.

We conclude this section with two remarks. We first note
that with backtracking it is necessary to fix the time horizon t†

in advance and that there will be only one likelihood ratio ran-
dom variable, to be used at all intermediate times t ∈ [0, t†],
instead of a complete likelihood ratio process over the time
horizon [0, t†]. The second remark concerns the extension
of backtracking to the multidimensional state space. It turns
out that there is no conceptual difference when considering
a Markov process {X t }t�0 taking individual values in Zd , for
some d � 2. All formulas of Sec. IV A 2 and of the present
section remain valid in their given form when the states
n0, n, n′ represent points of Zd .

With the above results, we can provide Algorithm SM1.3
in Sec. SM 1 in SM [43] for importance sampling by back-
tracking, for the computation of zt† .

C. Choice of terminal distribution

The efficiency of the backtracking method depends on the
choice of the final distribution of the new process (wt† ). This
distribution has an analog role to the tilting parameter (θ ) of
the exponentially tilted measure. Let n, n0 ∈ Z. For example,
if we choose wt† to be equal to the distribution of states
at time t† with the original process (wt† (n; n0) = P[Xt† =
n|X0 = n0]), then the new and original measures assign the
same weights to paths (Lt† = 1), and therefore the change of
measure will not result in improved efficiency for sampling
rare events.

The only restriction concerning the choice of the final
distribution wt† is the absolutely continuity P � Pn0 .17 This
condition is fulfilled if

wt† (n; n0) = 0 �⇒ P[Xt† = n|X0 = n0] = 0. (4.11)

As discussed in Sec. II D, many applications require that
all paths sampled with the new probability measure are also
accessible with the original measure (e.g., the equivalence
between measures). This stronger constraint is fulfilled when

wt† (n; n0) = 0 ⇐⇒ P[Xt† = n|X0 = n0] = 0. (4.12)

Choices of the distribution wt† fulfilling Eqs. (4.12)
and (4.11) generate unbiased changes of measure, in the sense

17Rigorously, it is P � Pn0 on Ft† ∩ {X0 = n0}.
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FIG. 1. In each of panels (a)–(c) are shown ensembles of 100 sample paths over the time interval [0,1000]. The original binomial process
defined through Eq. (5.9) with r = 0.6 is drawn in (a), the exponentially tilted process obtained by Eq. (5.3) with ρ = 0 is drawn in (b), and
the backtrack processes obtained by Eq. (5.10) with a Kronecker delta distribution for the last state is drawn in (c). Dashed red lines indicate
μt , and dashed blue lines indicate μt ± σt , where μt denotes expected value and σt standard deviation, at time t ∈ [0, 1000], both defined in
Eq. (SM 3) of SM [43], Sec. SM2. The target interval I0(10) from Sec. V A 3 is shown as a vertical red segment.

that the computed expected values are not affected by sys-
tematic errors. On the other side, if there are forbidden states
under the importance sampling measure that were accessible
with the original measure, then the errors do not tend to
zero as the number of Monte Carlo replications increases.
Nevertheless, such errors could be smaller than the sampling
errors in cases for which the forbidden areas under the impor-
tance sampling measure have little relevance for the estimator.
This applies to problems that involve transition paths between
metastable states, where choices such as Kronecker delta dis-
tributions (wt† (n; n0) = δn,nt† ), violating absolute continuity,
can nevertheless be employed for computing estimators with
sufficiently small errors, as described in [16].

V. EXAMPLES AND NUMERICAL STUDY

In this section, numerical comparison between backtrack-
ing and exponential tilting are presented through the following
examples: the binomial process, in Sec. V A, and a pro-
cess with state-dependent transition probabilities exhibiting
metastable states, in Sec. V B. In this section we consider
times s < t � t†, all in N, and states n0, nt† , n, n′ ∈ Z.

