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Thermodynamic precision in the nonequilibrium exchange scenario
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We discuss exchange scenario thermodynamic uncertainty relations for the work done on a two-qubit entan-
gled nonequilibrium steady state obtained by coupling the two qubits and putting each of them in weak contact
with a thermal bath. In this way we investigate the use of entangled nonequilibrium steady states as end points of
thermodynamic cycles. In this framework we prove analytically that for a paradigmatic unitary it is possible to
construct an exchange scenario thermodynamic uncertainty relation. However, despite holding in many cases, we
also show that such a relation ceases to be valid when considering other suitable unitary quenches. Furthermore,
this paradigmatic example allows us to shed light on the role of the entanglement between the two qubits for
precise work absorption. By considering the projection of the entangled steady state onto the set of separable
states, we provide examples where such projection implies an increase of the relative uncertainty, showing the
usefulness of entanglement.
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I. INTRODUCTION

In recent decades, owing to the continuous improvement
in the miniaturization and control of devices down to the
nanoscale, increasing efforts have been devoted to under-
standing small thermal engines and if and how the laws of
thermodynamics still apply in the microscopic world. In this
scenario quantum mechanics naturally dictates the rules of the
game. Quantum thermodynamics is becoming then a funda-
mental branch of modern physics [1–3] and technology [4].

When the size of the system approaches the micro-
nanoscale, the fluctuations of thermodynamic variables be-
come comparable or even larger than the expectation values,
marking a relevant difference with macroscopic statistical
mechanics. Finding bounds for the uncertainty means un-
derstanding the profound origin of the fluctuations and,
more practically, helps monitoring the precision of a ther-
modynamic process. This interest led in recent years to the
discovery of thermodynamic uncertainty relations (TURs)
which provide a lower bound for the uncertainty of thermo-
dynamic variables. It happens that the higher the precision
one wants to achieve, the higher the dissipation cost. The first
TURs were introduced by Seifert et al. during the last decade
[5–8]; however, their generality and fundamental origin is still
debated [9].

In Ref. [10] it was shown that specific TURs can be
derived from the exchange fluctuation theorem [11]. The sit-
uation there considered concerns a thermodynamic cycle in
which two (or more) energetically decoupled bodies (e.g.,
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qubits) start each in its own thermal state achieved by weak
interaction with a thermal bath. The initial state is then the ten-
sor product of the two single-qubit equilibrium steady states
(ESSs). Once in this ESS the system has associated zero aver-
age entropy production [12] since no heat is exchanged with
the thermal baths and the von Neumann entropy is constant.
Then an interaction Hamiltonian is turned on and then off, im-
plying energy exchange between the two bodies. Finally, the
cycle is closed by letting the two bodies thermalize again with
their respective baths, implying irreversible entropy produc-
tion. In this framework a function of the average irreversible
entropy production produced in the relaxation step (i.e., before
the ESS is reached) provides a lower bound for the relative er-
ror of thermodynamic charges, e.g., work or exchanged heats.
Specifically, the TUR in the exchange scenario of Ref. [10]
for the work W is an inequality of the following form:

〈W 2〉 − 〈W 〉2

〈W 〉2
� F (�), (1)

where the function F (�) in the r.h.s. is generally a monoton-
ically decreasing positive function of the irreversible entropy
production associated to the cycle [see Eq. (31) for explicit
forms of F].

With the aim of probing nonequilibrium and purely quan-
tum features, we consider here a modified setup. The two
bodies are energetically coupled, making the initial configu-
ration a nonequilibrium steady state (NESS). A constant heat
current flows from the hot bath to the cold bath mediated by
the quantum system posed in the middle. At variance with the
ESS configuration of [10], (1) the NESS implies a nonzero
(constant) entropy production rate, (2) not being under the

2470-0045/2024/109(3)/034112(10) 034112-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7248-664X
https://orcid.org/0009-0003-5410-2846
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.034112&domain=pdf&date_stamp=2024-03-08
https://doi.org/10.1103/PhysRevE.109.034112


FARINA, BENAZOUT, CENTRONE, AND ACÍN PHYSICAL REVIEW E 109, 034112 (2024)

hypotheses of the exchange fluctuation theorem, in principle
there is no guarantee that a TUR will appear, and (3) the initial
NESS configuration may contain quantum correlations whose
role deserves attention, hopefully driving an improvement in
precision. Indeed, it is a known fact that entanglement is use-
ful for precision tasks in quantum metrology [13,14], hence
intuitively it may be advantageous for the precision of the
thermodynamic cycle.

It should be noticed that other TURs for NESS were
already studied in literature regarding the fluctuations of
thermodynamic currents in the NESS, in both classical and
quantum frameworks [15–17]. Notice that the situation we
consider is different: we consider a cycle in which the extreme
points are described by NESS and a unitary sending the sys-
tem out of the NESS. In this regard, our construction is closer
to the scheme presented in [10,18] than to studies regarding
current fluctuations in the NESS [15–17].