A. Binomial Markov process

Random walks are prototypical toy models to test meth-
ods in nonequilibrium statistical physics. Furthermore, the
extreme statistics of random walks have recently become a
subject of intense research due to their wide-ranging appli-
cations in finance; see, e.g., [64,65]. Our work utilizes this
random walk example as a basis for applying the derivations
discussed in previous sections. Through a simple and analyt-
ically calculable example, we can better understand the two
Monte Carlo methods. The process is defined by the transi-
tion probabilities p•• = pt,n, thus not depending on the state
n ∈ Z, nor on t ∈ [0, t†], the time. In particular, they are given
by

p••( j) =
{

1 − r, if j = −1,

r, if j = 1,
(5.1)

for some r ∈ (0, 1). The position of the walker follows a
binomial distribution (see, e.g., [47]),

P[Xt = n|Xs = n′] = B

(
n − n′ + t − s

2
, r, t − s

)
,

where ∀p ∈ (0, 1), k ∈ {1, 2, . . .},

B( j, p, k) =
{(k

j

)
pj (1 − p)k− j, if j = 0, 1, . . . , k,

0, otherwise,
(5.2)

are binomial probabilities. Figure 1(a) shows instances of
trajectories generated with these transition probabilities, with
r = 0.6 and over the time interval [0,1000] together with the
first and second cumulants of the binomial process. In the
following examples, we will consider the problem of esti-
mating the probability of a process departing from the fixed
state n0 ∈ Z at time 0 and its subsequent passage through
specific domains in the time-state space, within the time in-
terval [0,1000]. Thus, the probability for the first state is the
Kronecker delta given by P[X0 = n] = δn,n0 .

Before presenting the numerical comparisons, in
Secs. V A 3 and V A 4, let us summarize in Secs. V A 1
and V A 2 how the two importance sampling procedures
apply to this particular scenario.

1. Likelihood ratio of exponential tilting

Exponential tilting simplifies substantially when consider-
ing the binomial process. We find directly the c.g.f.

K••(θ ) = log[reθ + (1 − r)e−θ ]

and thus the exponential tilting transition probabilities of
Eq. (3.13) become

p••( j, θ )=z(n, n + j, θ )p••( j)=
{

1−r
1−r+re2θ , if j = −1,

r
r+(1−r)e−2θ , if j = 1.

(5.3)

Thus, the process is stable under exponential tilting, in the
sense that it remains binomial under Pθ . In consistency with
the rest of the text, we consider the fixed initial state n0 ∈ Z.
Similar to what is done in Eq. (3.18), we obtain the tilting
parameter by setting the conditional expectation of the total
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run through distance equal to nt† − n0, namely, by solving

EPθ
[Xt† − X0 | X0 = n0]

= t†

[
2

r

r + (1 − r)e−2θ
− 1

]
= nt† − n0, (5.4)

where the above expectation is the one of the binomial dis-
tribution. Note that the capability of fixing the first moment
of Xt† − X0, which is always true in the s-ensemble [cf.
Sec. III D 2 and in particular Eq. (3.20)], holds only for the
case of exponential tilting because of the simplicity of this
particular process (i.e., transition probabilities independent of
the state of the process). In Sec. V B we will treat another
example in which Eq. (5.4) does not hold.

By defining

ρ = nt† − n0

t†
(5.5)

and by inverting Eq. (5.4), we obtain

θ = −1

2
log

(
r

1 − r

1 − ρ

1 + ρ

)
, (5.6)

which is well defined when |nt† − n0| < t† (thus with exclu-
sion of the two monotone sample paths).

Equation (5.6) implies that it is equivalent to fix the tilting
parameter (θ ), the average current (ρ), or the average final
destination (nt† ) of the walker. This map between the tilting
parameter and the average current ρ makes it easier to find
intuitively values of θ that will bias paths towards desired
regions of the space. Furthermore, this expression makes it
explicit the analogy with the canonical ensemble, in which
the temperature parameter fixes the energy of the system on
average, thus explaining why exponential tilt methods are also
referred to as canonical methods [61]. Still, the choice of the
optimal tilting parameter (or average current) that minimizes
the relative error will depend to the specific problem to solve
(see, e.g., Sec. V A 3).

Upon inserting Eq. (5.6) into Eq. (5.3), we obtain the
exponentially tilted transition probabilities in the form

p••( j, θ ) =
{

1−ρ

2 , if j = −1,
1+ρ

2 , if j = 1.

We note that these tilted probabilities do not depend on r.
In Fig. 1(b) we show instances of trajectories generated with
these transition probabilities using ρ = 0. The homogeneity
of the process simplifies the expression of the likelihood ratio
in Eq. (3.14) to

Lt (θ ) = e−θ (Xt −n0 )
t∏

k=1

M••(θ )

= e−θ (Xt −n0 )[reθ + (1 − r)e−θ ]t , for t = 1, . . . , t†,

(5.7)

where M•• is the moment generating function of p••.
We can simplify further Eq. (5.7) by introducing the tilt-
ing parameter as given in Eq. (5.6) together with the
change of variables q = (1 + ρ)/2 and Nt = (Xt − n0 + t )/2,

yielding

Lt (q) =
(

r

q

)Nt
(

1 − r

1 − q

)t−Nt

, for t = 1, . . . , t†, (5.8)

where the selected tilting parameter θ is encoded in q.

2. Likelihood ratio of backtracking

The binomial distribution of the process simplifies the ap-
plication of backtracking as well, since the probabilities of the
backward change-of-measure kernels given in Eq. (4.5) are
obtained directly from

P[Xt = n|X0 = n0] = B

(
t + n − n0

2
, r, t

)
. (5.9)

Therefore, insertion of Eq. (5.9) into Eq. (4.5) leads to the
transition probabilities under the backtracking measure Pn0

through Eq. (4.4) as

P[Xt = n | Xt+1 = n + j, X0 = n0]

=
{

1
2

(
1 − n0−n

t

)
, if j = −1,

1
2

(
1 + n0−n

t

)
, if j = 1.

(5.10)

We can freely choose the probability distribution of the states
at final time t†, i.e., wt† defined at Eq. (4.6). When the fi-
nal distribution is a Kronecker delta, wt† (n; n0) = δn,nt† , the
process evolving through Eq. (5.10) has fixed initial (n0) and
final (nt† ) positions. Therefore, since the backtracking can fix
the current ρ exactly [cf. Eq. (5.5)] and not on average as the
exponential tilting method, it is also referred to as a micro-
canonical method [61] (in analogy with the microcanonical
ensemble in which the energy is fixed exactly). In Fig. 1(c) we
show instances of trajectories generated with these transition
probabilities using wt† (n; n0) = δn,n0 . Further, the likelihood
ratio of Eq. (4.9) in this case reads

Lt† (n0) = B
( t†+Xt† −n0

2 , r, t†
)

wt† (Xt† ; n0)
. (5.11)

3. Numerical comparisons I: Homogeneity and local time target

Our first numerical experiment compares exponential tilt-
ing and backtracking for obtaining the probability that the
process departing from state n0 = 0 hits the target interval
I0(10) = [−10, 10] at terminal time t† = 1000 with a positive
bias obtained by setting r = 0.6. This is a simple example that
can be solved analytically and we indeed obtain

zt† (I0(10)) = P[Xt† ∈ I0(10)]

=
10∑

n=−10

P[Xt† = n|X0 = 0] = 7.543 × 10−10.

(5.12)

The objective is thus to benchmark the two Monte Carlo meth-
ods when the quantity of interest is available. Moreover, this
example enables us to assess the importance of appropriate se-
lecting the tilting parameter and the terminal distribution, for
exponential tilting and backtracking, respectively. We illus-
trate that their careful selections are crucial for the efficiency
of these methods.
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(a) (b)

FIG. 2. (a) Exponential tilt estimators of zt† (I0(10)) based on 105

realizations and for different values of the average arrival state (nt† ).
Fixing the arrival state on average is equivalent to fixing of the tilting
parameter θ in Eq. (5.6), ρ in Eq. (5.5) and q. The dashed line shows
the exact value. The error bars show the 95% asymptotic normal
confidence intervals. (b) Monte Carlo relative error in blue points
together with the theoretical values in dashed red line. The minimal
relative error is obtained by fixing the mean arrival state equal to the
extreme of the target interval (nt† = −10).