The main findings of our work are the following. In our
framework we first prove analytically that for a paradigmatic
unitary an exchange scenario TUR still applies. However,
despite holding in many cases, we also find that violations
of such a TUR can be achieved via other suitable unitary
quenches. Furthermore, we investigate the effect of the en-
tanglement between the two qubits on the precision of work
absorption. By considering the Euclidean projection of the
NESS onto the set of separable states, we provide examples
where such a projection implies an increase of the relative
uncertainty. This argument confirms the usefulness of the
presence of entanglement in the NESS.

The article is organized as follows. In Sec. II we introduce
our scheme based on the two-point-measurement setup and
on the NESS as extreme points of the cycle. We focus on
the paradigmatic example of the two-qubit entangled NESS.
In Sec. III we derive a TUR for the work treating a partic-
ular unitary which, swapping the two entangled eigenstates
of the Hamiltonian, deserves attention in our analysis. How-
ever, we show that in general the setup under consideration
is not limited by the exchange scenario TURs. We finally
discuss the role of entanglement in the framework. Our con-
clusions together with possible future extensions are presented
in Sec. IV.

II. PRELIMINARIES AND NESS-BASED
STROKE ABSORBER

Here we introduce our original protocol that is based on a
previously studied [19,20] two-qubit nonequilibrium model.
To facilitate the reading, we report some essential elements.

A. Two-qubit model

The setup we study is schematically depicted in Fig. 1.
We consider a system S composed of two qubits. The
Hamiltonian of S is

H = H0 + Hint, (2)

with

H0 = �c|1〉〈1| ⊗ I2 + �hI2 ⊗ |1〉〈1| (3)

FIG. 1. Schematic representation of the NESS-based stroke ab-
sorber. The system is composed of two coupled qubits (coupling
constant g). At variance with conventional protocols the starting state
of the system in the cycle is a NESS (left) which describes a constant
heat current Jness from the hot bath (temperature 1/βh) to the cold
bath (temperature 1/βc) mediated by the quantum system. A fast
unitary is performed on the system (middle) which sends the state
out of the NESS (right). This allows one to do work on the system.
The system is finally left to reach again the initial NESS closing the
cycle.

containing the local Hamiltonians of each subsystem and a
coupling flip-flop term

Hint = g(|01〉〈10| + |10〉〈01|). (4)

We consider for simplicity the resonant case �c = �h ≡ �

that makes the eigenvalues of H

(0,� − g,� + g, 2�) (5)

with associated eigenvectors

|ϕ0〉 = |00〉, |ϕ�±g〉 = |01〉 ± |10〉√
2

, |ϕ2�〉 = |11〉. (6)

B. Dynamics

We put each qubit in weak coupling with its own
Markovian thermal bath. We name the two baths Bc and
Bh with corresponding temperatures 1/βc (colder) and 1/βh

(hotter), respectively. We also assume the thermal baths
to be bosonic and interacting with the system through an
excitation-conserving interaction Hamiltonian, which couples
the excitation of a qubit with the loss of a photon from its
own bath and vice versa. In this framework the dynamics of S
is described by the Gorini-Kossakowski-Sudarshan-Lindblad
master equation [21,22]. Furthermore, we consider Ohmic
spectral density and, more importantly, strong internal cou-
pling with the aim of generating entanglement. In this regime
the global master equation yields an accurate description
of the system state [19,23] and ensures the entropy pro-
duction rate to be always non-negative [24,25]. The master
equation reads

ρ̇(t ) = − i[H, ρ(t )] +
∑
α=c,h

∑
ε=�±g

	α,εD[L†
α,ε]ρ(t )

+ 	α,εD[Lα,ε]ρ(t ), (7)
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where D denotes the dissipator superoperator defined as

D[L]ρ = LρL† − 1
2 {L†L, ρ}, (8)

and the transition rates are expressed by

	α,ε = ναε

eβαε − 1
, 	α,ε = ναε

eβαε

eβαε − 1
, (9)

with να being the coupling strength to each thermal bath.
According to this setup, only transitions with energies � ± g
can be induced by the system-bath coupling considered here
[19], with corresponding jump operators being

Lc,�−g = 1√
2
|ϕ�+g〉〈ϕ2�| − 1√

2
|ϕ0〉〈ϕ�−g| (10)

Lc,�+g = 1√
2
|ϕ�−g〉〈ϕ2�| + 1√

2
|ϕ0〉〈ϕ�+g| (11)

Lh,�−g = 1√
2
|ϕ�+g〉〈ϕ2�| + 1√

2
|ϕ0〉〈ϕ�−g| (12)

Lh,�+g = − 1√
2
|ϕ�−g〉〈ϕ2�| + 1√

2
|ϕ0〉〈ϕ�+g|. (13)

The NESS, i.e., the stationary state of Eq. (7), is diagonal in
the Hamiltonian’s eigenbasis (6), assuming the form

ρness = ρ0|ϕ0〉〈ϕ0| + ρ−|ϕ�−g〉〈ϕ�−g| + ρ+|ϕ�+g〉〈ϕ�+g|
+ ρ2�|ϕ2�〉〈ϕ2�|. (14)

The expressions of the coefficients ρ0, ρ−, ρ+, ρ2� are re-
ported in Appendix A (see also [20]) for brevity. Here we
simply remark that the NESS is a passive state, meaning
that no work can be extracted from it (see Appendix B and
[20] for further details), as a consequence of the fact that the
populations are decreasing in the energy eigenvectors, namely,
ρ0 � ρ− � ρ+ � ρ2�.

C. Thermodynamic cycle

For long enough time, the interaction with the baths sends
S in a NESS, with density matrix ρness, which describes a
constant heat current Jness from the hot bath to the cold bath.
The NESS is the initial state of the protocol we present here.
In order to do work W on the system, at time t = −δt we
apply a fast unitary operation U which sends the system
out of the NESS. With fast we mean that the external field
is turned on and off on timescales δt much smaller than
the relaxation timescales. Alternatively, one may think to
decouple the system from the thermal baths during the work
step which now can occur on arbitrary timescales. In both the
cases, the resulting state at t = 0 is then

ρ(0) = UρnessU
†. (15)

In the following we shall use the convention that work (heat)
is positive when it is done on (absorbed by) the system.
The work probability distribution is constructed through the
two-point-measurement scheme [1,26–29] and reads

P(W ) =
∑
n,m

〈ϕεn |ρness|ϕεn〉|〈ϕεm |U |ϕεn〉|2δ(εm − εn − W ),

(16)
where the first energy measurement is performed on the NESS
(time t = −δt) and the second just after the application of the

unitary (time t = 0). Notice that the Hamiltonian of the sys-
tem is the same (i.e., H) at the two measurement points. Equa-
tion (16) allows one to calculate the statistical moments of W .
Defining 〈 f (W )〉 := ∫ +∞

−∞ dW P(W ) f (W ), the average work is
〈W 〉, while the work variance is Var(W ) = 〈W 2〉 − 〈W 〉2.

The cycle closes by allowing the system to relax with the
two baths, finally reaching the initial NESS [symbolically,
time t → ∞, meaning at times much greater than the relax-
ation time imposed by (7)], namely, we have

ρ(∞) = ρness (17)

as end point of the cycle.

D. Entropies

In this subsection we introduce entropic quantities that will
be useful for subsequent discussions. In particular, consider-
ing our NESS-based cycle, we are interested in identifying
sensible candidates for the entropy � entering in the r.h.s. of
inequality (1).

To start with, the von Neumann entropy of S is the state
function

S(t ) = −Tr[ρ(t ) ln ρ(t )], (18)

and its temporal change �S(t ) = S(t ) − S(0) has reversible
and irreversible contributions,

�S(t ) = �eS(t ) + �iS(t ). (19)

The term

�eS = βh〈Qh〉 + βc〈Qc〉 (20)

is the reversible contribution due to the heat exchanges with
the thermal baths [30,31], and �iS is the irreversible con-
tribution called entropy production. We also define the time
derivative of (20), i.e., the entropy flow from the environment
to the system, as

Ṡe(t ) = βhJh(t ) + βcJc(t ), (21)

where

Jα (t ) = 〈Q̇α〉(t )

= Tr{H
∑

ε=�±g

	α,εD[L†
α,ε]ρ(t ) + 	α,εD[Lα,ε]ρ(t )}

(22)

is the heat current associated to bath α. From Eq. (19) the
entropy production rate then reads

Ṡi(t ) = Ṡ(t ) − Ṡe(t ). (23)

Regarding the protocol described in the previous subsec-
tion, after a cycle, by definition, we have a total null entropy
change, �S|cycle := S(∞) − S(0) = 0, implying �Si|cycle =
−�Se|cycle. Notice that, for an arbitrarily large cycle time,
�Si|cycle = �iS(t → ∞) diverges because its asymptotic rate
is nonzero. On the other hand, the entropy production ex-
cess with respect to the NESS value, i.e., the dissipation
cost needed for applying the unitary U , can remain finite. In
formulas, making explicit the dependence on the initial state,
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we define

�Scost (t ) := �iS(t ;UρnessU
†) − �iS(t ; ρness), (24)

where we subtract from the actual term �iS(t ;UρnessU †) :=
�iS(t ) the constantly growing term we would have obtained
without applying the unitary U . In other words, �iS(t ; ρness)
is treated as an offset, where the state remains in the NESS for
all t . If we consider the associated rate