The homogeneity of the process and the simplicity of the
target make that we can actually avoid the generation of the
full trajectory and only generate, by importance sampling,
the last state of the process (Xt† ). We can then define the
importance sampling estimators of exponential tilting and
backtracking respectively as

Zθ,t† (I0(10)) = II0(10)(Xt† )Lt† (θ ) and

Zn0,t† (I0(10)) = II0(10)(Xt† )Lt† (n0). (5.13)

Then the probability of ending in I0(10) is the expectation
of these two Monte Carlo estimators w.r.t. their importance
sampling distributions, precisely

z = zt† (I0(10)) = EPθ
[Zθ,t† (I0(10))] = EPn0

[Zn0,t† (I0(10))].
(5.14)

For exponential tilting, we generate random arrival states
from the binomial distribution and then compute their mean
weighted by the likelihood ratios in Eq. (5.8). Algorithm
SM1.4 in SM [43], Sec. SM 1, generally given for Ic(a), a � 0
and c integers, follows directly from Eqs. (5.13) and (5.14). In
Fig. 2(a) we show that, for various values of the tilting param-
eter, the importance sampling estimator with the exponential
tilted measure is in close agreement with the true analytical
value.

We can also compute the second moment of the exponen-
tial tilt estimator as

z2 = EPθ

[
II0(10)(Xt† )[Lt† (θ )]2

]
=

n0+t†∑
n=n0−t†

II0(10)(n)[Lt† (θ )]2B

(
t† + n − n0

2
, r, t†

)
. (5.15)

Equation (5.15) together with Eq. (5.12) allow us to compute
the relative error σZ/z, where σZ =

√
z2 − z2. This relative er-

ror is proportional to the square of the number of Monte Carlo
replications required for target precision in the calculations;
cf. pp. 158–159 [1]. Minimizing the relative error enhances
efficiency, in the sense as fewer realizations are necessary in
order to reach a desired level of precision.

(a) (b)

FIG. 3. (a) Results of the estimation of z = P[Xt† ∈ I0(10)] by
using the backtracking measure, with 105 generations and with dif-
ferent radii D of the support of the uniform distribution of the final
state, given in Eq. (5.16). The red dashed line indicates the exact
value. The error bars provide 95% asymptotic normal confidence
intervals. (b) Monte Carlo relative error, with blue dots, together with
the theoretical value, with the dashed red line.

It is shown in Fig. 2(b) that empirical and theoretical values
for the relative error are in agreement. Furthermore, Fig. 2(b)
shows that the minimal relative error is obtained by the tilting
parameter that places the average final position at the lower
bound of the target interval (nt† = −10). This is in agreement
with the derivations of Sec. III D 1.

For backtracking, we need to choose the distribution of
the last states (wt† ). As discussed above for the exponential
tilt, it is simpler to consider the distribution of the number of
positive jumps by the final time (Nt† ), which is given by

ft† (n) = P[Nt† = n].

This distribution is related to the one of the terminal states
through

ft† (n) = wt† (2n + n0 − t†; n0).

We consider a one-parameter family of uniform distributions,

ft† (n) =
{

1
D+1 , if n ∈ [

t†

2 − D, t†

2 + D
]
,

0, otherwise.
(5.16)

The support of the distribution Eq. (5.16) can be trivially mod-
ified, and so we can easily examine scenarios where the new
sampling measure does not adhere to the absolute continuity
requirement. In particular, selecting D < t† violates P � Pn0

and leads to the addition of bias errors (refer to Secs. II D and
IV C for details).

Algorithm SM1.5 in SM [43], provides the detailed im-
plementation of backtracking for the general target interval
Ic(a), with any integers a � 0 and c. The results of the Monte
Carlo study in Fig. 3(a) show that importance sampling by
backtracking is in substantial agreement with the analytical
value, for terminal distributions that include the target region,
namely, for D > 10. But when D < 10, the backtracking mea-
sure forbids states that are important for the estimation of z.
Such values of D lead to bias (systematic) errors. In contrast
with this, when D � 10, forbidden areas do not affect the
backtracking estimator, even without fulfillment of absolute
continuity.

Figure 3(b) shows the influence of the width of the sup-
port of the terminal distribution (2D) on the relative error.
As before, simulations are compared with theoretical values,
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obtained with the formula

z2 = EPn0

[
II0(10)(Xt† )

[
Lt†,n0

(Xt† )
]2]

= 2D
n0+t†∑

n=n0−t†

II0(10)(n)

[
B

(
t† + n − n0

2
, r, t†

)]2

.

We see that the sampling errors are proportional to D. How-
ever, even if for D < 10 we observe the smaller statistical
errors, discrepancies with the analytical value are bigger due
to systematic errors [see Fig. 3(a)].

4. Numerical comparisons II:
Homogeneity and extended time target

For the second numerical example, we evaluate the proba-
bility that the binomial process hits a target extended in time:

zt1,t2 (I0(10)) = P[∃s ∈ [t1, t2] : Xs ∈ I0(10)], (5.17)

where 0 � t1 < t2 � t†. As in the previous example, the pro-
cess is biased towards the positive direction with r = 0.6. In
this case, the hitting probability is not trivial to obtain analyt-
ically. Thus, numerical techniques are the preferred option to
tackle the problem. Moreover, since the target can be hit at dif-
ferent times, we need to simulate the process at intermediate
times.

For exponential tilting, we follow Algorithm SM1.2 in
SM [43], Sec. SM 1, where we choose the tilting parameter
according Eqs. (5.5) and (5.6) such that the tilting parameter
sets the mean final state of trajectories equal to the center
of the interval Ic(a), namely, c. Also, we can compute the
estimator as

ẑt1,t2,m(Ic(a)) = 1

m

m∑
i=1

I

⎧⎨
⎩

t2∑
s=t1

IIc (a)
(
X (i)

s

)
> 0

⎫⎬
⎭Lt† (Xt† , θ )

= 1

m

m∑
i=1

I

⎧⎨
⎩

t2∑
s=t1

IIc (a)
(
X (i)

s

)
> 0

⎫⎬
⎭

×
(

r

q

)N (i)
t†

(
1 − r

1 − q

)t†−N (i)
t†

, (5.18)

where

N ( j)
t† = t† + X ( j)

t†

2
.

For backtracking, we use Algorithm SM1.3 in SM [43],
Sec. SM 1, with the following uniform terminal distribution:

wt† (n; n0) =
{

1
D , if n ∈ Ic(a),
0, otherwise,

with D = 2a. Also, we can compute the Monte Carlo estima-
tor of of zt1,t2 (Ic(a)), given in Eq. (5.17), by

ẑt1,t2,m(Ic(a)) = 1

m

m∑
i=1

I

⎧⎨
⎩

t2∑
s=t1

IIc (a)
(
X (i)

s

)
> 0

⎫⎬
⎭Lt†,n0

(
X (i)

t†

)

= 2D

m

m∑
i=1

I

⎧⎨
⎩

t2∑
s=t1

IIc (a)
(
X (i)

s

)
> 0

⎫⎬
⎭B

(
N (i)

t† , r, t†
)
,

where B is the binomial probability function of Eq. (5.2).

(a) (b)

FIG. 4. (a) Results for the estimation of z = zt1,t2 (I0(10)) of
Eq. (5.17) by backtracking in blue circles and by exponential tilting
in red triangles, always with 105 generations and with varying values
of the center of the target interval c. (b) Monte Carlo relative error ob-
tained by these two methods. Both methods provide good estimations
of z, with similar small Monte Carlo errors. Both methods display
bounded relative error, which, however, increases with exponential
tilting for small values of the center of the target c, namely, as the
target becomes more unlikely.