Ṡcost (t ) := Ṡi(t ;UρnessU
†) − Ṡi(t ; ρness), (25)

it tends to nullify as the state tends to the NESS for t → ∞.
Consequently, for our NESS-based cycle, while �iS|cycle

cannot enter in the r.h.s. of (1) (being diverging yields for the
rhs the trivial value zero), the steady-state value of (24)

�cost := �Scost (∞) (26)

is instead a possible sensible (finite) candidate. Introducing
the quantum relative entropy

S(ρ||σ ) = Tr[ρ(ln ρ − ln σ )], (27)

another well-defined candidate is

�rel := S(UρnessU
†||ρness), (28)

which geometrically is a quantifier of the distance between
the density operators UρnessU † and ρness and physically cor-
responds to the nonadiabatic contribution to the entropy
production in the relaxation process [25,32,33]. The fact that
both (26) and (28) could represent eligible entropies enter-
ing in (1) is encouraged by the fact that, in a conventional
stroke-based engine with ESS, they both reduce to the same
quantity, the average entropy production, and take the role of
� entering in the r.h.s. of (1) [10].

III. ANALYSIS

A. Precision using selected quenches

1. Swap in the entangled basis

In the exchange scenario of Ref. [10] the relative uncer-
tainty of work is lower bounded by a function of the average
entropy production. To start, being interested in possible ben-
eficial interplay between correlations and precision, we set the
unitary to be
U := |ϕ0〉〈ϕ0| + |ϕ�+g〉〈ϕ�−g| + |ϕ�−g〉〈ϕ�+g| + |ϕ2�〉〈ϕ2�|.

(29)

It acts nontrivially only on the entangled part of the energy
basis, swapping the two entangled eigenstates. Furthermore,
notice that it is nonlocal and can in principle build or destroy
entanglement in a generic bipartite quantum state. However,
it can be shown that for any state written in the form of our
NESS in Eq. (14) the quench (29) does not modify the amount
of entanglement.

Dynamics. To get insights on the relaxation process, solv-
ing the master equation (7) we plot in Fig. 2(a) the currents
Jh(t ) and Jc(t ) as function of time, together with their rescaled
difference (the chosen parameters are indicated in the fig-
ure caption) [34]. The negative current values express the
fact that in the relaxation process at short times the system
provides heat to both the baths. In Fig. 3 we plot instead the
corresponding relaxations to the NESS values of the reversible

FIG. 2. (a) Having used the unitary operation defined in (29) to
perform work on the system, we plot the hot and cold heat currents
during relaxation to the steady state for βc = 3, βh = 1, νc = νh =
0.004 with energy levels � = 1 and g = 0.75. During the transient
regime, (Jh − Jc )/2 is smaller than in the NESS, meaning a net
slower heat transfer between the two baths. (b) Same but with the
maximum work unitary (32). Notice the negative value of (Jh − Jc )/2
at short timescales, meaning more heat given to the hot bath than to
the cold bath at those timescales.

and irreversible contributions to the system’s entropy rate
entering in the expression (23). The NESS is characterized by
a positive entropy production rate Ṡi(∞), black dotted line.
The application of the unitary has an entropy production cost
�cost that is geometrically the area delimited by Ṡi(t ) (black
continuous line) and Ṡi(∞).

Existence of a TUR. For the particular unitary (29), a
bound for the work relative uncertainty still applies as we
shall discuss now. The relative uncertainty of the work is
lower bounded by the function introduced in [35–37], i.e.,
f0(x) := 2/(ex − 1), where x must be set equal to the quantum
relative entropy between the NESS evolved with the unitary U
and the NESS itself, namely,

〈W 2〉 − 〈W 〉2

〈W 〉2
� 2

e�rel − 1
, (30)

with �rel defined in (28). The proof of inequality (30) is
reported in Appendix C, and both the left-hand side (l.h.s.) and
right-hand side (r.h.s.) are plotted in Fig. 4(a) as a function of
the the internal coupling g.

034112-4



THERMODYNAMIC PRECISION IN THE NONEQUILIBRIUM … PHYSICAL REVIEW E 109, 034112 (2024)

FIG. 3. Using the unitary in (29), relaxation of the entropy rates
to the NESS values. Ṡ(t ) is the derivative of the von Neumann
entropy of the state and the entropy flow Ṡe(t ) is computed from the
heat currents as in (21). The entropy production rate Ṡi(t ) is given
by subtracting the latter from the first term, as in (23). We used the
parameters � = 1, βc = 3, βh = 1, νc = νh = 0.004, and g = 0.75.
The NESS is characterized by a positive entropy production rate
(black dotted). The unitary implies an entropy production cost during
the time transient with respect to the NESS value, geometrically the
area between black full and black dotted lines.

More generally, we plot in Fig. 4(a) the r.h.s. of the
TUR corresponding to the several bounds established in the
exchange scenario. Such bounds are defined by the functional
form of F (x) appearing in the r.h.s. of inequality (1) and by
the argument x, namely, F ∈ { f0, f }, with

f0(x) := 2/(ex − 1),

f (x) := 1/ sinh2[y s.t. (y tanh(y) = x/2)],

x ∈ {�rel, �cost}. (31)

The function f (x) was introduced in Ref. [10], representing
the tightest saturable bound in the exchange scenario, im-
plying automatically f (x) � f0(x). We numerically observe
that in our nonequilibrium framework the relative entropy is
always lower than the entropy production cost, despite that
the two quantities coincide in the exchange scenario [10]. We
notice that all the bounds are respected in Fig. 4(a).

2. Maximum work unitary

With the aim of considering the optimal process, we
can turn our attention to the unitary corresponding to the
maximum work doable on the system,

U ≡ |ϕ0〉〈ϕ2�| + |ϕ�+g〉〈ϕ�−g| + |ϕ�−g〉〈ϕ�+g| + |ϕ2�〉〈ϕ0|.
(32)

Interestingly, from Fig. 2(b), while providing energy to both
baths during the time transient, the system supplies more
energy to the hot bath during a small time transient (negative
values of the gray continuous curve). As shown in Fig. 4(b)
and comparing it with Fig. 4(a), the maximum work unitary
also allows for better precision while still not violating the ex-
change scenario bounds for the selected parameters in the plot.

FIG. 4. (a) Using the unitary (29) and setting � = 1, νc = νh =
0.004, βc = 3, βh = 1 we plot the l.h.s. and r.h.s. of (1) as function
of the internal coupling g, considering the four different forms for
the r.h.s. as detailed in (31). (b) Same as in (a), but using the max-
imum work unitary (32). This leads to lower relative error. In both
(a) and (b), under the selected settings no violation of the exchange
scenario’s TURs is found, and the precision increases for increasing
internal coupling g. The insets show instead the behavior of the
relative error substituting the NESS with the closest separable state
in the Frobenius norm. In the latter case the relative error increases,
an argument in favor of the usefulness of entanglement.

3. Violation of the exchange scenario’s TURs

The violation of TURs in nonequilibrium classical and
quantum scenarios has recently been studied in different
settings [38–40]. A similar analysis, however, was never
performed in nonequilibrium settings for the exchange
scenario’s TURs. Indeed, in our nonequilibrium exchange
scenario the hypotheses of the exchange fluctuation theorem
do not hold, and thus the existence of such TURs is not
guaranteed. As a matter of fact, we demonstrate that all the
bounds in (31) can indeed be violated with a suitable choice
of the unitary operation. This is shown in Fig. 5. The form
of the selected unitary is written explicitly in Appendix F.
This means that, in general, in the setup under consideration
the precision is not limited by the exchange scenario TUR
bounds, namely, there exist parameter settings for which
(〈W 2〉 − 〈W 〉2)/〈W 〉2 < F (�), for all � and F (�) defined
in (31). In particular, we emphasize that a saving in entropy
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FIG. 5. Setting � = 1, νc = 0.002, νh = 0.008, βc = 3, βh = 1
we plot the l.h.s and r.h.s. of (1), using the first expression f0(x)
in (31) for both x = �cost and x = �rel (see legend) and a unitary
that allows one to violate both the bounds, reported in Eq. (F1).
Here the relative error does not decrease monotonically with g. The
inset shows instead the behavior of the relative error substituting
the NESS with the closest separable state in the Frobenius norm. In
the latter case the relative error increases, an argument in favor of the
usefulness of entanglement, similarly to Fig. 4.

production cost as defined in Eq. (26) does not limit the
precision, hence marking a difference with respect to the
exchange scenario discussed in [10].

Rare violations. In order to obtain more insights on the
validity of the TURs in different nonequilibrium exchange
scenarios, we perform computations for a large number
of unitaries drawn from a Haar measure. We notice that
random unitaries are not necessarily Hermitian, while the
particular unitaries (29) and (32) discussed in the preceding
sections are. As also remarked in Ref. [41], non-Hermitianity
of the unitary operation is a necessary condition for TUR
violation (further details are reported in Appendix G). The
analysis is reported in Fig. 6. We numerically observe that
violations are rare and manifest especially in the regime where
both the l.h.s. and r.h.s. take small values (high precision).
Also, the violations we found in all cases are not arbitrarily
large, hence not excluding the possibility that a looser TUR
bound might hold in our settings.