In Fig. 4(a) we show that the sample average for different
values of the center c computed with the two methods agree
within errors. In Fig. 4(b) we also show that the relative errors
in both methods have the same order of magnitude. However,
the relative error for the exponential tilt increases as the event
becomes rarer, whereas the errors in the backtracking method
are more constant. This result is surprising provided that the
backtracking process is biased [because our particular choice
of wt† in Eq. (4.9) does not fulfill absolute continuity] whereas
the exponential tilted method is unbiased.

B. Process with metastable states

In this section we study a more sophisticated and practi-
cal Markovian process where the transition probabilities in
Eq. (5.1) do depend on the value of the state n. Precisely, they
take the logistic form

p•n( j) =
{{1 + e jνn(n−	)(n+	)}−1, for j = −1, 1,

0, otherwise,
(5.19)

where n and 	 > 0 are integers and ν > 0 is real. We note
that transition probabilities in Eq. (5.19) define a process over
a binomial tree (i.e., with stepwise upwards or downwards
unit changes), since p•n(1) + p•n(−1) = 1. Additionally, this
Markov process exhibits two metastable states at positions
n = ±	. This means that trajectories tend to oscillate around
these two states, and it is exceptional to observe a transition
from one of these states to the other one. The parameter ν

tunes the robustness of the metastable states. If ν = 0, then the
process is an unbiased random walk without metastable states.
At the opposite, namely, at the limit ν → ∞, trajectories
evolve by forming a straight line (deterministically) towards
either 	 or −	.

Furthermore, the roles of 	 and ν can be understood
intuitively from a physical perspective. The transition prob-
abilities in Eq. (5.19) can be seen as a discretization of the
trajectory of a particle that, at position n, is subject to the force

− tanh
νn(n − 	)(n + 	)

2
,
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(a) (b) (c)

FIG. 5. Panels (a)–(c) show ensembles of 100 sample paths for t ∈ {0, . . . , 400} and parameters ν = 10−3 and 	 = 15. Trajectories in
(a) are generated with the original process with transition probabilities depending on the states through Eq. (5.19). All paths depart from
position n = 0 (P[X0 = n] = δ0,n). The metastable states n = ±	 are indicated by the two horizontal dashed red lines. Due to the symmetry
of the transition rates around n = 0, on average, one half of the trajectories evolve towards the metastable state n = 	, and the other half
evolve towards the state n = −	. No transitions between the metastable states were observed within the given time horizon. Trajectories in
(b) are generated under the tilted measure of Eq. (5.20) with tilting parameter θ = 1. We note that positive values of the tilting parameter favor
transitions towards the positive metastable state. We note that the location of the metastable state of the tilted process is slightly above the
one of the original process. Trajectories in (c) are obtained by backtracking and transitions over a wide range of intermediate times can be
observed. It is shown that the backtracking process does respect the position of the metastable states of the original process.

in the overdamped limit, i.e., in a high-viscosity regime where
inertia can be neglected. In Fig. 5(a) we show typical trajecto-
ries for this process.

In order to statistically characterize these transitions, we
make use of our two change-of-measure strategies.

For exponential tilting, by using Eq. (3.13) we obtain the
following transition probabilities for any fixed value of the
tilting parameter θ ∈ R:

p•n( j, θ ) =
{{1 + e j[νn(n−	)(n+	)−2θ]}−1, for j = −1, 1,

0, otherwise.
(5.20)

The parameter θ breaks the symmetry of the transition rates
around n = 0 and effectively biases paths either towards the
metastable state in the positive position 	 (for θ > 0) or in
the negative position −	 (for θ < 0). Moreover, Eq. (5.20)
tells that the precise positions of the metastable states are not
preserved and depend on the value of θ . This fact is illustrated
numerically in Fig. 5(b).

In this case the likelihood ratio process of the exponentially
tilted measure depends on the whole Markov process, and it
is obtained by Eq. (3.14).