B. Precision boost from entanglement

The NESS obtained in this setup is in general nonseparable
[19,20,23] for large enough internal coupling g. Specifically,
the NESS is entangled iff [20]

(ρ− − ρ+)2 > 4ρ0ρ2�. (33)

We remark that in our framework it is immediate to build
entanglement criteria (equivalent to the above condition) that
are based on thermodynamic quantities. For instance, for the
specific case of the unitary (29) we find the following neces-
sary and sufficient condition for the presence of entanglement
in the steady state:

2γ > 2(ξ − 1)2 + ξ 2, (34)

FIG. 6. TUR evaluation for 100 000 random unitaries drawn
from a Haar measure for βh = 1, βc = 3, νh = 0.004, νc =
0.012, � = 1, g = 0.5. The work relative error squared (abscissa)
corresponds to the l.h.s. of the TUR, while for the r.h.s. we take
f0(�rel ) (ordinate). The violations happen mostly in the regime
of high thermodynamic precision, points above the red line. The
red point indicates the unitary from Eq. (29). Inset: histogram of
l.h.s.-r.h.s. The bins below zero (vertical red line) quantify the
small amount of violations observed, a fraction ≈0.0017. The
vertical dashed line corresponds to the maximum violation observed,
corresponding to a value ≈ −0.39.

where ξ := 〈W 2〉/(4g2) = ρ+ + ρ−, i.e., ξ is proportional to
the mean squared work, while γ := Tr(ρ2

ness) is the purity of
the NESS. Further developments are reported in Appendix D.
The entanglement for large enough internal coupling g is
reported instead in Fig. 7 using the concurrence as quantifier.
This allows us to shed light on the interplay between quantum
correlations and precision in thermodynamics. Additionally,
in Fig. 7 we plot, beyond the concurrence, the mutual in-
formation and the purity of the NESS as function of the

FIG. 7. Concurrence (black), mutual information (blue dashed),
and purity (inset) of the NESS for � = 1, νc = νh = 0.004, and
βh = 1, βc = 3 as functions of the internal coupling g. Notice that
for small values of g the concurrence is 0. Remarkably, increasing
correlations are accompanied by a reduction of the purity of the
two-qubit state.
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internal coupling g. Comparing it with Fig. 4, we observe that
increasing correlations and the formation of entanglement ac-
company the reduction of the relative error and that this is not
due to the fact that the state becomes purer, since the purity,
in contrast, decreases. In addition, the selected unitaries (29)
and (32) do not change the entanglement in the NESS, thus
the advantage observed in the reduction of the relative work
uncertainty may be due to the quantum correlations already
present in the state.

The weakness of the previous consideration, based on
the comparison of different NESSs’ performances by vary-
ing the internal coupling g, may rely on the fact that by
doing so we compare situations with different Hamiltonian
resources. However, in what follows we provide a further
argument in favor of the usefulness of entanglement based
on a purely geometrical consideration. If we replace the
entangled NESS with the closest separable state (i.e., the
“classically constrained state”), we should observe some in-
crease in the relative error to sustain the hypothesis that
entanglement is useful in this scenario. Therefore, we con-
sider the closest separable state ρ̄sep in the Frobenius norm.
To evaluate it we solve the following convex optimization
problem:

ρ̄sep := arg

⎛
⎜⎝

minρsep ‖ρness − ρsep‖2

s.t. ρsep � 0, Tr(ρsep) = 1

ρPT
sep � 0

⎞
⎟⎠. (35)

The analytical way to find the solution ρ̄sep of the above
convex optimization problem was introduced in Ref. [42] and
is detailed in Appendix E. From the thermodynamic point
of view, the result is that when replacing ρness with ρ̄sep, the
relative error of the work increases. This is shown in the
insets of Fig. 4 and Fig. 5, where the black continuous lines
refer to the actual behavior of the relative variance, while
the dash-dotted magenta lines refer to the same quantity but
obtained when using the closest separable state ρ̄sep in the
two-point-measurement scheme of Eq. (16). Intuitively, the
magenta lines represent the (worse) performance that would
have been achieved if the state had been forced to stay inside
the set of separable states. While not representing a defini-
tive assessment on the importance of the entanglement in
thermodynamic precision, our argument shows that, at least
for paradigmatic settings, entanglement is a resource in the
scheme we have discussed.

IV. CONCLUSIONS

Motivated by the growing interest in finding delineated re-
gions of validity for the several TURs [9] and in understanding
the role of purely quantum features in the context [43], we
studied the work relative uncertainty for a NESS-based stroke
absorber. More specifically, we considered the paradigmatic
NESS obtained by two coupled qubits, each in weak con-
tact with a own thermal bath, with the two baths being at
disparate temperatures. Our main findings are the following:
(1) Despite that we show that an exchange scenario’s TUR
is valid when choosing specific unitary quenches to describe
the work absorption by S, in general if we are allowed to
consider generic unitaries, we numerically observe that the

setup under consideration is not constrained by such TURs,
but violations are rare. (2) Investigating the effect of the
entanglement between the two qubits on the work precision,
we find that entanglement is useful, at least in paradigmatic
settings. Our statement is based on a comparison with the
Euclidean projection of the NESS onto the set of separable
states. We find that such projection implies an increase of the
relative uncertainty, witnessing the usefulness of the presence
of entanglement in the NESS. Finally, it should be noted
that our study is restricted to the case where the two qubits
have the same level spacing and to the Born-Markov-Secular
approximation for the open system dynamics. Relaxations
of one or more of such assumptions could represent natural
developments. In particular, for small internal coupling one
may repeat our analysis by using the local master equation or
other methods, such as Redfield master-equation-based meth-
ods [44–46]. However, in those cases, in general, the steady
state does not commute with the Hamiltonian, opening the
way to the application of approaches going beyond the TPM
scheme [47], e.g., based on quasiprobability distributions
[48]. Furthermore, repeating our analysis with different kinds
of thermal baths, e.g., fermionic baths or engineered baths,
could concern a continuation of the present work. Indeed,
fermionic baths in the weak internal coupling regime have the
potential to give rise to interesting entangled NESSs [49,50].
In this scenario, also relating thermodynamic precision with
bath statistics discrimination [51–53] would be an interesting
research direction.
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APPENDIX A: GLOBAL MASTER
EQUATION’S STEADY STATE

The coefficients of the nonequilibrium steady state (14) are
[20]

ρ0 = a(	c,�−g + 	h,�−g)(	c,�+g + 	h,�+g),

ρ− = a(	c,�−g + 	h,�−g)(	c,�+g + 	h,�+g),

ρ+ = a(	c,�−g + 	h,�−g)(	c,�+g + 	h,�+g),

ρ2� = a(	c,�−g + 	h,�−g)(	c,�+g + 	h,�+g), (A1)

where the common proportionality coefficient a is the posi-
tive normalization quantity ensuring Tr(ρness) = 1. Purity and
correlation properties of the NESS are shown in Fig. 7 for
selected values of the system parameters.

APPENDIX B: PASSIVITY

The concept of ergotropy was introduced in [54] as the
maximum extractable work by means of a driving which is
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turned on (start of work extraction) and then off (end of
work extraction). For the populations in (A1), it happens
that

ρ2� � ρ+ � ρ− � ρ0. (B1)

This implies that the steady state is passive. (B1) can be
verified by noticing that

	α,�+g � 	α,�−g, (B2)

	α,ε � 	α,ε, (B3)

where α = c, h and ε = � ± g.

APPENDIX C: PROOF OF THE THERMODYNAMIC
UNCERTAINTY RELATION (30)

With the aim of proving (30), we can start to evaluate the
l.h.s. We get in terms of the NESS components in (14)

〈W 〉 = Tr[H (UρnessU
† − ρness)]

= 2g(ρ− − ρ+) (C1)

and

〈W 2〉 = 4g2(ρ+ + ρ−). (C2)

The l.h.s. hence reads

〈W 2〉 − 〈W 〉2

〈W 〉2
= ρ− + ρ+

(ρ− − ρ+)2
− 1. (C3)

Regarding the r.h.s., we must calculate the relative entropy
between the unitarily evolved NESS and the NESS:

�rel = S(UρnessU
†||ρness)

= (ρ+ − ρ−)ln

(
ρ+
ρ−

)
, (C4)

definitely getting for the r.h.s.

2

e�rel − 1
= 2(

ρ+
ρ−

)(ρ+−ρ− ) − 1
. (C5)

Hence, we need to prove that (see also [36] for an analogous
proof but in a classical context)

ρ− + ρ+
(ρ− − ρ+)2

− 1 � 2(
ρ−
ρ+

)ρ−−ρ+ − 1
. (C6)

In order to do so, we make the change of variables x = ρ− −
ρ+ and y = ρ−/ρ+. Therefore, 1 � x � 0 and y � 1. We can
now rewrite the inequality as

y + 1

x(y − 1)
− 1 � 2

yx − 1
. (C7)

We make a new change of variables z = yx � y so x =
ln z/ ln y, and we can rewrite the inequality as

(y + 1) ln y

(y − 1) ln z
− 1 � 2

z − 1
, (C8)

which is equivalent to

(y + 1) ln y

(y − 1) ln z
� z + 1

z − 1
⇔ y + 1

y − 1
ln y � z + 1

z − 1
ln z. (C9)

FIG. 8. Squared average work and work variance as a function of
g, for � = 1, βc = 3, βh = 1, νc = νh = 0.004, considering the uni-
tary (29). Dashed lines correspond to the values obtained replacing
the NESS with its closest separable state [see (35)]: the average work
decreases while the variance remains almost unchanged, implying an
increase in the relative error.

This last line is true since y � z � 1 and the function x 
→
x+1
x−1 ln x is increasing for x � 1.