For backtracking, we cannot use an analytical form for the
transition probabilities, and we have to evaluate the backward
change-of-measure kernel of Eq. (4.5) numerically. In princi-
ple, this evaluation would require to compute the probabilities
P[Xt = n|X0 = n0], for all values of n and t , through the
iteration of the forward Kolmogorov equation

P[Xt+1 = n|X0 = n0]

= p•n+1(−1)P[Xt = n + 1|X0 = n0]

+ p•n−1(1)P[Xt = n − 1|X0 = n0]. (5.21)

In order to ensure numerical tractability of Eq. (5.21), bound-
ary conditions are introduced to the system. We set 	max and
−	max as boundaries such that

p•−	max (−1) = p•	max (1) = 0 and

p•−	max (0) = p•	max (0) = {1 + e−νn(n−	max )(n+	max )}−1.

These conditions imply that particles are unable to cross the
boundaries, but they can avoid jumping, namely, remaining
in the same state, precisely at the boundaries. This approx-
imation does not introduce significant systematic errors in
the solution as long as the probability for the process to
reach the boundaries is negligible (namely, P[Xt = ±	max] �
0, for t = 1, . . . , t†). Although it is possible to introduce
alternative approximations that avoid the use of Eq. (5.21),
they are not employed in this work. For more details on
these alternative approaches, we refer readers to [16]. In
Fig. 5(c) it is shown that the process generated by back-
tracking can be used to sample paths connecting metastable
states.

1. Numerical comparisons III:
Inhomogeneity and local time target

As with the homogeneous binomial process in Sec. V A 3,
we present another example for which the desired quantity can
be evaluated analytically. Let 	 be a positive integer. We are
interested in the probability that a path starting from one of the
two metastable states, precisely −	, hits a one-sided interval
that includes the other metastable state, 	, at some terminal
time t†. This is the probability

z(A) = P[Xt† ∈ A|X0 = −	],

where A = [a,∞) and the integer a is such that −	 /∈ A and
	 ∈ A, i.e. such that −	 < a < 	. In fact, this problem can be
solved by the direct evaluation of P[Xt† = n|X0 = −	] at all
integers n ∈ A, by means of Eq. (5.21), and then by summing,
because

z(A) =
∑
n∈A

P[Xt† = n|X0 = −	]. (5.22)

In this study, we first estimate z(A) through an ensemble of
paths generated by backtracking, as described in Algorithm
SM1.3 in SM [43], Sec. SM 1.
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(a) (b)

FIG. 6. Estimations of z(A) = P[Xt† ∈ A|X0 = −	], for A =
[	 − 2, ∞], 	 = 15, ν = 10−3, t† = 100, by backtracking in panel
(a) and by exponential tilting in panel (b), always with 104 gen-
erations. Error bars show the 95% asymptotic normal confidence
intervals.

The terminal distribution is the uniform one, given by

wt† (n; −	) =
{

1
2D+1 , if n ∈ I	(D),
0, otherwise,

(5.23)

for some positive integer D.
Our first experiment considers extensions of the temporal

horizon of the simulation by backtracking. We thus generate
sample paths by backtracking at times t = 0, . . . , t∗, this for
several values of t∗ � t†. The aim is to determine the effect
of the terminal time on the accuracy of the Monte Carlo
estimator of z(A). So the terminal distribution in Eq. (5.23)
is considered at time t∗, instead of t†.

In Fig. 6(a) we see that the Monte Carlo estimations of z(A)
are close to the value computed analytically by Eq. (5.22). We
also see that the Monte Carlo errors increase as t∗ increases
away from t†.