APPENDIX D: ENTANGLEMENT CRITERIA BASED
ON THERMODYNAMIC QUANTITIES

Here we discuss further how in our framework it is
immediate to build entanglement criteria based on thermo-
dynamic quantities. The first example has been reported in
inequality (34). From that inequality, we can further de-
duce conditions on the adimensional work variance v :=
(〈W 2〉 − 〈W 〉2)/(4g2) and the adimensional average work
w := 〈W 〉/(2g) = ρ− − ρ+:

2 − 3w2 − √
6γ − 2

3
< v <

2 − 3w2 + √
6γ − 2

3
. (D1)

This means that, when entanglement is present, the higher the
purity the wider the allowed range of v, and the higher the
adimensional average work w the lower the offset of such
range. For the specific case treated in Fig. 4(a), however, in the
separable phase what is broken is the lower bound (namely, v

is lower than such bound) and v remains pretty close to the
lower bound (but greater) in the entangled phase. In summary,
the relations (34) and (D1), despite not playing a significant
role in understanding the improvement due to entanglement,
are totally equivalent to (33). This implies that they represent
entanglement criteria which are accessible through the purity
of the NESS and, more importantly, through thermodynamic
quantities.

APPENDIX E: FINDING THE CLOSEST
SEPARABLE STATE

Following Ref. [42], here we show how we can find the
closest separable state in the Frobenius norm, namely, the
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argument of the minimization (35),

ρ̄sep = arg

⎛
⎜⎜⎝

minρsep ‖ρness − ρsep‖2

s.t. ρsep � 0, Tr(ρsep) = 1,

ρPT
sep � 0

⎞
⎟⎟⎠. (E1)

The Frobenius norm, defined as

‖A‖2
2 :=

∑
i j

|Ai j |2, (E2)

is invariant under partial transposition. Hence the minimiza-
tion in (E1) is equivalent to

min
ρsep

∥∥ρPT
ness − ρPT

sep

∥∥
2

s.t.ρsep � 0, Tr(ρsep) = 1, ρPT
sep � 0,

(E3)

where ρPT
ness is a nonpositive operator (iff the state ρness is

entangled in the case of two qubits) and ρPT
sep is a proper

density operator whose partially transpose state is positive.

Therefore (E3) is equivalent to

min
σ

∥∥ρPT
ness − σ

∥∥
2 s.t.σ � 0, Tr(σ ) = 1, σ PT � 0. (E4)

The minimization (E4) returns an objective function that is
always greater or equal than

min
σ

∥∥ρPT
ness − σ

∥∥
2 s.t.σ � 0, Tr(σ ) = 1, (E5)

namely, the one without the constraint σ PT � 0. Here (E5)
is hence a relaxation of (E4). To solve (E5) one can apply
the analytical method of Refs. [42,55] to find the minimum
σ̄ = arg (E5), and then check by inspection if σ̄ PT � 0. If
σ̄ PT � 0, one can identify ρ̄sep = σ̄ PT . The relation σ̄ PT � 0
was proven by inspection to be satisfied for the examples we
have provided in the insets of Fig. 4 and Fig. 5.

Finally, we report in Fig. 8, for the unitary (29), the changes
in the squared average work and in the work variance obtained
by replacing the NESS with its closest separable state. We
notice that such replacement implies that the average work de-
creases while the variance remains almost unchanged, leading
to an increase in the relative error.

APPENDIX F: UNITARY OF VIOLATION

We report the unitary matrix that allows one to obtain the violation plotted in Fig. 5:

Uviol =

⎛
⎜⎜⎜⎜⎝

0.61214 − 0.084476i 0.442141 − 0.20187i 0.197476 − 0.549142i 0.166498 − 0.116762i

−0.000772 − 0.210944i 0.125315 + 0.662622i −0.440385 − 0.240318i 0.347386 + 0.358276i

0.250147 − 0.159182i 0.198848 + 0.471307i −0.095917 + 0.135918i −0.678087 − 0.40366i

−0.691565 + 0.086468i 0.190366 + 0.105252i 0.175807 − 0.590908i −0.133258 − 0.262879i

⎞
⎟⎟⎟⎟⎠, (F1)

having chosen the representation in the basis (|11〉, |10〉, |01〉, |00〉) and having rounded the entries to six decimals.

APPENDIX G: ORIGIN OF TUR BREAKING

As also remarked in Ref. [41], non-Hermitianity of the unitary operation is a necessary condition for TUR violation. Indeed,
defining for convenience πn := |φn〉〈φn|, Eq. (16) can be rewritten as

P(W ) =
∑
n,m

Tr(πnρness)Tr(πmUπnU
†)δ(εm − εn − W ), (G1)

and the probability distribution associated to the time-reversed process is

P̃(−W ) =
∑
m,n

Tr(πmρness)Tr(πnU
†πmU )δ(εn − εm + W ). (G2)

We notice that a sufficient condition for

P(W ) = P̃(W ) (G3)

is that the unitary U is Hermitian,

U = U †. (G4)

The validity of (G3) ensures that the TUR in the form (30) is respected [37]. This explains why no violation is observed for the
Hermitian unitaries (29) and (32). Taking instead a random unitary, e.g., the one reported in Eq. (F1), breaks condition (G4), and
therefore TUR violations can occur.
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