In Fig. 6(b) we show the computation of z(A) over an
ensemble of paths generated by Algorithm SM1.2 in SM [43],
Sec. SM 1, of exponential tilting, for different values of the
tilting parameter θ . In contrast with backtracking, the expo-
nential tilting estimator does not seem to converge to z(A).
Furthermore, certain sample paths possess large fluctuations,
visible in the error bars of Fig. 6(b). Thus, we observe that
the distribution of the exponential tilting estimator exhibits
heavy tails. Consequently, a reliable estimation for the first
moment necessitates a very large number of simulations. As
this number increases, we observe a notable improvement of
the exponential tilting estimation in Fig. 7, in which exponen-
tial tilting is based on a larger number of simulations than in
Fig. 6(b). Figure 7 shows the optimal tilting parameter θ is lo-
cated around 0.3. Large discrepancies between the numerical
estimator and the analytical result are observed for values of θ

close to one, pointing out the importance of using the optimal
tilting parameter for this type of application.

The example presented in this last section offers insights
into the suitability of backtracking for addressing problems
involving transition paths between metastable states. Re-
markably, backtracking, although biased due to the violation
of absolute continuity of measures, proves to be more ef-
fective in such scenarios than exponential tilting, which is
unbiased.

VI. FINAL REMARKS

Problems that require sampling rare trajectories within a
feasible amount of time appear in various scientific disciplines

FIG. 7. Estimations of z(A) = P[Xt† ∈ A|X0 = −	], for A =
[	 − 2, ∞], 	 = 15, ν = 10−3, t† = 100 and by exponential tilting
with 106 generations. Error bars show the 95% asymptotic normal
confidence intervals.

(such as physics, mathematical biology, and finance). In this
article, we analyze two paradigms of methods for sampling
rare trajectories of Markov processes: exponential tilting and
stochastic bridge. Our main contribution is to show that these
two methods can be re-expressed within the general theory
of change of measure and importance sampling. Through
practical numerical examples, we illustrate the applicability
of both Monte Carlo methods to the computation of probabil-
ities of rare trajectories. Moreover, we provide various Monte
Carlo algorithms in detailed form, so to make them directly
accessible applied scientists.

We have demonstrated, both theoretically and through
simulations, that techniques relying on sampling stochastic
bridges may lead to systematic errors in the estimation of
averages (even when the bridge generator itself is unbiased) if
absolute continuity is not satisfied. To the best of the authors’
knowledge, this represents a unique finding to consider when
employing such methods. It highlights that calculations with a
small Monte Carlo error could prove significantly inaccurate
in the absence of absolute continuity.

For the case of the binomial process, we provide numer-
ical evidence that the relative errors of these two sampling
strategies have small and comparable order. In problems in-
volving transition paths between metastable states, stochastic
bridges appear to assign consistent values to the estimators for
different choices of terminal distributions. In contrast, with
exponential tilting the distribution of the estimator appears
heavy-tailed. Consequently, we expect that a large number of
Monte Carlo sampling is required in order to obtain an accu-
rate estimation of the first moment. We nevertheless expect
that exponential tilting could be particularly valuable when
dealing with multidimensional processes, where the applica-
tion of backtracking becomes challenging. We also keep in
mind that exponential tilting is more restrictive, in the sense
that it requires the existence of the cumulant generating func-
tion of the transition probabilities of the Markov process (as
mentioned at the end of Sec. III C). In contrast, there is no
similar restriction with backtracking.

There is an evident need for future research in this topic.
In our numerical examples, we showed that there are optimal
choices of the tilting parameter and of the terminal distri-
bution, that minimize the errors of exponential tilting and
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backtracking, respectively. Analytical optimality results and
practical formulas for the tilting parameter and for the ter-
minal distribution are important questions that remain mainly
open. Another subject of investigation could be the extension
of the exponential tilting likelihood ratio in Eq. (3.14) from
one to several tilting parameters: at each transition of the pro-
cess, a specific tilting parameter could be used, thus depending
on the current state. Finally, we could consider other practical
settings for comparing backtracking and exponential tilting,
such as the one of the insurer ruin with recuperation (cf., e.g.,
[66] in relation with spectrally negative Lévy processes).

The Python codes used for the creation of the figures of
this article are freely available at [67], with appropriate credit
to the authors.
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